Defining parameters
Level: | \( N \) | = | \( 961 = 31^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 70 \) | ||
Sturm bound: | \(153760\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(961))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 39130 | 39020 | 110 |
Cusp forms | 37751 | 37699 | 52 |
Eisenstein series | 1379 | 1321 | 58 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(961))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(961)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)\(^{\oplus 1}\)