Properties

Label 961.2.d.o.388.1
Level $961$
Weight $2$
Character 961.388
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,9,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 388.1
Root \(-1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 961.388
Dual form 961.2.d.o.374.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86683 + 1.35633i) q^{2} +(2.05711 + 1.49458i) q^{3} +(1.02738 - 3.16196i) q^{4} -2.49846 q^{5} -5.86740 q^{6} +(0.495008 - 1.52348i) q^{7} +(0.944583 + 2.90713i) q^{8} +(1.07088 + 3.29583i) q^{9} +(4.66419 - 3.38874i) q^{10} +(0.226712 - 0.697749i) q^{11} +(6.83922 - 4.96899i) q^{12} +(1.53388 + 1.11443i) q^{13} +(1.14224 + 3.51546i) q^{14} +(-5.13960 - 3.73414i) q^{15} +(-0.326952 - 0.237545i) q^{16} +(-1.35326 - 4.16490i) q^{17} +(-6.46939 - 4.70029i) q^{18} +(3.75224 - 2.72616i) q^{19} +(-2.56687 + 7.90002i) q^{20} +(3.29524 - 2.39413i) q^{21} +(0.523145 + 1.61007i) q^{22} +(-2.19973 - 6.77006i) q^{23} +(-2.40181 + 7.39202i) q^{24} +1.24230 q^{25} -4.37501 q^{26} +(-0.365721 + 1.12557i) q^{27} +(-4.30861 - 3.13039i) q^{28} +(0.104314 - 0.0757884i) q^{29} +14.6595 q^{30} -5.18091 q^{32} +(1.50921 - 1.09651i) q^{33} +(8.17529 + 5.93970i) q^{34} +(-1.23676 + 3.80635i) q^{35} +11.5215 q^{36} +8.42948 q^{37} +(-3.30721 + 10.1786i) q^{38} +(1.48975 + 4.58499i) q^{39} +(-2.36000 - 7.26334i) q^{40} +(5.96567 - 4.33432i) q^{41} +(-2.90441 + 8.93885i) q^{42} +(-0.186472 + 0.135480i) q^{43} +(-1.97333 - 1.43371i) q^{44} +(-2.67555 - 8.23451i) q^{45} +(13.2889 + 9.65498i) q^{46} +(6.50168 + 4.72375i) q^{47} +(-0.317547 - 0.977310i) q^{48} +(3.58717 + 2.60623i) q^{49} +(-2.31916 + 1.68497i) q^{50} +(3.44097 - 10.5902i) q^{51} +(5.09965 - 3.70511i) q^{52} +(1.77198 + 5.45359i) q^{53} +(-0.843912 - 2.59729i) q^{54} +(-0.566432 + 1.74330i) q^{55} +4.89652 q^{56} +11.7932 q^{57} +(-0.0919419 + 0.282968i) q^{58} +(-7.68867 - 5.58614i) q^{59} +(-17.0875 + 12.4148i) q^{60} -7.84044 q^{61} +5.55122 q^{63} +(10.3258 - 7.50212i) q^{64} +(-3.83233 - 2.78435i) q^{65} +(-1.33021 + 4.09397i) q^{66} +4.82658 q^{67} -14.5596 q^{68} +(5.59330 - 17.2144i) q^{69} +(-2.85385 - 8.78324i) q^{70} +(-1.05221 - 3.23836i) q^{71} +(-8.56987 + 6.22638i) q^{72} +(0.831888 - 2.56029i) q^{73} +(-15.7364 + 11.4332i) q^{74} +(2.55554 + 1.85671i) q^{75} +(-4.76503 - 14.6652i) q^{76} +(-0.950780 - 0.690782i) q^{77} +(-8.99987 - 6.53879i) q^{78} +(1.39921 + 4.30633i) q^{79} +(0.816877 + 0.593496i) q^{80} +(5.97623 - 4.34198i) q^{81} +(-5.25813 + 16.1829i) q^{82} +(-2.16036 + 1.56959i) q^{83} +(-4.18467 - 12.8791i) q^{84} +(3.38106 + 10.4058i) q^{85} +(0.164356 - 0.505834i) q^{86} +0.327856 q^{87} +2.24259 q^{88} +(-0.681255 + 2.09669i) q^{89} +(16.1635 + 11.7435i) q^{90} +(2.45708 - 1.78518i) q^{91} -23.6666 q^{92} -18.5445 q^{94} +(-9.37482 + 6.81121i) q^{95} +(-10.6577 - 7.74327i) q^{96} +(3.79778 - 11.6884i) q^{97} -10.2315 q^{98} +2.54245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 9 q^{3} - 14 q^{4} + 6 q^{5} - 22 q^{6} + 11 q^{7} + 17 q^{8} + 5 q^{9} + 19 q^{10} + 14 q^{11} + 5 q^{12} - q^{13} + 27 q^{14} + 14 q^{15} - 2 q^{16} - 3 q^{17} - 9 q^{18} + 13 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86683 + 1.35633i −1.32005 + 0.959070i −0.320115 + 0.947379i \(0.603722\pi\)
−0.999932 + 0.0116917i \(0.996278\pi\)
\(3\) 2.05711 + 1.49458i 1.18767 + 0.862894i 0.993016 0.117978i \(-0.0376413\pi\)
0.194655 + 0.980872i \(0.437641\pi\)
\(4\) 1.02738 3.16196i 0.513691 1.58098i
\(5\) −2.49846 −1.11735 −0.558673 0.829388i \(-0.688689\pi\)
−0.558673 + 0.829388i \(0.688689\pi\)
\(6\) −5.86740 −2.39536
\(7\) 0.495008 1.52348i 0.187095 0.575820i −0.812883 0.582427i \(-0.802103\pi\)
0.999978 + 0.00660707i \(0.00210311\pi\)
\(8\) 0.944583 + 2.90713i 0.333960 + 1.02782i
\(9\) 1.07088 + 3.29583i 0.356961 + 1.09861i
\(10\) 4.66419 3.38874i 1.47495 1.07161i
\(11\) 0.226712 0.697749i 0.0683564 0.210379i −0.911043 0.412311i \(-0.864722\pi\)
0.979400 + 0.201931i \(0.0647218\pi\)
\(12\) 6.83922 4.96899i 1.97431 1.43442i
\(13\) 1.53388 + 1.11443i 0.425421 + 0.309086i 0.779815 0.626010i \(-0.215313\pi\)
−0.354394 + 0.935096i \(0.615313\pi\)
\(14\) 1.14224 + 3.51546i 0.305277 + 0.939547i
\(15\) −5.13960 3.73414i −1.32704 0.964150i
\(16\) −0.326952 0.237545i −0.0817381 0.0593862i
\(17\) −1.35326 4.16490i −0.328214 1.01014i −0.969969 0.243228i \(-0.921794\pi\)
0.641755 0.766909i \(-0.278206\pi\)
\(18\) −6.46939 4.70029i −1.52485 1.10787i
\(19\) 3.75224 2.72616i 0.860823 0.625425i −0.0672855 0.997734i \(-0.521434\pi\)
0.928109 + 0.372309i \(0.121434\pi\)
\(20\) −2.56687 + 7.90002i −0.573970 + 1.76650i
\(21\) 3.29524 2.39413i 0.719079 0.522442i
\(22\) 0.523145 + 1.61007i 0.111535 + 0.343269i
\(23\) −2.19973 6.77006i −0.458675 1.41166i −0.866766 0.498714i \(-0.833806\pi\)
0.408092 0.912941i \(-0.366194\pi\)
\(24\) −2.40181 + 7.39202i −0.490268 + 1.50889i
\(25\) 1.24230 0.248460
\(26\) −4.37501 −0.858011
\(27\) −0.365721 + 1.12557i −0.0703831 + 0.216617i
\(28\) −4.30861 3.13039i −0.814250 0.591588i
\(29\) 0.104314 0.0757884i 0.0193706 0.0140736i −0.578058 0.815996i \(-0.696189\pi\)
0.597428 + 0.801922i \(0.296189\pi\)
\(30\) 14.6595 2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) 1.50921 1.09651i 0.262720 0.190877i
\(34\) 8.17529 + 5.93970i 1.40205 + 1.01865i
\(35\) −1.23676 + 3.80635i −0.209050 + 0.643390i
\(36\) 11.5215 1.92025
\(37\) 8.42948 1.38580 0.692899 0.721035i \(-0.256333\pi\)
0.692899 + 0.721035i \(0.256333\pi\)
\(38\) −3.30721 + 10.1786i −0.536501 + 1.65118i
\(39\) 1.48975 + 4.58499i 0.238551 + 0.734186i
\(40\) −2.36000 7.26334i −0.373149 1.14843i
\(41\) 5.96567 4.33432i 0.931682 0.676907i −0.0147221 0.999892i \(-0.504686\pi\)
0.946404 + 0.322985i \(0.104686\pi\)
\(42\) −2.90441 + 8.93885i −0.448160 + 1.37930i
\(43\) −0.186472 + 0.135480i −0.0284367 + 0.0206605i −0.601913 0.798562i \(-0.705595\pi\)
0.573476 + 0.819222i \(0.305595\pi\)
\(44\) −1.97333 1.43371i −0.297491 0.216140i
\(45\) −2.67555 8.23451i −0.398848 1.22753i
\(46\) 13.2889 + 9.65498i 1.95935 + 1.42355i
\(47\) 6.50168 + 4.72375i 0.948368 + 0.689030i 0.950420 0.310968i \(-0.100653\pi\)
−0.00205222 + 0.999998i \(0.500653\pi\)
\(48\) −0.317547 0.977310i −0.0458340 0.141063i
\(49\) 3.58717 + 2.60623i 0.512453 + 0.372319i
\(50\) −2.31916 + 1.68497i −0.327979 + 0.238290i
\(51\) 3.44097 10.5902i 0.481832 1.48293i
\(52\) 5.09965 3.70511i 0.707194 0.513806i
\(53\) 1.77198 + 5.45359i 0.243400 + 0.749108i 0.995896 + 0.0905104i \(0.0288498\pi\)
−0.752496 + 0.658597i \(0.771150\pi\)
\(54\) −0.843912 2.59729i −0.114842 0.353447i
\(55\) −0.566432 + 1.74330i −0.0763776 + 0.235066i
\(56\) 4.89652 0.654324
\(57\) 11.7932 1.56205
\(58\) −0.0919419 + 0.282968i −0.0120726 + 0.0371555i
\(59\) −7.68867 5.58614i −1.00098 0.727254i −0.0386815 0.999252i \(-0.512316\pi\)
−0.962298 + 0.271997i \(0.912316\pi\)
\(60\) −17.0875 + 12.4148i −2.20599 + 1.60274i
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) 10.3258 7.50212i 1.29072 0.937765i
\(65\) −3.83233 2.78435i −0.475342 0.345356i
\(66\) −1.33021 + 4.09397i −0.163738 + 0.503933i
\(67\) 4.82658 0.589660 0.294830 0.955550i \(-0.404737\pi\)
0.294830 + 0.955550i \(0.404737\pi\)
\(68\) −14.5596 −1.76561
\(69\) 5.59330 17.2144i 0.673354 2.07237i
\(70\) −2.85385 8.78324i −0.341100 1.04980i
\(71\) −1.05221 3.23836i −0.124874 0.384323i 0.869004 0.494805i \(-0.164761\pi\)
−0.993878 + 0.110482i \(0.964761\pi\)
\(72\) −8.56987 + 6.22638i −1.00997 + 0.733785i
\(73\) 0.831888 2.56029i 0.0973651 0.299659i −0.890498 0.454988i \(-0.849644\pi\)
0.987863 + 0.155329i \(0.0496437\pi\)
\(74\) −15.7364 + 11.4332i −1.82932 + 1.32908i
\(75\) 2.55554 + 1.85671i 0.295089 + 0.214394i
\(76\) −4.76503 14.6652i −0.546586 1.68222i
\(77\) −0.950780 0.690782i −0.108351 0.0787219i
\(78\) −8.99987 6.53879i −1.01903 0.740372i
\(79\) 1.39921 + 4.30633i 0.157424 + 0.484500i 0.998398 0.0565742i \(-0.0180178\pi\)
−0.840975 + 0.541074i \(0.818018\pi\)
\(80\) 0.816877 + 0.593496i 0.0913296 + 0.0663549i
\(81\) 5.97623 4.34198i 0.664025 0.482443i
\(82\) −5.25813 + 16.1829i −0.580663 + 1.78710i
\(83\) −2.16036 + 1.56959i −0.237130 + 0.172285i −0.700004 0.714139i \(-0.746818\pi\)
0.462874 + 0.886424i \(0.346818\pi\)
\(84\) −4.18467 12.8791i −0.456585 1.40522i
\(85\) 3.38106 + 10.4058i 0.366728 + 1.12867i
\(86\) 0.164356 0.505834i 0.0177229 0.0545455i
\(87\) 0.327856 0.0351499
\(88\) 2.24259 0.239061
\(89\) −0.681255 + 2.09669i −0.0722129 + 0.222248i −0.980649 0.195776i \(-0.937277\pi\)
0.908436 + 0.418025i \(0.137277\pi\)
\(90\) 16.1635 + 11.7435i 1.70378 + 1.23787i
\(91\) 2.45708 1.78518i 0.257572 0.187137i
\(92\) −23.6666 −2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) −9.37482 + 6.81121i −0.961837 + 0.698815i
\(96\) −10.6577 7.74327i −1.08775 0.790294i
\(97\) 3.79778 11.6884i 0.385606 1.18677i −0.550434 0.834879i \(-0.685538\pi\)
0.936040 0.351894i \(-0.114462\pi\)
\(98\) −10.2315 −1.03354
\(99\) 2.54245 0.255526
\(100\) 1.27632 3.92810i 0.127632 0.392810i
\(101\) 2.26952 + 6.98486i 0.225826 + 0.695020i 0.998207 + 0.0598605i \(0.0190656\pi\)
−0.772381 + 0.635159i \(0.780934\pi\)
\(102\) 7.94012 + 24.4372i 0.786189 + 2.41964i
\(103\) −4.52140 + 3.28499i −0.445506 + 0.323679i −0.787819 0.615907i \(-0.788790\pi\)
0.342313 + 0.939586i \(0.388790\pi\)
\(104\) −1.79091 + 5.51184i −0.175613 + 0.540480i
\(105\) −8.23301 + 5.98163i −0.803460 + 0.583748i
\(106\) −10.7048 7.77752i −1.03975 0.755420i
\(107\) 0.563696 + 1.73488i 0.0544946 + 0.167717i 0.974600 0.223955i \(-0.0718968\pi\)
−0.920105 + 0.391672i \(0.871897\pi\)
\(108\) 3.18328 + 2.31279i 0.306312 + 0.222548i
\(109\) −9.51832 6.91546i −0.911689 0.662381i 0.0297521 0.999557i \(-0.490528\pi\)
−0.941442 + 0.337176i \(0.890528\pi\)
\(110\) −1.30706 4.02271i −0.124623 0.383550i
\(111\) 17.3403 + 12.5985i 1.64587 + 1.19580i
\(112\) −0.523738 + 0.380518i −0.0494886 + 0.0359556i
\(113\) 3.41604 10.5135i 0.321354 0.989026i −0.651706 0.758472i \(-0.725946\pi\)
0.973060 0.230554i \(-0.0740537\pi\)
\(114\) −22.0159 + 15.9955i −2.06198 + 1.49812i
\(115\) 5.49593 + 16.9147i 0.512498 + 1.57731i
\(116\) −0.132470 0.407700i −0.0122995 0.0378540i
\(117\) −2.03037 + 6.24882i −0.187707 + 0.577704i
\(118\) 21.9301 2.01883
\(119\) −7.01501 −0.643065
\(120\) 6.00083 18.4687i 0.547799 1.68595i
\(121\) 8.46373 + 6.14926i 0.769430 + 0.559024i
\(122\) 14.6368 10.6342i 1.32515 0.962777i
\(123\) 18.7500 1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) −10.3632 + 7.52929i −0.923225 + 0.670762i
\(127\) 1.04123 + 0.756499i 0.0923943 + 0.0671284i 0.633023 0.774133i \(-0.281814\pi\)
−0.540629 + 0.841261i \(0.681814\pi\)
\(128\) −5.89913 + 18.1557i −0.521414 + 1.60475i
\(129\) −0.586077 −0.0516012
\(130\) 10.9308 0.958694
\(131\) −2.47843 + 7.62781i −0.216541 + 0.666445i 0.782500 + 0.622651i \(0.213944\pi\)
−0.999041 + 0.0437937i \(0.986056\pi\)
\(132\) −1.91657 5.89859i −0.166816 0.513406i
\(133\) −2.29586 7.06593i −0.199076 0.612693i
\(134\) −9.01039 + 6.54643i −0.778379 + 0.565526i
\(135\) 0.913740 2.81220i 0.0786422 0.242036i
\(136\) 10.8296 7.86819i 0.928634 0.674692i
\(137\) 13.3300 + 9.68479i 1.13886 + 0.827428i 0.986960 0.160969i \(-0.0514618\pi\)
0.151897 + 0.988396i \(0.451462\pi\)
\(138\) 12.9067 + 39.7227i 1.09869 + 3.38142i
\(139\) −5.93804 4.31424i −0.503658 0.365929i 0.306755 0.951789i \(-0.400757\pi\)
−0.810412 + 0.585860i \(0.800757\pi\)
\(140\) 10.7649 + 7.82114i 0.909799 + 0.661007i
\(141\) 6.31466 + 19.4345i 0.531790 + 1.63668i
\(142\) 6.35658 + 4.61833i 0.533433 + 0.387561i
\(143\) 1.12534 0.817606i 0.0941056 0.0683717i
\(144\) 0.432781 1.33196i 0.0360651 0.110997i
\(145\) −0.260624 + 0.189354i −0.0216436 + 0.0157250i
\(146\) 1.91960 + 5.90793i 0.158868 + 0.488944i
\(147\) 3.48398 + 10.7226i 0.287354 + 0.884385i
\(148\) 8.66030 26.6537i 0.711872 2.19092i
\(149\) −6.36193 −0.521189 −0.260595 0.965448i \(-0.583919\pi\)
−0.260595 + 0.965448i \(0.583919\pi\)
\(150\) −7.28907 −0.595150
\(151\) −1.70724 + 5.25433i −0.138933 + 0.427592i −0.996181 0.0873120i \(-0.972172\pi\)
0.857248 + 0.514904i \(0.172172\pi\)
\(152\) 11.4696 + 8.33316i 0.930308 + 0.675908i
\(153\) 12.2777 8.92024i 0.992590 0.721159i
\(154\) 2.71187 0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) −6.46767 + 4.69903i −0.516176 + 0.375024i −0.815161 0.579234i \(-0.803352\pi\)
0.298985 + 0.954258i \(0.403352\pi\)
\(158\) −8.45290 6.14139i −0.672476 0.488583i
\(159\) −4.50565 + 13.8670i −0.357321 + 1.09972i
\(160\) 12.9443 1.02334
\(161\) −11.4029 −0.898675
\(162\) −5.26743 + 16.2115i −0.413848 + 1.27369i
\(163\) −5.27350 16.2302i −0.413052 1.27124i −0.913981 0.405756i \(-0.867008\pi\)
0.500929 0.865488i \(-0.332992\pi\)
\(164\) −7.57590 23.3162i −0.591578 1.82069i
\(165\) −3.77070 + 2.73957i −0.293549 + 0.213276i
\(166\) 1.90413 5.86032i 0.147789 0.454849i
\(167\) 19.7175 14.3256i 1.52579 1.10855i 0.567265 0.823535i \(-0.308001\pi\)
0.958523 0.285015i \(-0.0919986\pi\)
\(168\) 10.0727 + 7.31821i 0.777122 + 0.564612i
\(169\) −2.90639 8.94495i −0.223568 0.688073i
\(170\) −20.4256 14.8401i −1.56657 1.13818i
\(171\) 13.0032 + 9.44737i 0.994379 + 0.722458i
\(172\) 0.236803 + 0.728805i 0.0180561 + 0.0555709i
\(173\) −7.25980 5.27455i −0.551952 0.401017i 0.276553 0.960999i \(-0.410808\pi\)
−0.828505 + 0.559982i \(0.810808\pi\)
\(174\) −0.612051 + 0.444681i −0.0463995 + 0.0337112i
\(175\) 0.614948 1.89261i 0.0464857 0.143068i
\(176\) −0.239871 + 0.174276i −0.0180809 + 0.0131366i
\(177\) −7.46750 22.9826i −0.561292 1.72748i
\(178\) −1.57201 4.83816i −0.117827 0.362635i
\(179\) −3.48896 + 10.7379i −0.260777 + 0.802590i 0.731859 + 0.681456i \(0.238653\pi\)
−0.992636 + 0.121134i \(0.961347\pi\)
\(180\) −28.7860 −2.14558
\(181\) −14.9410 −1.11056 −0.555279 0.831664i \(-0.687389\pi\)
−0.555279 + 0.831664i \(0.687389\pi\)
\(182\) −2.16567 + 6.66523i −0.160530 + 0.494060i
\(183\) −16.1286 11.7181i −1.19226 0.866229i
\(184\) 17.6036 12.7898i 1.29775 0.942874i
\(185\) −21.0607 −1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) 21.6160 15.7050i 1.57651 1.14540i
\(189\) 1.53375 + 1.11434i 0.111564 + 0.0810560i
\(190\) 8.26294 25.4307i 0.599457 1.84494i
\(191\) 2.26093 0.163595 0.0817975 0.996649i \(-0.473934\pi\)
0.0817975 + 0.996649i \(0.473934\pi\)
\(192\) 32.4537 2.34215
\(193\) 7.93069 24.4082i 0.570864 1.75694i −0.0789873 0.996876i \(-0.525169\pi\)
0.649851 0.760062i \(-0.274831\pi\)
\(194\) 8.76347 + 26.9712i 0.629181 + 1.93642i
\(195\) −3.72209 11.4554i −0.266544 0.820339i
\(196\) 11.9262 8.66488i 0.851871 0.618920i
\(197\) −1.91458 + 5.89247i −0.136408 + 0.419821i −0.995806 0.0914857i \(-0.970838\pi\)
0.859398 + 0.511307i \(0.170838\pi\)
\(198\) −4.74631 + 3.44840i −0.337306 + 0.245067i
\(199\) 3.69667 + 2.68579i 0.262050 + 0.190390i 0.711050 0.703141i \(-0.248220\pi\)
−0.449000 + 0.893532i \(0.648220\pi\)
\(200\) 1.17345 + 3.61152i 0.0829758 + 0.255373i
\(201\) 9.92879 + 7.21369i 0.700323 + 0.508814i
\(202\) −13.7106 9.96132i −0.964673 0.700876i
\(203\) −0.0638258 0.196436i −0.00447969 0.0137871i
\(204\) −29.9506 21.7604i −2.09696 1.52353i
\(205\) −14.9050 + 10.8291i −1.04101 + 0.756338i
\(206\) 3.98514 12.2650i 0.277658 0.854544i
\(207\) 19.9574 14.4999i 1.38713 1.00781i
\(208\) −0.236778 0.728729i −0.0164176 0.0505282i
\(209\) −1.05150 3.23618i −0.0727336 0.223851i
\(210\) 7.25655 22.3334i 0.500749 1.54115i
\(211\) −18.6168 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(212\) 19.0645 1.30936
\(213\) 2.67547 8.23426i 0.183321 0.564203i
\(214\) −3.40539 2.47416i −0.232788 0.169130i
\(215\) 0.465892 0.338490i 0.0317736 0.0230849i
\(216\) −3.61764 −0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) 5.53783 4.02347i 0.374212 0.271881i
\(220\) 4.93029 + 3.58207i 0.332400 + 0.241503i
\(221\) 2.56575 7.89656i 0.172591 0.531180i
\(222\) −49.4591 −3.31948
\(223\) 6.21495 0.416184 0.208092 0.978109i \(-0.433275\pi\)
0.208092 + 0.978109i \(0.433275\pi\)
\(224\) −2.56459 + 7.89300i −0.171354 + 0.527373i
\(225\) 1.33036 + 4.09441i 0.0886904 + 0.272961i
\(226\) 7.88260 + 24.2602i 0.524343 + 1.61376i
\(227\) 10.5559 7.66930i 0.700619 0.509030i −0.179515 0.983755i \(-0.557453\pi\)
0.880134 + 0.474726i \(0.157453\pi\)
\(228\) 12.1161 37.2897i 0.802412 2.46957i
\(229\) −12.3601 + 8.98014i −0.816779 + 0.593425i −0.915788 0.401662i \(-0.868433\pi\)
0.0990091 + 0.995087i \(0.468433\pi\)
\(230\) −33.2019 24.1226i −2.18927 1.59060i
\(231\) −0.923430 2.84203i −0.0607572 0.186992i
\(232\) 0.318860 + 0.231665i 0.0209342 + 0.0152096i
\(233\) −10.5668 7.67721i −0.692253 0.502951i 0.185147 0.982711i \(-0.440724\pi\)
−0.877400 + 0.479760i \(0.840724\pi\)
\(234\) −4.68512 14.4193i −0.306276 0.942621i
\(235\) −16.2442 11.8021i −1.05965 0.769884i
\(236\) −25.5624 + 18.5721i −1.66397 + 1.20894i
\(237\) −3.55781 + 10.9498i −0.231105 + 0.711267i
\(238\) 13.0958 9.51467i 0.848876 0.616744i
\(239\) −7.24405 22.2949i −0.468578 1.44214i −0.854426 0.519573i \(-0.826091\pi\)
0.385848 0.922563i \(-0.373909\pi\)
\(240\) 0.793379 + 2.44177i 0.0512124 + 0.157616i
\(241\) 7.63645 23.5026i 0.491907 1.51393i −0.329814 0.944046i \(-0.606986\pi\)
0.821722 0.569889i \(-0.193014\pi\)
\(242\) −24.1408 −1.55183
\(243\) 22.3337 1.43271
\(244\) −8.05513 + 24.7911i −0.515677 + 1.58709i
\(245\) −8.96240 6.51156i −0.572587 0.416009i
\(246\) −35.0030 + 25.4312i −2.23171 + 1.62143i
\(247\) 8.79358 0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) −17.5266 + 12.7339i −1.10848 + 0.805360i
\(251\) 18.7645 + 13.6332i 1.18440 + 0.860518i 0.992661 0.120927i \(-0.0385868\pi\)
0.191741 + 0.981446i \(0.438587\pi\)
\(252\) 5.70323 17.5527i 0.359270 1.10572i
\(253\) −5.22251 −0.328336
\(254\) −2.96986 −0.186346
\(255\) −8.59711 + 26.4592i −0.538372 + 1.65694i
\(256\) −5.72420 17.6173i −0.357763 1.10108i
\(257\) 4.74221 + 14.5950i 0.295811 + 0.910412i 0.982948 + 0.183884i \(0.0588672\pi\)
−0.687137 + 0.726528i \(0.741133\pi\)
\(258\) 1.09410 0.794914i 0.0681160 0.0494892i
\(259\) 4.17266 12.8421i 0.259276 0.797970i
\(260\) −12.7413 + 9.25707i −0.790180 + 0.574099i
\(261\) 0.361494 + 0.262641i 0.0223759 + 0.0162571i
\(262\) −5.71903 17.6014i −0.353323 1.08742i
\(263\) 5.50607 + 4.00039i 0.339519 + 0.246675i 0.744459 0.667668i \(-0.232708\pi\)
−0.404940 + 0.914343i \(0.632708\pi\)
\(264\) 4.61325 + 3.35173i 0.283926 + 0.206284i
\(265\) −4.42721 13.6256i −0.271962 0.837012i
\(266\) 13.8697 + 10.0769i 0.850406 + 0.617856i
\(267\) −4.53507 + 3.29492i −0.277542 + 0.201646i
\(268\) 4.95874 15.2614i 0.302903 0.932241i
\(269\) −8.51057 + 6.18329i −0.518899 + 0.377002i −0.816189 0.577785i \(-0.803917\pi\)
0.297290 + 0.954787i \(0.403917\pi\)
\(270\) 2.10848 + 6.48923i 0.128318 + 0.394922i
\(271\) −0.487363 1.49995i −0.0296052 0.0911154i 0.935162 0.354220i \(-0.115254\pi\)
−0.964767 + 0.263105i \(0.915254\pi\)
\(272\) −0.546900 + 1.68319i −0.0331607 + 0.102058i
\(273\) 7.72256 0.467391
\(274\) −38.0206 −2.29691
\(275\) 0.281645 0.866813i 0.0169838 0.0522708i
\(276\) −48.6847 35.3715i −2.93048 2.12912i
\(277\) −9.79020 + 7.11300i −0.588236 + 0.427379i −0.841684 0.539970i \(-0.818435\pi\)
0.253448 + 0.967349i \(0.418435\pi\)
\(278\) 16.9368 1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) 17.3718 12.6214i 1.03632 0.752927i 0.0667525 0.997770i \(-0.478736\pi\)
0.969563 + 0.244842i \(0.0787362\pi\)
\(282\) −38.1480 27.7161i −2.27168 1.65047i
\(283\) −0.212853 + 0.655094i −0.0126528 + 0.0389413i −0.957184 0.289482i \(-0.906517\pi\)
0.944531 + 0.328423i \(0.106517\pi\)
\(284\) −11.3206 −0.671753
\(285\) −29.4649 −1.74535
\(286\) −0.991870 + 3.05266i −0.0586505 + 0.180508i
\(287\) −3.65018 11.2341i −0.215463 0.663127i
\(288\) −5.54815 17.0754i −0.326928 1.00618i
\(289\) −1.76183 + 1.28004i −0.103637 + 0.0752967i
\(290\) 0.229713 0.706984i 0.0134892 0.0415155i
\(291\) 25.2816 18.3681i 1.48203 1.07676i
\(292\) −7.24086 5.26079i −0.423739 0.307864i
\(293\) 2.78482 + 8.57081i 0.162691 + 0.500712i 0.998859 0.0477622i \(-0.0152090\pi\)
−0.836168 + 0.548474i \(0.815209\pi\)
\(294\) −21.0474 15.2918i −1.22751 0.891837i
\(295\) 19.2098 + 13.9568i 1.11844 + 0.812594i
\(296\) 7.96234 + 24.5056i 0.462801 + 1.42436i
\(297\) 0.702455 + 0.510363i 0.0407606 + 0.0296143i
\(298\) 11.8766 8.62887i 0.687994 0.499857i
\(299\) 4.17063 12.8359i 0.241194 0.742317i
\(300\) 8.49636 6.17297i 0.490538 0.356396i
\(301\) 0.114095 + 0.351149i 0.00657634 + 0.0202399i
\(302\) −3.93949 12.1245i −0.226692 0.697688i
\(303\) −5.77076 + 17.7606i −0.331522 + 1.02032i
\(304\) −1.87439 −0.107504
\(305\) 19.5890 1.12166
\(306\) −10.8215 + 33.3051i −0.618623 + 1.90393i
\(307\) 25.3486 + 18.4169i 1.44672 + 1.05111i 0.986583 + 0.163260i \(0.0522010\pi\)
0.460141 + 0.887846i \(0.347799\pi\)
\(308\) −3.16104 + 2.29663i −0.180117 + 0.130863i
\(309\) −14.2107 −0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) −11.9219 + 8.66180i −0.674947 + 0.490378i
\(313\) 17.5303 + 12.7365i 0.990874 + 0.719912i 0.960112 0.279615i \(-0.0902067\pi\)
0.0307616 + 0.999527i \(0.490207\pi\)
\(314\) 5.70058 17.5446i 0.321702 0.990098i
\(315\) −13.8695 −0.781458
\(316\) 15.0540 0.846852
\(317\) 0.313976 0.966318i 0.0176346 0.0542738i −0.941852 0.336028i \(-0.890916\pi\)
0.959487 + 0.281754i \(0.0909163\pi\)
\(318\) −10.3969 31.9984i −0.583030 1.79438i
\(319\) −0.0292321 0.0899671i −0.00163668 0.00503719i
\(320\) −25.7985 + 18.7437i −1.44218 + 1.04781i
\(321\) −1.43332 + 4.41132i −0.0800004 + 0.246216i
\(322\) 21.2873 15.4661i 1.18629 0.861893i
\(323\) −16.4320 11.9385i −0.914299 0.664277i
\(324\) −7.58930 23.3575i −0.421628 1.29764i
\(325\) 1.90553 + 1.38445i 0.105700 + 0.0767955i
\(326\) 31.8582 + 23.1463i 1.76446 + 1.28196i
\(327\) −9.24451 28.4517i −0.511223 1.57338i
\(328\) 18.2355 + 13.2489i 1.00689 + 0.731545i
\(329\) 10.4149 7.56687i 0.574192 0.417175i
\(330\) 3.32348 10.2286i 0.182952 0.563068i
\(331\) −21.5922 + 15.6877i −1.18682 + 0.862272i −0.992924 0.118751i \(-0.962111\pi\)
−0.193891 + 0.981023i \(0.562111\pi\)
\(332\) 2.74347 + 8.44353i 0.150568 + 0.463399i
\(333\) 9.02697 + 27.7822i 0.494675 + 1.52245i
\(334\) −17.3790 + 53.4870i −0.950935 + 2.92668i
\(335\) −12.0590 −0.658854
\(336\) −1.64610 −0.0898020
\(337\) 9.87048 30.3782i 0.537679 1.65481i −0.200108 0.979774i \(-0.564129\pi\)
0.737788 0.675033i \(-0.235871\pi\)
\(338\) 17.5580 + 12.7567i 0.955031 + 0.693871i
\(339\) 22.7404 16.5218i 1.23509 0.897343i
\(340\) 36.3765 1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) 14.8178 10.7658i 0.800088 0.581298i
\(344\) −0.569994 0.414125i −0.0307320 0.0223281i
\(345\) −13.9746 + 43.0095i −0.752368 + 2.31555i
\(346\) 20.7068 1.11321
\(347\) 3.12131 0.167561 0.0837804 0.996484i \(-0.473301\pi\)
0.0837804 + 0.996484i \(0.473301\pi\)
\(348\) 0.336834 1.03667i 0.0180562 0.0555712i
\(349\) −6.80655 20.9484i −0.364346 1.12134i −0.950389 0.311063i \(-0.899315\pi\)
0.586043 0.810280i \(-0.300685\pi\)
\(350\) 1.41901 + 4.36726i 0.0758492 + 0.233440i
\(351\) −1.81534 + 1.31892i −0.0968958 + 0.0703989i
\(352\) −1.17458 + 3.61498i −0.0626052 + 0.192679i
\(353\) −3.99039 + 2.89919i −0.212387 + 0.154308i −0.688893 0.724863i \(-0.741903\pi\)
0.476506 + 0.879171i \(0.341903\pi\)
\(354\) 45.1125 + 32.7762i 2.39770 + 1.74203i
\(355\) 2.62890 + 8.09092i 0.139527 + 0.429421i
\(356\) 5.92973 + 4.30820i 0.314275 + 0.228334i
\(357\) −14.4306 10.4845i −0.763750 0.554897i
\(358\) −8.05087 24.7780i −0.425502 1.30956i
\(359\) 0.291942 + 0.212108i 0.0154081 + 0.0111946i 0.595463 0.803383i \(-0.296969\pi\)
−0.580055 + 0.814578i \(0.696969\pi\)
\(360\) 21.4115 15.5563i 1.12848 0.819892i
\(361\) 0.776030 2.38838i 0.0408437 0.125704i
\(362\) 27.8924 20.2650i 1.46599 1.06510i
\(363\) 8.22027 + 25.2994i 0.431452 + 1.32787i
\(364\) −3.12029 9.60325i −0.163547 0.503347i
\(365\) −2.07844 + 6.39677i −0.108790 + 0.334822i
\(366\) 46.0030 2.40462
\(367\) −29.3869 −1.53398 −0.766992 0.641657i \(-0.778247\pi\)
−0.766992 + 0.641657i \(0.778247\pi\)
\(368\) −0.888987 + 2.73602i −0.0463416 + 0.142625i
\(369\) 20.6737 + 15.0203i 1.07623 + 0.781928i
\(370\) 39.3167 28.5653i 2.04398 1.48504i
\(371\) 9.18555 0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 5.99786 4.35770i 0.310142 0.225331i
\(375\) 19.3131 + 14.0318i 0.997323 + 0.724597i
\(376\) −7.59116 + 23.3632i −0.391484 + 1.20486i
\(377\) 0.244465 0.0125906
\(378\) −4.37466 −0.225008
\(379\) −0.760312 + 2.34000i −0.0390546 + 0.120198i −0.968683 0.248301i \(-0.920128\pi\)
0.929628 + 0.368498i \(0.120128\pi\)
\(380\) 11.9052 + 36.6405i 0.610725 + 1.87962i
\(381\) 1.01128 + 3.11240i 0.0518094 + 0.159453i
\(382\) −4.22077 + 3.06657i −0.215953 + 0.156899i
\(383\) −5.90776 + 18.1822i −0.301872 + 0.929068i 0.678953 + 0.734181i \(0.262434\pi\)
−0.980826 + 0.194886i \(0.937566\pi\)
\(384\) −39.2701 + 28.5314i −2.00400 + 1.45599i
\(385\) 2.37549 + 1.72589i 0.121066 + 0.0879596i
\(386\) 18.3003 + 56.3225i 0.931460 + 2.86674i
\(387\) −0.646208 0.469497i −0.0328486 0.0238659i
\(388\) −33.0563 24.0168i −1.67818 1.21927i
\(389\) 1.62885 + 5.01308i 0.0825858 + 0.254173i 0.983820 0.179159i \(-0.0573377\pi\)
−0.901234 + 0.433332i \(0.857338\pi\)
\(390\) 22.4858 + 16.3369i 1.13861 + 0.827251i
\(391\) −25.2199 + 18.3233i −1.27542 + 0.926649i
\(392\) −4.18827 + 12.8902i −0.211539 + 0.651051i
\(393\) −16.4987 + 11.9870i −0.832251 + 0.604665i
\(394\) −4.41794 13.5970i −0.222573 0.685009i
\(395\) −3.49587 10.7592i −0.175897 0.541354i
\(396\) 2.61207 8.03911i 0.131261 0.403981i
\(397\) 16.9255 0.849467 0.424733 0.905319i \(-0.360368\pi\)
0.424733 + 0.905319i \(0.360368\pi\)
\(398\) −10.5439 −0.528516
\(399\) 5.83773 17.9667i 0.292252 0.899460i
\(400\) −0.406173 0.295102i −0.0203086 0.0147551i
\(401\) −30.7747 + 22.3591i −1.53682 + 1.11656i −0.584524 + 0.811377i \(0.698719\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(402\) −28.3195 −1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) −14.9314 + 10.8483i −0.741945 + 0.539055i
\(406\) 0.385583 + 0.280143i 0.0191362 + 0.0139032i
\(407\) 1.91107 5.88166i 0.0947281 0.291543i
\(408\) 34.0373 1.68510
\(409\) 0.498684 0.0246583 0.0123292 0.999924i \(-0.496075\pi\)
0.0123292 + 0.999924i \(0.496075\pi\)
\(410\) 13.1372 40.4322i 0.648801 1.99680i
\(411\) 12.9465 + 39.8453i 0.638605 + 1.96542i
\(412\) 5.74179 + 17.6714i 0.282877 + 0.870607i
\(413\) −12.3163 + 8.94832i −0.606046 + 0.440318i
\(414\) −17.5903 + 54.1375i −0.864518 + 2.66071i
\(415\) 5.39757 3.92156i 0.264956 0.192502i
\(416\) −7.94688 5.77375i −0.389628 0.283081i
\(417\) −5.76723 17.7497i −0.282422 0.869206i
\(418\) 6.35229 + 4.61521i 0.310701 + 0.225737i
\(419\) −10.9298 7.94098i −0.533957 0.387942i 0.287879 0.957667i \(-0.407050\pi\)
−0.821836 + 0.569725i \(0.807050\pi\)
\(420\) 10.4552 + 32.1779i 0.510163 + 1.57012i
\(421\) 25.0109 + 18.1714i 1.21895 + 0.885622i 0.996013 0.0892097i \(-0.0284341\pi\)
0.222941 + 0.974832i \(0.428434\pi\)
\(422\) 34.7543 25.2505i 1.69181 1.22917i
\(423\) −8.60616 + 26.4871i −0.418446 + 1.28784i
\(424\) −14.1805 + 10.3027i −0.688665 + 0.500345i
\(425\) −1.68115 5.17406i −0.0815479 0.250979i
\(426\) 6.17373 + 19.0008i 0.299118 + 0.920591i
\(427\) −3.88108 + 11.9447i −0.187818 + 0.578046i
\(428\) 6.06475 0.293151
\(429\) 3.53692 0.170764
\(430\) −0.410636 + 1.26381i −0.0198026 + 0.0609462i
\(431\) 9.75253 + 7.08563i 0.469763 + 0.341303i 0.797349 0.603519i \(-0.206235\pi\)
−0.327586 + 0.944821i \(0.606235\pi\)
\(432\) 0.386948 0.281134i 0.0186170 0.0135261i
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) −31.6454 + 22.9917i −1.51554 + 1.10110i
\(437\) −26.7102 19.4061i −1.27772 0.928319i
\(438\) −4.88102 + 15.0222i −0.233224 + 0.717790i
\(439\) 12.3682 0.590300 0.295150 0.955451i \(-0.404630\pi\)
0.295150 + 0.955451i \(0.404630\pi\)
\(440\) −5.60303 −0.267114
\(441\) −4.74827 + 14.6137i −0.226108 + 0.695890i
\(442\) 5.92053 + 18.2215i 0.281611 + 0.866709i
\(443\) −1.45961 4.49223i −0.0693483 0.213432i 0.910376 0.413782i \(-0.135792\pi\)
−0.979725 + 0.200349i \(0.935792\pi\)
\(444\) 57.6511 41.8859i 2.73600 1.98782i
\(445\) 1.70209 5.23849i 0.0806867 0.248328i
\(446\) −11.6023 + 8.42953i −0.549383 + 0.399150i
\(447\) −13.0872 9.50838i −0.619002 0.449731i
\(448\) −6.31796 19.4447i −0.298496 0.918676i
\(449\) 12.9315 + 9.39528i 0.610275 + 0.443390i 0.849511 0.527571i \(-0.176897\pi\)
−0.239236 + 0.970961i \(0.576897\pi\)
\(450\) −8.03692 5.83917i −0.378864 0.275261i
\(451\) −1.67177 5.14519i −0.0787207 0.242277i
\(452\) −29.7336 21.6027i −1.39855 1.01611i
\(453\) −11.3650 + 8.25713i −0.533973 + 0.387954i
\(454\) −9.30393 + 28.6345i −0.436655 + 1.34389i
\(455\) −6.13892 + 4.46019i −0.287797 + 0.209097i
\(456\) 11.1397 + 34.2844i 0.521663 + 1.60551i
\(457\) 1.40842 + 4.33468i 0.0658832 + 0.202768i 0.978579 0.205872i \(-0.0660032\pi\)
−0.912696 + 0.408640i \(0.866003\pi\)
\(458\) 10.8942 33.5288i 0.509051 1.56670i
\(459\) 5.18283 0.241914
\(460\) 59.1301 2.75695
\(461\) −5.25050 + 16.1594i −0.244540 + 0.752618i 0.751171 + 0.660107i \(0.229489\pi\)
−0.995712 + 0.0925105i \(0.970511\pi\)
\(462\) 5.57861 + 4.05310i 0.259540 + 0.188567i
\(463\) −22.1896 + 16.1217i −1.03124 + 0.749239i −0.968556 0.248795i \(-0.919965\pi\)
−0.0626822 + 0.998034i \(0.519965\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) 18.5350 13.4665i 0.857697 0.623153i −0.0695608 0.997578i \(-0.522160\pi\)
0.927257 + 0.374425i \(0.122160\pi\)
\(468\) 17.6726 + 12.8399i 0.816914 + 0.593523i
\(469\) 2.38919 7.35318i 0.110323 0.339538i
\(470\) 46.3327 2.13717
\(471\) −20.3277 −0.936653
\(472\) 8.97705 27.6285i 0.413202 1.27171i
\(473\) 0.0522553 + 0.160825i 0.00240270 + 0.00739476i
\(474\) −8.20974 25.2670i −0.377086 1.16055i
\(475\) 4.66141 3.38671i 0.213880 0.155393i
\(476\) −7.20710 + 22.1812i −0.330337 + 1.01667i
\(477\) −16.0765 + 11.6803i −0.736094 + 0.534804i
\(478\) 43.7626 + 31.7954i 2.00166 + 1.45429i
\(479\) 2.79569 + 8.60426i 0.127738 + 0.393139i 0.994390 0.105775i \(-0.0337324\pi\)
−0.866652 + 0.498914i \(0.833732\pi\)
\(480\) 26.6278 + 19.3462i 1.21539 + 0.883031i
\(481\) 12.9298 + 9.39403i 0.589547 + 0.428331i
\(482\) 17.6213 + 54.2329i 0.802629 + 2.47024i
\(483\) −23.4570 17.0425i −1.06733 0.775461i
\(484\) 28.1392 20.4443i 1.27905 0.929287i
\(485\) −9.48859 + 29.2029i −0.430855 + 1.32603i
\(486\) −41.6931 + 30.2918i −1.89124 + 1.37406i
\(487\) −7.29980 22.4665i −0.330786 1.01805i −0.968761 0.247997i \(-0.920228\pi\)
0.637975 0.770057i \(-0.279772\pi\)
\(488\) −7.40594 22.7931i −0.335251 1.03180i
\(489\) 13.4091 41.2688i 0.606378 1.86624i
\(490\) 25.5631 1.15482
\(491\) 9.22692 0.416405 0.208202 0.978086i \(-0.433239\pi\)
0.208202 + 0.978086i \(0.433239\pi\)
\(492\) 19.2634 59.2867i 0.868462 2.67285i
\(493\) −0.456815 0.331896i −0.0205739 0.0149478i
\(494\) −16.4161 + 11.9270i −0.738596 + 0.536621i
\(495\) −6.35220 −0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) 12.6757 9.20943i 0.568011 0.412684i
\(499\) −22.9874 16.7013i −1.02906 0.747653i −0.0609364 0.998142i \(-0.519409\pi\)
−0.968119 + 0.250489i \(0.919409\pi\)
\(500\) 9.64554 29.6859i 0.431362 1.32759i
\(501\) 61.9718 2.76870
\(502\) −53.5211 −2.38876
\(503\) 5.64823 17.3835i 0.251842 0.775091i −0.742593 0.669743i \(-0.766404\pi\)
0.994435 0.105348i \(-0.0335957\pi\)
\(504\) 5.24359 + 16.1381i 0.233568 + 0.718848i
\(505\) −5.67030 17.4514i −0.252325 0.776577i
\(506\) 9.74952 7.08344i 0.433419 0.314898i
\(507\) 7.39015 22.7445i 0.328208 1.01012i
\(508\) 3.46176 2.51512i 0.153591 0.111590i
\(509\) −8.40274 6.10495i −0.372445 0.270597i 0.385779 0.922591i \(-0.373933\pi\)
−0.758224 + 0.651994i \(0.773933\pi\)
\(510\) −19.8381 61.0553i −0.878444 2.70357i
\(511\) −3.48875 2.53472i −0.154333 0.112130i
\(512\) 3.69272 + 2.68292i 0.163197 + 0.118569i
\(513\) 1.69623 + 5.22044i 0.0748902 + 0.230488i
\(514\) −28.6486 20.8144i −1.26363 0.918083i
\(515\) 11.2965 8.20740i 0.497784 0.361661i
\(516\) −0.602125 + 1.85315i −0.0265071 + 0.0815804i
\(517\) 4.77000 3.46561i 0.209785 0.152417i
\(518\) 9.62851 + 29.6335i 0.423053 + 1.30202i
\(519\) −7.05096 21.7006i −0.309503 0.952552i
\(520\) 4.47451 13.7711i 0.196220 0.603903i
\(521\) 9.25044 0.405269 0.202635 0.979254i \(-0.435050\pi\)
0.202635 + 0.979254i \(0.435050\pi\)
\(522\) −1.03107 −0.0451289
\(523\) −2.03184 + 6.25335i −0.0888461 + 0.273440i −0.985601 0.169087i \(-0.945918\pi\)
0.896755 + 0.442527i \(0.145918\pi\)
\(524\) 21.5725 + 15.6734i 0.942400 + 0.684694i
\(525\) 4.09367 2.97422i 0.178662 0.129806i
\(526\) −15.7047 −0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) −22.3875 + 16.2655i −0.973371 + 0.707195i
\(530\) 26.7456 + 19.4318i 1.16176 + 0.844064i
\(531\) 10.1774 31.3227i 0.441660 1.35929i
\(532\) −24.7009 −1.07092
\(533\) 13.9809 0.605579
\(534\) 3.99720 12.3021i 0.172976 0.532364i
\(535\) −1.40837 4.33453i −0.0608893 0.187398i
\(536\) 4.55910 + 14.0315i 0.196923 + 0.606067i
\(537\) −23.2258 + 16.8745i −1.00227 + 0.728190i
\(538\) 7.50119 23.0863i 0.323399 0.995321i
\(539\) 2.63175 1.91208i 0.113358 0.0823591i
\(540\) −7.95331 5.77842i −0.342256 0.248663i
\(541\) −0.680850 2.09544i −0.0292720 0.0900900i 0.935353 0.353715i \(-0.115082\pi\)
−0.964625 + 0.263625i \(0.915082\pi\)
\(542\) 2.94425 + 2.13912i 0.126466 + 0.0918831i
\(543\) −30.7353 22.3305i −1.31898 0.958294i
\(544\) 7.01112 + 21.5780i 0.300599 + 0.925150i
\(545\) 23.7811 + 17.2780i 1.01867 + 0.740108i
\(546\) −14.4167 + 10.4743i −0.616978 + 0.448261i
\(547\) −1.50289 + 4.62541i −0.0642588 + 0.197768i −0.978031 0.208458i \(-0.933156\pi\)
0.913773 + 0.406226i \(0.133156\pi\)
\(548\) 44.3179 32.1988i 1.89317 1.37547i
\(549\) −8.39618 25.8408i −0.358340 1.10286i
\(550\) 0.649903 + 2.00019i 0.0277119 + 0.0852886i
\(551\) 0.184799 0.568753i 0.00787271 0.0242297i
\(552\) 55.3277 2.35491
\(553\) 7.25322 0.308438
\(554\) 8.62905 26.5575i 0.366613 1.12832i
\(555\) −43.3241 31.4768i −1.83901 1.33612i
\(556\) −19.7421 + 14.3435i −0.837251 + 0.608298i
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) 1.30854 0.950708i 0.0552958 0.0401748i
\(561\) −6.60919 4.80186i −0.279040 0.202735i
\(562\) −15.3115 + 47.1238i −0.645875 + 1.98780i
\(563\) −11.1924 −0.471704 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(564\) 67.9387 2.86074
\(565\) −8.53483 + 26.2675i −0.359063 + 1.10508i
\(566\) −0.491164 1.51165i −0.0206452 0.0635393i
\(567\) −3.65663 11.2540i −0.153564 0.472622i
\(568\) 8.42043 6.11780i 0.353314 0.256697i
\(569\) −14.4997 + 44.6255i −0.607859 + 1.87080i −0.132061 + 0.991242i \(0.542160\pi\)
−0.475797 + 0.879555i \(0.657840\pi\)
\(570\) 55.0059 39.9641i 2.30394 1.67391i
\(571\) 16.5522 + 12.0259i 0.692689 + 0.503268i 0.877543 0.479498i \(-0.159181\pi\)
−0.184854 + 0.982766i \(0.559181\pi\)
\(572\) −1.42908 4.39827i −0.0597530 0.183901i
\(573\) 4.65097 + 3.37913i 0.194297 + 0.141165i
\(574\) 22.0514 + 16.0213i 0.920407 + 0.668715i
\(575\) −2.73272 8.41044i −0.113962 0.350740i
\(576\) 35.7834 + 25.9982i 1.49098 + 1.08326i
\(577\) −2.95157 + 2.14444i −0.122876 + 0.0892744i −0.647526 0.762044i \(-0.724196\pi\)
0.524650 + 0.851318i \(0.324196\pi\)
\(578\) 1.55287 4.77925i 0.0645909 0.198790i
\(579\) 52.7941 38.3572i 2.19405 1.59407i
\(580\) 0.330970 + 1.01862i 0.0137428 + 0.0422959i
\(581\) 1.32184 + 4.06822i 0.0548393 + 0.168778i
\(582\) −22.2831 + 68.5803i −0.923664 + 2.84275i
\(583\) 4.20696 0.174235
\(584\) 8.22887 0.340513
\(585\) 5.07279 15.6124i 0.209734 0.645494i
\(586\) −16.8236 12.2231i −0.694978 0.504931i
\(587\) 18.5043 13.4442i 0.763755 0.554901i −0.136305 0.990667i \(-0.543523\pi\)
0.900060 + 0.435766i \(0.143523\pi\)
\(588\) 37.4838 1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) −12.7452 + 9.25996i −0.524269 + 0.380904i
\(592\) −2.75604 2.00238i −0.113272 0.0822972i
\(593\) −6.01340 + 18.5073i −0.246941 + 0.760005i 0.748371 + 0.663281i \(0.230837\pi\)
−0.995311 + 0.0967243i \(0.969163\pi\)
\(594\) −2.00358 −0.0822081
\(595\) 17.5267 0.718525
\(596\) −6.53613 + 20.1161i −0.267730 + 0.823990i
\(597\) 3.59033 + 11.0499i 0.146942 + 0.452242i
\(598\) 9.62383 + 29.6191i 0.393548 + 1.21122i
\(599\) −28.4546 + 20.6735i −1.16262 + 0.844696i −0.990108 0.140311i \(-0.955190\pi\)
−0.172517 + 0.985007i \(0.555190\pi\)
\(600\) −2.98377 + 9.18310i −0.121812 + 0.374899i
\(601\) −4.76354 + 3.46091i −0.194309 + 0.141174i −0.680686 0.732575i \(-0.738318\pi\)
0.486377 + 0.873749i \(0.338318\pi\)
\(602\) −0.689270 0.500784i −0.0280925 0.0204104i
\(603\) 5.16869 + 15.9076i 0.210485 + 0.647808i
\(604\) 14.8600 + 10.7964i 0.604645 + 0.439300i
\(605\) −21.1463 15.3637i −0.859719 0.624622i
\(606\) −13.3162 40.9830i −0.540933 1.66482i
\(607\) −31.4585 22.8559i −1.27686 0.927694i −0.277408 0.960752i \(-0.589475\pi\)
−0.999453 + 0.0330586i \(0.989475\pi\)
\(608\) −19.4400 + 14.1240i −0.788398 + 0.572805i
\(609\) 0.162291 0.499481i 0.00657638 0.0202400i
\(610\) −36.5693 + 26.5692i −1.48065 + 1.07575i
\(611\) 4.70851 + 14.4913i 0.190486 + 0.586255i
\(612\) −15.5916 47.9859i −0.630252 1.93972i
\(613\) −14.0919 + 43.3704i −0.569167 + 1.75172i 0.0860667 + 0.996289i \(0.472570\pi\)
−0.655234 + 0.755426i \(0.727430\pi\)
\(614\) −72.3009 −2.91783
\(615\) −46.8461 −1.88902
\(616\) 1.11010 3.41654i 0.0447272 0.137656i
\(617\) 5.36093 + 3.89495i 0.215823 + 0.156805i 0.690444 0.723385i \(-0.257415\pi\)
−0.474621 + 0.880190i \(0.657415\pi\)
\(618\) 26.5288 19.2743i 1.06715 0.775328i
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) 33.0689 24.0260i 1.32594 0.963353i
\(623\) 2.85703 + 2.07575i 0.114464 + 0.0831632i
\(624\) 0.602062 1.85296i 0.0241018 0.0741776i
\(625\) −29.6682 −1.18673
\(626\) −50.0011 −1.99845
\(627\) 2.67367 8.22871i 0.106776 0.328623i
\(628\) 8.21338 + 25.2782i 0.327750 + 1.00871i
\(629\) −11.4073 35.1080i −0.454838 1.39985i
\(630\) 25.8920 18.8116i 1.03156 0.749473i
\(631\) 3.44391 10.5993i 0.137100 0.421950i −0.858811 0.512293i \(-0.828796\pi\)
0.995911 + 0.0903431i \(0.0287964\pi\)
\(632\) −11.1974 + 8.13537i −0.445408 + 0.323608i
\(633\) −38.2967 27.8242i −1.52216 1.10591i
\(634\) 0.724507 + 2.22980i 0.0287739 + 0.0885568i
\(635\) −2.60147 1.89008i −0.103236 0.0750056i
\(636\) 39.2177 + 28.4934i 1.55508 + 1.12983i
\(637\) 2.59782 + 7.99527i 0.102929 + 0.316784i
\(638\) 0.176596 + 0.128305i 0.00699151 + 0.00507963i
\(639\) 9.54632 6.93581i 0.377647 0.274376i
\(640\) 14.7387 45.3612i 0.582600 1.79306i
\(641\) −14.2009 + 10.3176i −0.560903 + 0.407520i −0.831789 0.555092i \(-0.812683\pi\)
0.270887 + 0.962611i \(0.412683\pi\)
\(642\) −3.30743 10.1792i −0.130534 0.401742i
\(643\) −0.678617 2.08857i −0.0267621 0.0823651i 0.936783 0.349910i \(-0.113788\pi\)
−0.963545 + 0.267545i \(0.913788\pi\)
\(644\) −11.7152 + 36.0555i −0.461642 + 1.42079i
\(645\) 1.46429 0.0576563
\(646\) 46.8682 1.84401
\(647\) −10.0259 + 30.8566i −0.394160 + 1.21310i 0.535454 + 0.844564i \(0.320140\pi\)
−0.929614 + 0.368535i \(0.879860\pi\)
\(648\) 18.2677 + 13.2723i 0.717625 + 0.521385i
\(649\) −5.64084 + 4.09831i −0.221422 + 0.160873i
\(650\) −5.43508 −0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) −13.3407 + 9.69256i −0.522061 + 0.379299i −0.817380 0.576099i \(-0.804574\pi\)
0.295319 + 0.955399i \(0.404574\pi\)
\(654\) 55.8478 + 40.5758i 2.18382 + 1.58664i
\(655\) 6.19225 19.0578i 0.241951 0.744649i
\(656\) −2.98009 −0.116353
\(657\) 9.32914 0.363964
\(658\) −9.17967 + 28.2521i −0.357861 + 1.10138i
\(659\) −6.10043 18.7752i −0.237639 0.731377i −0.996760 0.0804282i \(-0.974371\pi\)
0.759122 0.650949i \(-0.225629\pi\)
\(660\) 4.78847 + 14.7374i 0.186391 + 0.573652i
\(661\) −9.53088 + 6.92459i −0.370708 + 0.269335i −0.757505 0.652830i \(-0.773582\pi\)
0.386796 + 0.922165i \(0.373582\pi\)
\(662\) 19.0313 58.5723i 0.739673 2.27648i
\(663\) 17.0800 12.4094i 0.663333 0.481940i
\(664\) −6.60364 4.79783i −0.256271 0.186192i
\(665\) 5.73611 + 17.6539i 0.222437 + 0.684590i
\(666\) −54.5336 39.6210i −2.11313 1.53528i
\(667\) −0.742554 0.539497i −0.0287518 0.0208894i
\(668\) −25.0396 77.0639i −0.968810 2.98169i
\(669\) 12.7848 + 9.28872i 0.494290 + 0.359123i
\(670\) 22.5121 16.3560i 0.869718 0.631887i
\(671\) −1.77752 + 5.47066i −0.0686206 + 0.211192i
\(672\) −17.0723 + 12.4038i −0.658579 + 0.478486i
\(673\) 15.5689 + 47.9162i 0.600138 + 1.84704i 0.527277 + 0.849693i \(0.323213\pi\)
0.0728608 + 0.997342i \(0.476787\pi\)
\(674\) 22.7764 + 70.0985i 0.877314 + 2.70009i
\(675\) −0.454335 + 1.39830i −0.0174874 + 0.0538206i
\(676\) −31.2695 −1.20267
\(677\) −3.97995 −0.152962 −0.0764810 0.997071i \(-0.524368\pi\)
−0.0764810 + 0.997071i \(0.524368\pi\)
\(678\) −20.0433 + 61.6869i −0.769758 + 2.36907i
\(679\) −15.9270 11.5717i −0.611223 0.444079i
\(680\) −27.0574 + 19.6584i −1.03760 + 0.753864i
\(681\) 33.1770 1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) 43.2314 31.4095i 1.65300 1.20097i
\(685\) −33.3044 24.1971i −1.27250 0.924522i
\(686\) −13.0604 + 40.1958i −0.498648 + 1.53468i
\(687\) −38.8476 −1.48213
\(688\) 0.0931499 0.00355130
\(689\) −3.35963 + 10.3399i −0.127992 + 0.393918i
\(690\) −32.2468 99.2455i −1.22762 3.77821i
\(691\) 2.84158 + 8.74547i 0.108099 + 0.332693i 0.990445 0.137907i \(-0.0440374\pi\)
−0.882347 + 0.470600i \(0.844037\pi\)
\(692\) −24.1365 + 17.5362i −0.917532 + 0.666626i
\(693\) 1.25853 3.87336i 0.0478076 0.147137i
\(694\) −5.82695 + 4.23353i −0.221188 + 0.160703i
\(695\) 14.8359 + 10.7789i 0.562760 + 0.408869i
\(696\) 0.309687 + 0.953120i 0.0117387 + 0.0361279i
\(697\) −26.1251 18.9810i −0.989560 0.718957i
\(698\) 41.1196 + 29.8751i 1.55640 + 1.13079i
\(699\) −10.2628 31.5857i −0.388175 1.19468i
\(700\) −5.35258 3.88888i −0.202309 0.146986i
\(701\) 32.8091 23.8372i 1.23918 0.900319i 0.241640 0.970366i \(-0.422315\pi\)
0.997544 + 0.0700465i \(0.0223148\pi\)
\(702\) 1.60004 4.92441i 0.0603895 0.185860i
\(703\) 31.6294 22.9801i 1.19293 0.866712i
\(704\) −2.89361 8.90563i −0.109057 0.335643i
\(705\) −15.7769 48.5564i −0.594193 1.82874i
\(706\) 3.51712 10.8246i 0.132368 0.407388i
\(707\) 11.7647 0.442457
\(708\) −80.3420 −3.01944
\(709\) −11.5220 + 35.4612i −0.432719 + 1.33177i 0.462687 + 0.886521i \(0.346885\pi\)
−0.895406 + 0.445250i \(0.853115\pi\)
\(710\) −15.8817 11.5387i −0.596028 0.433040i
\(711\) −12.6946 + 9.22314i −0.476083 + 0.345895i
\(712\) −6.73883 −0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) −2.81161 + 2.04276i −0.105148 + 0.0763948i
\(716\) 30.3684 + 22.0639i 1.13492 + 0.824567i
\(717\) 18.4196 56.6897i 0.687893 2.11712i
\(718\) −0.832694 −0.0310759
\(719\) −18.5799 −0.692912 −0.346456 0.938066i \(-0.612615\pi\)
−0.346456 + 0.938066i \(0.612615\pi\)
\(720\) −1.08129 + 3.32786i −0.0402971 + 0.124022i
\(721\) 2.76647 + 8.51433i 0.103029 + 0.317090i
\(722\) 1.79071 + 5.51124i 0.0666434 + 0.205107i
\(723\) 50.8354 36.9341i 1.89059 1.37359i
\(724\) −15.3502 + 47.2430i −0.570484 + 1.75577i
\(725\) 0.129589 0.0941519i 0.00481282 0.00349671i
\(726\) −49.6601 36.0802i −1.84306 1.33906i
\(727\) 5.06083 + 15.5756i 0.187696 + 0.577668i 0.999984 0.00558775i \(-0.00177865\pi\)
−0.812289 + 0.583255i \(0.801779\pi\)
\(728\) 7.51065 + 5.45681i 0.278363 + 0.202243i
\(729\) 28.0140 + 20.3534i 1.03756 + 0.753829i
\(730\) −4.79605 14.7607i −0.177510 0.546319i
\(731\) 0.816604 + 0.593298i 0.0302032 + 0.0219439i
\(732\) −53.6225 + 38.9590i −1.98194 + 1.43997i
\(733\) −0.355783 + 1.09499i −0.0131411 + 0.0404443i −0.957412 0.288725i \(-0.906769\pi\)
0.944271 + 0.329169i \(0.106769\pi\)
\(734\) 54.8603 39.8583i 2.02493 1.47120i
\(735\) −8.70459 26.7900i −0.321074 0.988163i
\(736\) 11.3966 + 35.0751i 0.420084 + 1.29289i
\(737\) 1.09425 3.36774i 0.0403070 0.124052i
\(738\) −58.9668 −2.17060
\(739\) −20.7158 −0.762043 −0.381022 0.924566i \(-0.624428\pi\)
−0.381022 + 0.924566i \(0.624428\pi\)
\(740\) −21.6374 + 66.5931i −0.795407 + 2.44801i
\(741\) 18.0893 + 13.1427i 0.664529 + 0.482808i
\(742\) −17.1479 + 12.4586i −0.629517 + 0.457371i
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) −33.0959 + 24.0456i −1.21173 + 0.880370i
\(747\) −7.48660 5.43934i −0.273921 0.199015i
\(748\) −3.30083 + 10.1589i −0.120690 + 0.371447i
\(749\) 2.92208 0.106771
\(750\) −55.0859 −2.01145
\(751\) −13.3328 + 41.0342i −0.486521 + 1.49736i 0.343245 + 0.939246i \(0.388474\pi\)
−0.829766 + 0.558112i \(0.811526\pi\)
\(752\) −1.00364 3.08888i −0.0365989 0.112640i
\(753\) 18.2247 + 56.0898i 0.664144 + 2.04403i
\(754\) −0.456375 + 0.331576i −0.0166202 + 0.0120753i
\(755\) 4.26546 13.1277i 0.155236 0.477767i
\(756\) 5.09923 3.70481i 0.185457 0.134743i
\(757\) 22.1174 + 16.0692i 0.803870 + 0.584045i 0.912047 0.410086i \(-0.134501\pi\)
−0.108177 + 0.994132i \(0.534501\pi\)
\(758\) −1.75444 5.39961i −0.0637241 0.196123i
\(759\) −10.7433 7.80543i −0.389955 0.283319i
\(760\) −28.6563 20.8201i −1.03947 0.755223i
\(761\) 5.31261 + 16.3505i 0.192582 + 0.592706i 0.999996 + 0.00272136i \(0.000866238\pi\)
−0.807414 + 0.589985i \(0.799134\pi\)
\(762\) −6.10932 4.43868i −0.221317 0.160797i
\(763\) −15.2472 + 11.0777i −0.551985 + 0.401041i
\(764\) 2.32284 7.14896i 0.0840373 0.258640i
\(765\) −30.6752 + 22.2869i −1.10907 + 0.805783i
\(766\) −13.6323 41.9560i −0.492556 1.51593i
\(767\) −5.56812 17.1369i −0.201053 0.618778i
\(768\) 14.5551 44.7959i 0.525211 1.61643i
\(769\) 14.0567 0.506899 0.253450 0.967349i \(-0.418435\pi\)
0.253450 + 0.967349i \(0.418435\pi\)
\(770\) −6.77550 −0.244172
\(771\) −12.0581 + 37.1111i −0.434263 + 1.33652i
\(772\) −69.0297 50.1530i −2.48443 1.80505i
\(773\) 17.9900 13.0705i 0.647054 0.470112i −0.215212 0.976567i \(-0.569044\pi\)
0.862266 + 0.506455i \(0.169044\pi\)
\(774\) 1.84315 0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) 27.7771 20.1813i 0.996498 0.723998i
\(778\) −9.84016 7.14930i −0.352787 0.256315i
\(779\) 10.5686 32.5268i 0.378659 1.16539i
\(780\) −40.0455 −1.43386
\(781\) −2.49811 −0.0893895
\(782\) 22.2287 68.4129i 0.794897 2.44644i
\(783\) 0.0471557 + 0.145130i 0.00168521 + 0.00518654i
\(784\) −0.553737 1.70423i −0.0197763 0.0608653i
\(785\) 16.1592 11.7403i 0.576747 0.419031i
\(786\) 14.5419 44.7554i 0.518693 1.59637i
\(787\) −25.9159 + 18.8290i −0.923802 + 0.671182i −0.944467 0.328605i \(-0.893422\pi\)
0.0206654 + 0.999786i \(0.493422\pi\)
\(788\) 16.6647 + 12.1076i 0.593657 + 0.431317i
\(789\) 5.34768 + 16.4585i 0.190383 + 0.585937i
\(790\) 21.1192 + 15.3440i 0.751388 + 0.545915i
\(791\) −14.3261 10.4085i −0.509377 0.370084i
\(792\) 2.40155 + 7.39122i 0.0853354 + 0.262635i
\(793\) −12.0263 8.73759i −0.427065 0.310281i
\(794\) −31.5970 + 22.9566i −1.12134 + 0.814698i
\(795\) 11.2572 34.6460i 0.399251 1.22877i
\(796\) 12.2902 8.92938i 0.435616 0.316493i
\(797\) 8.04966 + 24.7743i 0.285134 + 0.877551i 0.986359 + 0.164611i \(0.0526369\pi\)
−0.701225 + 0.712940i \(0.747363\pi\)
\(798\) 13.4707 + 41.4586i 0.476859 + 1.46762i
\(799\) 10.8755 33.4714i 0.384748 1.18413i
\(800\) −6.43625 −0.227556
\(801\) −7.63987 −0.269942
\(802\) 27.1247 83.4814i 0.957808 2.94783i
\(803\) −1.59784 1.16090i −0.0563865 0.0409672i
\(804\) 33.0100 23.9832i 1.16417 0.845822i
\(805\) 28.4897 1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) −18.1621 + 13.1956i −0.638942 + 0.464218i
\(809\) 7.06224 + 5.13102i 0.248295 + 0.180397i 0.704971 0.709236i \(-0.250960\pi\)
−0.456676 + 0.889633i \(0.650960\pi\)
\(810\) 13.1605 40.5037i 0.462411 1.42316i
\(811\) −50.0784 −1.75849 −0.879245 0.476369i \(-0.841953\pi\)
−0.879245 + 0.476369i \(0.841953\pi\)
\(812\) −0.686695 −0.0240983
\(813\) 1.23923 3.81396i 0.0434617 0.133761i
\(814\) 4.40984 + 13.5721i 0.154565 + 0.475701i
\(815\) 13.1756 + 40.5504i 0.461522 + 1.42042i
\(816\) −3.64068 + 2.64511i −0.127449 + 0.0925973i
\(817\) −0.330347 + 1.01670i −0.0115574 + 0.0355700i
\(818\) −0.930957 + 0.676380i −0.0325501 + 0.0236491i
\(819\) 8.51489 + 6.18643i 0.297534 + 0.216171i
\(820\) 18.9281 + 58.2546i 0.660997 + 2.03434i
\(821\) 41.0844 + 29.8495i 1.43385 + 1.04176i 0.989283 + 0.146013i \(0.0466441\pi\)
0.444572 + 0.895743i \(0.353356\pi\)
\(822\) −78.2123 56.8246i −2.72797 1.98199i
\(823\) −1.95583 6.01943i −0.0681760 0.209824i 0.911164 0.412043i \(-0.135185\pi\)
−0.979340 + 0.202219i \(0.935185\pi\)
\(824\) −13.8207 10.0413i −0.481467 0.349806i
\(825\) 1.87489 1.36219i 0.0652753 0.0474253i
\(826\) 10.8556 33.4100i 0.377713 1.16248i
\(827\) −2.99130 + 2.17331i −0.104018 + 0.0755733i −0.638578 0.769557i \(-0.720477\pi\)
0.534561 + 0.845130i \(0.320477\pi\)
\(828\) −25.3441 78.0012i −0.880769 2.71073i
\(829\) 8.04729 + 24.7670i 0.279494 + 0.860193i 0.987995 + 0.154484i \(0.0493715\pi\)
−0.708501 + 0.705709i \(0.750628\pi\)
\(830\) −4.75740 + 14.6418i −0.165132 + 0.508223i
\(831\) −30.7704 −1.06741
\(832\) 24.1990 0.838951
\(833\) 6.00033 18.4671i 0.207899 0.639848i
\(834\) 34.8409 + 25.3134i 1.20644 + 0.876530i
\(835\) −49.2635 + 35.7920i −1.70483 + 1.23863i
\(836\) −11.3130 −0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) −6.06196 + 4.40427i −0.209282 + 0.152052i −0.687489 0.726195i \(-0.741287\pi\)
0.478207 + 0.878247i \(0.341287\pi\)
\(840\) −25.1661 18.2843i −0.868314 0.630867i
\(841\) −8.95636 + 27.5648i −0.308840 + 0.950511i
\(842\) −71.3374 −2.45845
\(843\) 54.5992 1.88050
\(844\) −19.1265 + 58.8655i −0.658363 + 2.02623i
\(845\) 7.26150 + 22.3486i 0.249803 + 0.768815i
\(846\) −19.8590 61.1196i −0.682765 2.10133i
\(847\) 13.5579 9.85037i 0.465854 0.338463i
\(848\) 0.716119 2.20399i 0.0245916 0.0756852i
\(849\) −1.41695 + 1.02947i −0.0486296 + 0.0353314i
\(850\) 10.1562 + 7.37888i 0.348353 + 0.253093i
\(851\) −18.5425 57.0681i −0.635630 1.95627i
\(852\) −23.2877 16.9195i −0.797822 0.579652i
\(853\) 35.2626 + 25.6198i 1.20737 + 0.877204i 0.994989 0.0999836i \(-0.0318790\pi\)
0.212378 + 0.977187i \(0.431879\pi\)
\(854\) −8.95569 27.5628i −0.306457 0.943179i
\(855\) −32.4879 23.6039i −1.11106 0.807235i
\(856\) −4.51106 + 3.27747i −0.154185 + 0.112022i
\(857\) 12.1205 37.3031i 0.414029 1.27425i −0.499088 0.866551i \(-0.666332\pi\)
0.913117 0.407698i \(-0.133668\pi\)
\(858\) −6.60282 + 4.79723i −0.225416 + 0.163775i
\(859\) −5.62451 17.3105i −0.191906 0.590625i −0.999999 0.00157032i \(-0.999500\pi\)
0.808093 0.589055i \(-0.200500\pi\)
\(860\) −0.591643 1.82089i −0.0201749 0.0620918i
\(861\) 9.28139 28.5652i 0.316309 0.973499i
\(862\) −27.8168 −0.947443
\(863\) 44.9477 1.53004 0.765018 0.644009i \(-0.222730\pi\)
0.765018 + 0.644009i \(0.222730\pi\)
\(864\) 1.89477 5.83151i 0.0644614 0.198392i
\(865\) 18.1383 + 13.1783i 0.616721 + 0.448074i
\(866\) 60.4700 43.9340i 2.05486 1.49294i
\(867\) −5.53740 −0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) 1.52919 1.11102i 0.0518442 0.0376670i
\(871\) 7.40338 + 5.37887i 0.250854 + 0.182256i
\(872\) 11.1133 34.2032i 0.376343 1.15827i
\(873\) 42.5899 1.44145
\(874\) 76.1844 2.57698
\(875\) 4.64736 14.3031i 0.157109 0.483533i
\(876\) −7.03257 21.6440i −0.237608 0.731283i
\(877\) −13.1799 40.5636i −0.445054 1.36973i −0.882425 0.470453i \(-0.844090\pi\)
0.437371 0.899281i \(-0.355910\pi\)
\(878\) −23.0892 + 16.7753i −0.779224 + 0.566139i
\(879\) −7.08104 + 21.7932i −0.238837 + 0.735066i
\(880\) 0.599307 0.435422i 0.0202026 0.0146781i
\(881\) 7.21362 + 5.24100i 0.243033 + 0.176574i 0.702633 0.711552i \(-0.252007\pi\)
−0.459600 + 0.888126i \(0.652007\pi\)
\(882\) −10.9568 33.7215i −0.368934 1.13546i
\(883\) −38.0791 27.6661i −1.28146 0.931038i −0.281867 0.959453i \(-0.590954\pi\)
−0.999596 + 0.0284158i \(0.990954\pi\)
\(884\) −22.3326 16.2256i −0.751126 0.545725i
\(885\) 18.6572 + 57.4211i 0.627156 + 1.93019i
\(886\) 8.81779 + 6.40650i 0.296239 + 0.215231i
\(887\) −2.55372 + 1.85538i −0.0857454 + 0.0622977i −0.629832 0.776731i \(-0.716876\pi\)
0.544087 + 0.839029i \(0.316876\pi\)
\(888\) −20.2460 + 62.3109i −0.679412 + 2.09102i
\(889\) 1.66793 1.21182i 0.0559404 0.0406431i
\(890\) 3.92761 + 12.0879i 0.131654 + 0.405189i
\(891\) −1.67473 5.15429i −0.0561056 0.172675i
\(892\) 6.38513 19.6514i 0.213790 0.657978i
\(893\) 37.2736 1.24731
\(894\) 37.3280 1.24843
\(895\) 8.71703 26.8283i 0.291378 0.896770i
\(896\) 24.7396 + 17.9744i 0.826492 + 0.600482i
\(897\) 27.7636 20.1714i 0.927000 0.673505i
\(898\) −36.8840 −1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) 20.3157 14.7602i 0.676815 0.491735i
\(902\) 10.0995 + 7.33771i 0.336276 + 0.244319i
\(903\) −0.290113 + 0.892875i −0.00965434 + 0.0297130i
\(904\) 33.7908 1.12386
\(905\) 37.3296 1.24088
\(906\) 10.0170 30.8293i 0.332794 1.02423i
\(907\) 8.33208 + 25.6435i 0.276662 + 0.851478i 0.988775 + 0.149413i \(0.0477384\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(908\) −13.4051 41.2566i −0.444863 1.36915i
\(909\) −20.5906 + 14.9599i −0.682946 + 0.496189i
\(910\) 5.41083 16.6528i 0.179367 0.552035i
\(911\) −4.10820 + 2.98479i −0.136111 + 0.0988903i −0.653757 0.756704i \(-0.726808\pi\)
0.517646 + 0.855595i \(0.326808\pi\)
\(912\) −3.85582 2.80142i −0.127679 0.0927642i
\(913\) 0.605401 + 1.86323i 0.0200359 + 0.0616640i
\(914\) −8.50854 6.18181i −0.281437 0.204476i
\(915\) 40.2967 + 29.2773i 1.33217 + 0.967876i
\(916\) 15.6963 + 48.3082i 0.518620 + 1.59615i
\(917\) 10.3940 + 7.55165i 0.343239 + 0.249377i
\(918\) −9.67545 + 7.02962i −0.319337 + 0.232012i
\(919\) −15.2274 + 46.8652i −0.502306 + 1.54594i 0.302946 + 0.953008i \(0.402030\pi\)
−0.805253 + 0.592932i \(0.797970\pi\)
\(920\) −43.9819 + 31.9547i −1.45004 + 1.05352i
\(921\) 24.6195 + 75.7709i 0.811239 + 2.49674i
\(922\) −12.1157 37.2882i −0.399009 1.22802i
\(923\) 1.99496 6.13986i 0.0656649 0.202096i
\(924\) −9.93508 −0.326840
\(925\) 10.4719 0.344315
\(926\) 19.5578 60.1929i 0.642711 1.97806i
\(927\) −15.6686 11.3839i −0.514626 0.373898i
\(928\) −0.540441 + 0.392653i −0.0177408 + 0.0128895i
\(929\) −39.9606 −1.31107 −0.655533 0.755167i \(-0.727556\pi\)
−0.655533 + 0.755167i \(0.727556\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) −35.1311 + 25.5243i −1.15076 + 0.836075i
\(933\) −36.4395 26.4748i −1.19297 0.866747i
\(934\) −16.3367 + 50.2791i −0.534552 + 1.64518i
\(935\) 8.02720 0.262517
\(936\) −20.0840 −0.656465
\(937\) 13.9334 42.8825i 0.455183 1.40091i −0.415737 0.909485i \(-0.636476\pi\)
0.870920 0.491424i \(-0.163524\pi\)
\(938\) 5.51313 + 16.9677i 0.180010 + 0.554014i
\(939\) 17.0261 + 52.4009i 0.555625 + 1.71004i
\(940\) −54.0067 + 39.2382i −1.76151 + 1.27981i
\(941\) 15.5103 47.7357i 0.505621 1.55614i −0.294104 0.955773i \(-0.595021\pi\)
0.799725 0.600367i \(-0.204979\pi\)
\(942\) 37.9484 27.5711i 1.23643 0.898316i
\(943\) −42.4664 30.8537i −1.38290 1.00473i
\(944\) 1.18687 + 3.65281i 0.0386293 + 0.118889i
\(945\) −3.83202 2.78412i −0.124656 0.0905675i
\(946\) −0.315684 0.229358i −0.0102638 0.00745707i
\(947\) 9.37123 + 28.8417i 0.304524 + 0.937229i 0.979854 + 0.199713i \(0.0640011\pi\)
−0.675330 + 0.737516i \(0.735999\pi\)
\(948\) 30.9676 + 22.4993i 1.00578 + 0.730743i
\(949\) 4.12927 3.00009i 0.134042 0.0973869i
\(950\) −4.10855 + 12.6448i −0.133299 + 0.410252i
\(951\) 2.09012 1.51856i 0.0677767 0.0492426i
\(952\) −6.62626 20.3935i −0.214758 0.660958i
\(953\) −10.9631 33.7411i −0.355131 1.09298i −0.955934 0.293583i \(-0.905152\pi\)
0.600803 0.799397i \(-0.294848\pi\)
\(954\) 14.1698 43.6102i 0.458764 1.41193i
\(955\) −5.64884 −0.182792
\(956\) −77.9379 −2.52069
\(957\) 0.0743291 0.228761i 0.00240272 0.00739481i
\(958\) −16.8893 12.2708i −0.545668 0.396451i
\(959\) 21.3530 15.5139i 0.689524 0.500969i
\(960\) −81.0843 −2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) −5.11422 + 3.71570i −0.164804 + 0.119737i
\(964\) −66.4686 48.2923i −2.14081 1.55539i
\(965\) −19.8145 + 60.9828i −0.637852 + 1.96311i
\(966\) 66.9055 2.15265
\(967\) −35.4443 −1.13981 −0.569906 0.821710i \(-0.693021\pi\)
−0.569906 + 0.821710i \(0.693021\pi\)
\(968\) −9.88199 + 30.4136i −0.317619 + 0.977531i
\(969\) −15.9593 49.1176i −0.512686 1.57789i
\(970\) −21.8952 67.3864i −0.703012 2.16365i
\(971\) 32.4393 23.5686i 1.04103 0.756351i 0.0705422 0.997509i \(-0.477527\pi\)
0.970486 + 0.241158i \(0.0775271\pi\)
\(972\) 22.9452 70.6181i 0.735968 2.26508i
\(973\) −9.51202 + 6.91088i −0.304941 + 0.221553i
\(974\) 44.0995 + 32.0401i 1.41304 + 1.02663i
\(975\) 1.85072 + 5.69593i 0.0592705 + 0.182416i
\(976\) 2.56345 + 1.86246i 0.0820540 + 0.0596157i
\(977\) 31.2854 + 22.7302i 1.00091 + 0.727202i 0.962283 0.272052i \(-0.0877022\pi\)
0.0386252 + 0.999254i \(0.487702\pi\)
\(978\) 30.9417 + 95.2289i 0.989408 + 3.04508i
\(979\) 1.30851 + 0.950690i 0.0418202 + 0.0303842i
\(980\) −29.7971 + 21.6489i −0.951834 + 0.691548i
\(981\) 12.5992 38.7764i 0.402262 1.23804i
\(982\) −17.2251 + 12.5147i −0.549674 + 0.399362i
\(983\) −6.66846 20.5234i −0.212691 0.654595i −0.999309 0.0371560i \(-0.988170\pi\)
0.786619 0.617439i \(-0.211830\pi\)
\(984\) 17.7109 + 54.5086i 0.564604 + 1.73767i
\(985\) 4.78350 14.7221i 0.152415 0.469085i
\(986\) 1.30296 0.0414946
\(987\) 32.7338 1.04193
\(988\) 9.03438 27.8049i 0.287422 0.884593i
\(989\) 1.32739 + 0.964407i 0.0422086 + 0.0306663i
\(990\) 11.8585 8.61568i 0.376887 0.273824i
\(991\) 46.8764 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) 10.1825 7.39800i 0.322968 0.234650i
\(995\) −9.23597 6.71033i −0.292800 0.212732i
\(996\) −6.97589 + 21.4696i −0.221039 + 0.680290i
\(997\) 44.5389 1.41056 0.705281 0.708928i \(-0.250821\pi\)
0.705281 + 0.708928i \(0.250821\pi\)
\(998\) 65.5659 2.07545
\(999\) −3.08284 + 9.48801i −0.0975367 + 0.300187i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.o.388.1 16
31.2 even 5 inner 961.2.d.o.374.1 16
31.3 odd 30 961.2.g.n.547.2 16
31.4 even 5 961.2.d.p.628.4 16
31.5 even 3 961.2.g.k.338.1 16
31.6 odd 6 961.2.g.l.235.1 16
31.7 even 15 961.2.g.s.846.2 16
31.8 even 5 961.2.a.i.1.8 8
31.9 even 15 961.2.c.j.521.8 16
31.10 even 15 31.2.g.a.19.1 yes 16
31.11 odd 30 961.2.g.n.448.2 16
31.12 odd 30 961.2.g.j.816.1 16
31.13 odd 30 961.2.g.m.844.2 16
31.14 even 15 961.2.c.j.439.8 16
31.15 odd 10 961.2.d.q.531.4 16
31.16 even 5 961.2.d.p.531.4 16
31.17 odd 30 961.2.c.i.439.8 16
31.18 even 15 961.2.g.s.844.2 16
31.19 even 15 961.2.g.k.816.1 16
31.20 even 15 961.2.g.t.448.2 16
31.21 odd 30 961.2.g.l.732.1 16
31.22 odd 30 961.2.c.i.521.8 16
31.23 odd 10 961.2.a.j.1.8 8
31.24 odd 30 961.2.g.m.846.2 16
31.25 even 3 31.2.g.a.18.1 16
31.26 odd 6 961.2.g.j.338.1 16
31.27 odd 10 961.2.d.q.628.4 16
31.28 even 15 961.2.g.t.547.2 16
31.29 odd 10 961.2.d.n.374.1 16
31.30 odd 2 961.2.d.n.388.1 16
93.8 odd 10 8649.2.a.bf.1.1 8
93.23 even 10 8649.2.a.be.1.1 8
93.41 odd 30 279.2.y.c.19.2 16
93.56 odd 6 279.2.y.c.235.2 16
124.87 odd 6 496.2.bg.c.49.2 16
124.103 odd 30 496.2.bg.c.81.2 16
155.72 odd 60 775.2.ck.a.174.4 32
155.87 odd 12 775.2.ck.a.49.1 32
155.103 odd 60 775.2.ck.a.174.1 32
155.118 odd 12 775.2.ck.a.49.4 32
155.134 even 30 775.2.bl.a.701.2 16
155.149 even 6 775.2.bl.a.576.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.25 even 3
31.2.g.a.19.1 yes 16 31.10 even 15
279.2.y.c.19.2 16 93.41 odd 30
279.2.y.c.235.2 16 93.56 odd 6
496.2.bg.c.49.2 16 124.87 odd 6
496.2.bg.c.81.2 16 124.103 odd 30
775.2.bl.a.576.2 16 155.149 even 6
775.2.bl.a.701.2 16 155.134 even 30
775.2.ck.a.49.1 32 155.87 odd 12
775.2.ck.a.49.4 32 155.118 odd 12
775.2.ck.a.174.1 32 155.103 odd 60
775.2.ck.a.174.4 32 155.72 odd 60
961.2.a.i.1.8 8 31.8 even 5
961.2.a.j.1.8 8 31.23 odd 10
961.2.c.i.439.8 16 31.17 odd 30
961.2.c.i.521.8 16 31.22 odd 30
961.2.c.j.439.8 16 31.14 even 15
961.2.c.j.521.8 16 31.9 even 15
961.2.d.n.374.1 16 31.29 odd 10
961.2.d.n.388.1 16 31.30 odd 2
961.2.d.o.374.1 16 31.2 even 5 inner
961.2.d.o.388.1 16 1.1 even 1 trivial
961.2.d.p.531.4 16 31.16 even 5
961.2.d.p.628.4 16 31.4 even 5
961.2.d.q.531.4 16 31.15 odd 10
961.2.d.q.628.4 16 31.27 odd 10
961.2.g.j.338.1 16 31.26 odd 6
961.2.g.j.816.1 16 31.12 odd 30
961.2.g.k.338.1 16 31.5 even 3
961.2.g.k.816.1 16 31.19 even 15
961.2.g.l.235.1 16 31.6 odd 6
961.2.g.l.732.1 16 31.21 odd 30
961.2.g.m.844.2 16 31.13 odd 30
961.2.g.m.846.2 16 31.24 odd 30
961.2.g.n.448.2 16 31.11 odd 30
961.2.g.n.547.2 16 31.3 odd 30
961.2.g.s.844.2 16 31.18 even 15
961.2.g.s.846.2 16 31.7 even 15
961.2.g.t.448.2 16 31.20 even 15
961.2.g.t.547.2 16 31.28 even 15
8649.2.a.be.1.1 8 93.23 even 10
8649.2.a.bf.1.1 8 93.8 odd 10