Properties

Label 961.2.g.s.844.2
Level $961$
Weight $2$
Character 961.844
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,6,-3,11,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 844.2
Root \(1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 961.844
Dual form 961.2.g.s.846.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.713065 + 2.19459i) q^{2} +(2.48716 - 0.528662i) q^{3} +(-2.68972 + 1.95420i) q^{4} +(1.24923 - 2.16373i) q^{5} +(2.93370 + 5.08132i) q^{6} +(1.46339 + 0.651543i) q^{7} +(-2.47295 - 1.79670i) q^{8} +(3.16584 - 1.40952i) q^{9} +(5.63928 + 1.19867i) q^{10} +(-0.0766880 - 0.729638i) q^{11} +(-5.65666 + 6.28236i) q^{12} +(-1.26866 - 1.40898i) q^{13} +(-0.386377 + 3.67613i) q^{14} +(1.96315 - 6.04196i) q^{15} +(0.124885 - 0.384356i) q^{16} +(0.457755 - 4.35525i) q^{17} +(5.35078 + 5.94264i) q^{18} +(-3.10345 + 3.44673i) q^{19} +(0.868274 + 8.26107i) q^{20} +(3.98413 + 0.846852i) q^{21} +(1.54657 - 0.688578i) q^{22} +(5.75896 + 4.18413i) q^{23} +(-7.10047 - 3.16133i) q^{24} +(-0.621150 - 1.07586i) q^{25} +(2.18751 - 3.78887i) q^{26} +(0.957471 - 0.695643i) q^{27} +(-5.20935 + 1.10728i) q^{28} +(-0.0398443 - 0.122628i) q^{29} +14.6595 q^{30} -5.18091 q^{32} +(-0.576467 - 1.77418i) q^{33} +(9.88439 - 2.10099i) q^{34} +(3.23787 - 2.35245i) q^{35} +(-5.76075 + 9.97791i) q^{36} +(-4.21474 - 7.30014i) q^{37} +(-9.77710 - 4.35305i) q^{38} +(-3.90022 - 2.83368i) q^{39} +(-6.97686 + 3.10630i) q^{40} +(7.21284 + 1.53314i) q^{41} +(0.982449 + 9.34738i) q^{42} +(0.154229 - 0.171289i) q^{43} +(1.63213 + 1.81266i) q^{44} +(0.905036 - 8.61084i) q^{45} +(-5.07593 + 15.6221i) q^{46} +(-2.48342 + 7.64319i) q^{47} +(0.107414 - 1.02198i) q^{48} +(-2.96692 - 3.29509i) q^{49} +(1.91816 - 2.13033i) q^{50} +(-1.16395 - 11.0742i) q^{51} +(6.16576 + 1.31057i) q^{52} +(5.23849 - 2.33233i) q^{53} +(2.20939 + 1.60522i) q^{54} +(-1.67454 - 0.745553i) q^{55} +(-2.44826 - 4.24051i) q^{56} +(-5.89661 + 10.2132i) q^{57} +(0.240707 - 0.174884i) q^{58} +(-9.29604 + 1.97593i) q^{59} +(6.52685 + 20.0876i) q^{60} -7.84044 q^{61} +5.55122 q^{63} +(-3.94410 - 12.1387i) q^{64} +(-4.63350 + 0.984881i) q^{65} +(3.48254 - 2.53022i) q^{66} +(-2.41329 + 4.17994i) q^{67} +(7.27978 + 12.6090i) q^{68} +(16.5354 + 7.36205i) q^{69} +(7.47147 + 5.42834i) q^{70} +(-3.11064 + 1.38495i) q^{71} +(-10.3615 - 2.20240i) q^{72} +(-0.281395 - 2.67730i) q^{73} +(13.0154 - 14.4551i) q^{74} +(-2.11367 - 2.34746i) q^{75} +(1.61182 - 15.3355i) q^{76} +(0.363166 - 1.11771i) q^{77} +(3.43765 - 10.5800i) q^{78} +(-0.473299 + 4.50314i) q^{79} +(-0.675632 - 0.750365i) q^{80} +(-4.94288 + 5.48963i) q^{81} +(1.77862 + 16.9224i) q^{82} +(-2.61200 - 0.555197i) q^{83} +(-12.3711 + 5.50797i) q^{84} +(-8.85174 - 6.43117i) q^{85} +(0.485884 + 0.216329i) q^{86} +(-0.163928 - 0.283932i) q^{87} +(-1.12130 + 1.94214i) q^{88} +(1.78355 - 1.29582i) q^{89} +(19.5426 - 4.15391i) q^{90} +(-0.938522 - 2.88847i) q^{91} -23.6666 q^{92} -18.5445 q^{94} +(3.58086 + 11.0208i) q^{95} +(-12.8858 + 2.73895i) q^{96} +(-9.94271 + 7.22380i) q^{97} +(5.11577 - 8.86077i) q^{98} +(-1.27122 - 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 6 q^{4} - 3 q^{5} + 11 q^{6} - 3 q^{7} - 8 q^{8} + 5 q^{9} + 18 q^{10} - 2 q^{11} - 20 q^{12} - 27 q^{13} - 6 q^{14} + 4 q^{15} - 2 q^{16} - 16 q^{17} + 22 q^{18} - 4 q^{19} - 18 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{14}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.713065 + 2.19459i 0.504213 + 1.55181i 0.802089 + 0.597204i \(0.203722\pi\)
−0.297876 + 0.954604i \(0.596278\pi\)
\(3\) 2.48716 0.528662i 1.43596 0.305223i 0.576783 0.816898i \(-0.304308\pi\)
0.859179 + 0.511674i \(0.170975\pi\)
\(4\) −2.68972 + 1.95420i −1.34486 + 0.977099i
\(5\) 1.24923 2.16373i 0.558673 0.967649i −0.438935 0.898519i \(-0.644644\pi\)
0.997608 0.0691304i \(-0.0220225\pi\)
\(6\) 2.93370 + 5.08132i 1.19768 + 2.07444i
\(7\) 1.46339 + 0.651543i 0.553109 + 0.246260i 0.664206 0.747550i \(-0.268770\pi\)
−0.111097 + 0.993810i \(0.535436\pi\)
\(8\) −2.47295 1.79670i −0.874320 0.635230i
\(9\) 3.16584 1.40952i 1.05528 0.469841i
\(10\) 5.63928 + 1.19867i 1.78330 + 0.379051i
\(11\) −0.0766880 0.729638i −0.0231223 0.219994i −0.999981 0.00610986i \(-0.998055\pi\)
0.976859 0.213884i \(-0.0686115\pi\)
\(12\) −5.65666 + 6.28236i −1.63294 + 1.81356i
\(13\) −1.26866 1.40898i −0.351862 0.390782i 0.541067 0.840979i \(-0.318020\pi\)
−0.892929 + 0.450197i \(0.851354\pi\)
\(14\) −0.386377 + 3.67613i −0.103263 + 0.982487i
\(15\) 1.96315 6.04196i 0.506884 1.56003i
\(16\) 0.124885 0.384356i 0.0312212 0.0960889i
\(17\) 0.457755 4.35525i 0.111022 1.05630i −0.787181 0.616722i \(-0.788460\pi\)
0.898203 0.439581i \(-0.144873\pi\)
\(18\) 5.35078 + 5.94264i 1.26119 + 1.40069i
\(19\) −3.10345 + 3.44673i −0.711979 + 0.790733i −0.985235 0.171208i \(-0.945233\pi\)
0.273256 + 0.961941i \(0.411900\pi\)
\(20\) 0.868274 + 8.26107i 0.194152 + 1.84723i
\(21\) 3.98413 + 0.846852i 0.869408 + 0.184798i
\(22\) 1.54657 0.688578i 0.329730 0.146805i
\(23\) 5.75896 + 4.18413i 1.20083 + 0.872451i 0.994366 0.106004i \(-0.0338057\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(24\) −7.10047 3.16133i −1.44938 0.645304i
\(25\) −0.621150 1.07586i −0.124230 0.215173i
\(26\) 2.18751 3.78887i 0.429005 0.743059i
\(27\) 0.957471 0.695643i 0.184265 0.133877i
\(28\) −5.20935 + 1.10728i −0.984475 + 0.209257i
\(29\) −0.0398443 0.122628i −0.00739891 0.0227715i 0.947289 0.320381i \(-0.103811\pi\)
−0.954688 + 0.297609i \(0.903811\pi\)
\(30\) 14.6595 2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) −0.576467 1.77418i −0.100350 0.308846i
\(34\) 9.88439 2.10099i 1.69516 0.360317i
\(35\) 3.23787 2.35245i 0.547300 0.397637i
\(36\) −5.76075 + 9.97791i −0.960125 + 1.66298i
\(37\) −4.21474 7.30014i −0.692899 1.20014i −0.970884 0.239550i \(-0.923000\pi\)
0.277985 0.960585i \(-0.410333\pi\)
\(38\) −9.77710 4.35305i −1.58606 0.706157i
\(39\) −3.90022 2.83368i −0.624536 0.453752i
\(40\) −6.97686 + 3.10630i −1.10314 + 0.491149i
\(41\) 7.21284 + 1.53314i 1.12646 + 0.239436i 0.733213 0.679999i \(-0.238020\pi\)
0.393243 + 0.919434i \(0.371353\pi\)
\(42\) 0.982449 + 9.34738i 0.151595 + 1.44233i
\(43\) 0.154229 0.171289i 0.0235197 0.0261213i −0.731270 0.682088i \(-0.761072\pi\)
0.754790 + 0.655967i \(0.227739\pi\)
\(44\) 1.63213 + 1.81266i 0.246052 + 0.273269i
\(45\) 0.905036 8.61084i 0.134915 1.28363i
\(46\) −5.07593 + 15.6221i −0.748404 + 2.30335i
\(47\) −2.48342 + 7.64319i −0.362244 + 1.11487i 0.589444 + 0.807809i \(0.299347\pi\)
−0.951689 + 0.307065i \(0.900653\pi\)
\(48\) 0.107414 1.02198i 0.0155039 0.147509i
\(49\) −2.96692 3.29509i −0.423845 0.470728i
\(50\) 1.91816 2.13033i 0.271268 0.301274i
\(51\) −1.16395 11.0742i −0.162985 1.55070i
\(52\) 6.16576 + 1.31057i 0.855038 + 0.181744i
\(53\) 5.23849 2.33233i 0.719562 0.320370i −0.0140848 0.999901i \(-0.504483\pi\)
0.733647 + 0.679531i \(0.237817\pi\)
\(54\) 2.20939 + 1.60522i 0.300660 + 0.218442i
\(55\) −1.67454 0.745553i −0.225795 0.100530i
\(56\) −2.44826 4.24051i −0.327162 0.566662i
\(57\) −5.89661 + 10.2132i −0.781025 + 1.35278i
\(58\) 0.240707 0.174884i 0.0316064 0.0229634i
\(59\) −9.29604 + 1.97593i −1.21024 + 0.257245i −0.768472 0.639884i \(-0.778982\pi\)
−0.441770 + 0.897129i \(0.645649\pi\)
\(60\) 6.52685 + 20.0876i 0.842613 + 2.59330i
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) −3.94410 12.1387i −0.493012 1.51734i
\(65\) −4.63350 + 0.984881i −0.574715 + 0.122160i
\(66\) 3.48254 2.53022i 0.428671 0.311448i
\(67\) −2.41329 + 4.17994i −0.294830 + 0.510661i −0.974945 0.222444i \(-0.928596\pi\)
0.680115 + 0.733105i \(0.261930\pi\)
\(68\) 7.27978 + 12.6090i 0.882804 + 1.52906i
\(69\) 16.5354 + 7.36205i 1.99063 + 0.886287i
\(70\) 7.47147 + 5.42834i 0.893012 + 0.648811i
\(71\) −3.11064 + 1.38495i −0.369165 + 0.164363i −0.582930 0.812522i \(-0.698094\pi\)
0.213765 + 0.976885i \(0.431427\pi\)
\(72\) −10.3615 2.20240i −1.22111 0.259555i
\(73\) −0.281395 2.67730i −0.0329348 0.313354i −0.998570 0.0534539i \(-0.982977\pi\)
0.965635 0.259900i \(-0.0836897\pi\)
\(74\) 13.0154 14.4551i 1.51301 1.68037i
\(75\) −2.11367 2.34746i −0.244065 0.271062i
\(76\) 1.61182 15.3355i 0.184889 1.75910i
\(77\) 0.363166 1.11771i 0.0413866 0.127375i
\(78\) 3.43765 10.5800i 0.389237 1.19795i
\(79\) −0.473299 + 4.50314i −0.0532503 + 0.506643i 0.935093 + 0.354402i \(0.115316\pi\)
−0.988343 + 0.152241i \(0.951351\pi\)
\(80\) −0.675632 0.750365i −0.0755379 0.0838934i
\(81\) −4.94288 + 5.48963i −0.549209 + 0.609959i
\(82\) 1.77862 + 16.9224i 0.196416 + 1.86877i
\(83\) −2.61200 0.555197i −0.286704 0.0609408i 0.0623149 0.998057i \(-0.480152\pi\)
−0.349019 + 0.937116i \(0.613485\pi\)
\(84\) −12.3711 + 5.50797i −1.34980 + 0.600969i
\(85\) −8.85174 6.43117i −0.960106 0.697558i
\(86\) 0.485884 + 0.216329i 0.0523942 + 0.0233274i
\(87\) −0.163928 0.283932i −0.0175749 0.0304407i
\(88\) −1.12130 + 1.94214i −0.119531 + 0.207033i
\(89\) 1.78355 1.29582i 0.189056 0.137357i −0.489231 0.872154i \(-0.662723\pi\)
0.678287 + 0.734797i \(0.262723\pi\)
\(90\) 19.5426 4.15391i 2.05997 0.437860i
\(91\) −0.938522 2.88847i −0.0983839 0.302794i
\(92\) −23.6666 −2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) 3.58086 + 11.0208i 0.367389 + 1.13071i
\(96\) −12.8858 + 2.73895i −1.31515 + 0.279543i
\(97\) −9.94271 + 7.22380i −1.00953 + 0.733466i −0.964110 0.265502i \(-0.914462\pi\)
−0.0454190 + 0.998968i \(0.514462\pi\)
\(98\) 5.11577 8.86077i 0.516771 0.895073i
\(99\) −1.27122 2.20182i −0.127763 0.221292i
\(100\) 3.77317 + 1.67992i 0.377317 + 0.167992i
\(101\) −5.94168 4.31688i −0.591219 0.429546i 0.251532 0.967849i \(-0.419066\pi\)
−0.842751 + 0.538303i \(0.819066\pi\)
\(102\) 23.4733 10.4510i 2.32421 1.03480i
\(103\) −5.46662 1.16197i −0.538642 0.114492i −0.0694459 0.997586i \(-0.522123\pi\)
−0.469197 + 0.883094i \(0.655456\pi\)
\(104\) 0.605794 + 5.76374i 0.0594030 + 0.565182i
\(105\) 6.80945 7.56266i 0.664534 0.738040i
\(106\) 8.85388 + 9.83323i 0.859964 + 0.955087i
\(107\) −0.190677 + 1.81417i −0.0184334 + 0.175382i −0.999865 0.0164303i \(-0.994770\pi\)
0.981432 + 0.191812i \(0.0614365\pi\)
\(108\) −1.21591 + 3.74218i −0.117001 + 0.360091i
\(109\) 3.63567 11.1895i 0.348234 1.07176i −0.611595 0.791171i \(-0.709472\pi\)
0.959829 0.280584i \(-0.0905282\pi\)
\(110\) 0.442126 4.20655i 0.0421551 0.401079i
\(111\) −14.3420 15.9284i −1.36129 1.51186i
\(112\) 0.433179 0.481094i 0.0409316 0.0454591i
\(113\) −1.15551 10.9940i −0.108702 1.03423i −0.903861 0.427826i \(-0.859280\pi\)
0.795160 0.606400i \(-0.207387\pi\)
\(114\) −26.6185 5.65794i −2.49305 0.529914i
\(115\) 16.2476 7.23389i 1.51509 0.674564i
\(116\) 0.346810 + 0.251972i 0.0322005 + 0.0233950i
\(117\) −6.00236 2.67242i −0.554918 0.247066i
\(118\) −10.9650 18.9920i −1.00941 1.74836i
\(119\) 3.50750 6.07518i 0.321532 0.556911i
\(120\) −15.7104 + 11.4143i −1.43416 + 1.04197i
\(121\) 10.2331 2.17512i 0.930285 0.197738i
\(122\) −5.59074 17.2065i −0.506162 1.55781i
\(123\) 18.7500 1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) 3.95838 + 12.1826i 0.352641 + 1.08532i
\(127\) 1.25891 0.267589i 0.111710 0.0237447i −0.151717 0.988424i \(-0.548480\pi\)
0.263427 + 0.964679i \(0.415147\pi\)
\(128\) 15.4441 11.2208i 1.36508 0.991789i
\(129\) 0.293038 0.507557i 0.0258006 0.0446879i
\(130\) −5.46540 9.46635i −0.479347 0.830254i
\(131\) −7.32696 3.26217i −0.640159 0.285017i 0.0608744 0.998145i \(-0.480611\pi\)
−0.701034 + 0.713128i \(0.747278\pi\)
\(132\) 5.01764 + 3.64553i 0.436730 + 0.317303i
\(133\) −6.78724 + 3.02187i −0.588528 + 0.262030i
\(134\) −10.8941 2.31561i −0.941105 0.200038i
\(135\) −0.309083 2.94073i −0.0266016 0.253097i
\(136\) −8.95710 + 9.94786i −0.768065 + 0.853022i
\(137\) −11.0251 12.2446i −0.941938 1.04613i −0.998859 0.0477494i \(-0.984795\pi\)
0.0569214 0.998379i \(-0.481872\pi\)
\(138\) −4.36583 + 41.5381i −0.371644 + 3.53596i
\(139\) 2.26813 6.98058i 0.192380 0.592085i −0.807617 0.589707i \(-0.799243\pi\)
0.999997 0.00237796i \(-0.000756929\pi\)
\(140\) −4.11182 + 12.6549i −0.347512 + 1.06953i
\(141\) −2.13600 + 20.3227i −0.179884 + 1.71148i
\(142\) −5.25747 5.83901i −0.441197 0.489999i
\(143\) −0.930757 + 1.03371i −0.0778338 + 0.0864432i
\(144\) −0.146393 1.39284i −0.0121994 0.116070i
\(145\) −0.315109 0.0669785i −0.0261684 0.00556226i
\(146\) 5.67491 2.52663i 0.469659 0.209106i
\(147\) −9.12118 6.62693i −0.752302 0.546580i
\(148\) 25.6024 + 11.3989i 2.10450 + 0.936985i
\(149\) 3.18096 + 5.50959i 0.260595 + 0.451363i 0.966400 0.257043i \(-0.0827480\pi\)
−0.705805 + 0.708406i \(0.749415\pi\)
\(150\) 3.64454 6.31252i 0.297575 0.515415i
\(151\) 4.46960 3.24736i 0.363731 0.264266i −0.390875 0.920444i \(-0.627828\pi\)
0.754607 + 0.656177i \(0.227828\pi\)
\(152\) 13.8674 2.94761i 1.12480 0.239083i
\(153\) −4.68965 14.4332i −0.379135 1.16686i
\(154\) 2.71187 0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 2.47043 + 7.60320i 0.197162 + 0.606801i 0.999945 + 0.0105298i \(0.00335181\pi\)
−0.802783 + 0.596271i \(0.796648\pi\)
\(158\) −10.2200 + 2.17233i −0.813062 + 0.172822i
\(159\) 11.7959 8.57025i 0.935479 0.679665i
\(160\) −6.47215 + 11.2101i −0.511669 + 0.886236i
\(161\) 5.70146 + 9.87521i 0.449338 + 0.778276i
\(162\) −15.5721 6.93313i −1.22346 0.544718i
\(163\) 13.8062 + 10.0308i 1.08138 + 0.785672i 0.977924 0.208961i \(-0.0670083\pi\)
0.103461 + 0.994634i \(0.467008\pi\)
\(164\) −22.3966 + 9.97160i −1.74888 + 0.778651i
\(165\) −4.55899 0.969044i −0.354917 0.0754399i
\(166\) −0.644094 6.12815i −0.0499914 0.475637i
\(167\) −16.3082 + 18.1121i −1.26197 + 1.40155i −0.383647 + 0.923480i \(0.625332\pi\)
−0.878319 + 0.478075i \(0.841335\pi\)
\(168\) −8.33100 9.25252i −0.642751 0.713847i
\(169\) 0.983119 9.35375i 0.0756245 0.719519i
\(170\) 7.80190 24.0118i 0.598378 1.84162i
\(171\) −4.96678 + 15.2862i −0.379819 + 1.16896i
\(172\) −0.0801013 + 0.762113i −0.00610767 + 0.0581106i
\(173\) 6.00451 + 6.66869i 0.456515 + 0.507011i 0.926827 0.375489i \(-0.122525\pi\)
−0.470312 + 0.882500i \(0.655859\pi\)
\(174\) 0.506222 0.562217i 0.0383766 0.0426215i
\(175\) −0.208013 1.97911i −0.0157243 0.149607i
\(176\) −0.290017 0.0616451i −0.0218609 0.00464667i
\(177\) −22.0761 + 9.82893i −1.65934 + 0.738787i
\(178\) 4.11558 + 2.99015i 0.308476 + 0.224121i
\(179\) −10.3144 4.59227i −0.770935 0.343242i −0.0167114 0.999860i \(-0.505320\pi\)
−0.754223 + 0.656618i \(0.771986\pi\)
\(180\) 14.3930 + 24.9294i 1.07279 + 1.85813i
\(181\) 7.47052 12.9393i 0.555279 0.961772i −0.442602 0.896718i \(-0.645945\pi\)
0.997882 0.0650542i \(-0.0207220\pi\)
\(182\) 5.66979 4.11934i 0.420273 0.305346i
\(183\) −19.5004 + 4.14494i −1.44151 + 0.306403i
\(184\) −6.72398 20.6943i −0.495698 1.52560i
\(185\) −21.0607 −1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) −8.25658 25.4112i −0.602173 1.85330i
\(189\) 1.85439 0.394164i 0.134887 0.0286712i
\(190\) −21.6327 + 15.7170i −1.56940 + 1.14023i
\(191\) −1.13046 + 1.95802i −0.0817975 + 0.141677i −0.904022 0.427486i \(-0.859399\pi\)
0.822225 + 0.569163i \(0.192733\pi\)
\(192\) −16.2269 28.1057i −1.17107 2.02836i
\(193\) 23.4455 + 10.4386i 1.68764 + 0.751386i 0.999671 + 0.0256473i \(0.00816468\pi\)
0.687970 + 0.725739i \(0.258502\pi\)
\(194\) −22.9431 16.6691i −1.64722 1.19677i
\(195\) −11.0036 + 4.89911i −0.787984 + 0.350833i
\(196\) 14.4194 + 3.06495i 1.02996 + 0.218925i
\(197\) 0.647628 + 6.16177i 0.0461416 + 0.439008i 0.993067 + 0.117553i \(0.0375051\pi\)
−0.946925 + 0.321455i \(0.895828\pi\)
\(198\) 3.92563 4.35986i 0.278983 0.309841i
\(199\) −3.05748 3.39567i −0.216739 0.240713i 0.624964 0.780653i \(-0.285113\pi\)
−0.841703 + 0.539940i \(0.818447\pi\)
\(200\) −0.396934 + 3.77658i −0.0280675 + 0.267044i
\(201\) −3.79246 + 11.6720i −0.267499 + 0.823279i
\(202\) 5.23698 16.1178i 0.368472 1.13404i
\(203\) 0.0215898 0.205413i 0.00151531 0.0144172i
\(204\) 24.7719 + 27.5119i 1.73438 + 1.92622i
\(205\) 12.3278 13.6914i 0.861010 0.956249i
\(206\) −1.34802 12.8255i −0.0939210 0.893598i
\(207\) 24.1296 + 5.12890i 1.67712 + 0.356483i
\(208\) −0.699987 + 0.311654i −0.0485353 + 0.0216093i
\(209\) 2.75286 + 2.00007i 0.190419 + 0.138348i
\(210\) 21.4525 + 9.55127i 1.48036 + 0.659100i
\(211\) 9.30839 + 16.1226i 0.640816 + 1.10993i 0.985251 + 0.171115i \(0.0547371\pi\)
−0.344435 + 0.938810i \(0.611930\pi\)
\(212\) −9.53225 + 16.5103i −0.654678 + 1.13394i
\(213\) −7.00448 + 5.08906i −0.479939 + 0.348696i
\(214\) −4.11732 + 0.875162i −0.281454 + 0.0598249i
\(215\) −0.177955 0.547689i −0.0121364 0.0373521i
\(216\) −3.61764 −0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) −2.11526 6.51010i −0.142936 0.439912i
\(220\) 5.96100 1.26705i 0.401891 0.0854245i
\(221\) −6.71721 + 4.88034i −0.451849 + 0.328287i
\(222\) 24.7296 42.8329i 1.65974 2.87475i
\(223\) −3.10748 5.38231i −0.208092 0.360426i 0.743021 0.669268i \(-0.233392\pi\)
−0.951113 + 0.308842i \(0.900059\pi\)
\(224\) −7.58169 3.37559i −0.506573 0.225541i
\(225\) −3.48292 2.53049i −0.232194 0.168699i
\(226\) 23.3033 10.3753i 1.55011 0.690154i
\(227\) 12.7627 + 2.71279i 0.847088 + 0.180054i 0.610954 0.791666i \(-0.290786\pi\)
0.236134 + 0.971720i \(0.424119\pi\)
\(228\) −4.09842 38.9939i −0.271425 2.58243i
\(229\) 10.2229 11.3537i 0.675550 0.750275i −0.303736 0.952756i \(-0.598234\pi\)
0.979286 + 0.202482i \(0.0649006\pi\)
\(230\) 27.4610 + 30.4985i 1.81072 + 2.01101i
\(231\) 0.312361 2.97191i 0.0205518 0.195537i
\(232\) −0.121794 + 0.374842i −0.00799614 + 0.0246096i
\(233\) 4.03615 12.4220i 0.264417 0.813792i −0.727410 0.686203i \(-0.759276\pi\)
0.991827 0.127589i \(-0.0407238\pi\)
\(234\) 1.58480 15.0783i 0.103601 0.985700i
\(235\) 13.4354 + 14.9216i 0.876431 + 0.973375i
\(236\) 21.1424 23.4810i 1.37625 1.52848i
\(237\) 1.20347 + 11.4502i 0.0781737 + 0.743773i
\(238\) 15.8336 + 3.36553i 1.02634 + 0.218155i
\(239\) −21.4155 + 9.53481i −1.38526 + 0.616756i −0.957841 0.287300i \(-0.907242\pi\)
−0.427415 + 0.904055i \(0.640576\pi\)
\(240\) −2.07709 1.50910i −0.134076 0.0974118i
\(241\) 22.5756 + 10.0513i 1.45422 + 0.647462i 0.973349 0.229328i \(-0.0736528\pi\)
0.480874 + 0.876790i \(0.340319\pi\)
\(242\) 12.0704 + 20.9065i 0.775914 + 1.34392i
\(243\) −11.1668 + 19.3415i −0.716353 + 1.24076i
\(244\) 21.0886 15.3218i 1.35006 0.980875i
\(245\) −10.8360 + 2.30327i −0.692290 + 0.147151i
\(246\) 13.3700 + 41.1485i 0.852438 + 2.62353i
\(247\) 8.79358 0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) 6.69458 + 20.6038i 0.423403 + 1.30310i
\(251\) 22.6873 4.82233i 1.43201 0.304383i 0.574354 0.818607i \(-0.305253\pi\)
0.857656 + 0.514224i \(0.171920\pi\)
\(252\) −14.9312 + 10.8482i −0.940580 + 0.683371i
\(253\) 2.61125 4.52282i 0.164168 0.284348i
\(254\) 1.48493 + 2.57198i 0.0931729 + 0.161380i
\(255\) −25.4156 11.3158i −1.59159 0.708620i
\(256\) 14.9862 + 10.8881i 0.936635 + 0.680505i
\(257\) 14.0194 6.24183i 0.874504 0.389354i 0.0801310 0.996784i \(-0.474466\pi\)
0.794373 + 0.607430i \(0.207799\pi\)
\(258\) 1.32284 + 0.281177i 0.0823561 + 0.0175053i
\(259\) −1.41145 13.4290i −0.0877031 0.834439i
\(260\) 10.5382 11.7038i 0.653550 0.725841i
\(261\) −0.298988 0.332060i −0.0185069 0.0205540i
\(262\) 1.93453 18.4058i 0.119515 1.13711i
\(263\) −2.10313 + 6.47277i −0.129685 + 0.399128i −0.994725 0.102573i \(-0.967292\pi\)
0.865041 + 0.501701i \(0.167292\pi\)
\(264\) −1.76211 + 5.42321i −0.108450 + 0.333775i
\(265\) 1.49755 14.2483i 0.0919940 0.875265i
\(266\) −11.4715 12.7404i −0.703363 0.781164i
\(267\) 3.75092 4.16581i 0.229552 0.254944i
\(268\) −1.67735 15.9589i −0.102460 0.974846i
\(269\) −10.2898 2.18716i −0.627378 0.133353i −0.116759 0.993160i \(-0.537250\pi\)
−0.510619 + 0.859807i \(0.670584\pi\)
\(270\) 6.23329 2.77524i 0.379346 0.168896i
\(271\) 1.27593 + 0.927019i 0.0775074 + 0.0563124i 0.625864 0.779932i \(-0.284746\pi\)
−0.548357 + 0.836244i \(0.684746\pi\)
\(272\) −1.61680 0.719845i −0.0980328 0.0436470i
\(273\) −3.86128 6.68794i −0.233695 0.404772i
\(274\) 19.0103 32.9268i 1.14845 1.98918i
\(275\) −0.737355 + 0.535720i −0.0444642 + 0.0323051i
\(276\) −58.8626 + 12.5116i −3.54311 + 0.753112i
\(277\) 3.73952 + 11.5091i 0.224686 + 0.691513i 0.998323 + 0.0578841i \(0.0184354\pi\)
−0.773637 + 0.633629i \(0.781565\pi\)
\(278\) 16.9368 1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) −6.63544 20.4218i −0.395837 1.21826i −0.928308 0.371813i \(-0.878736\pi\)
0.532470 0.846449i \(-0.321264\pi\)
\(282\) −46.1231 + 9.80377i −2.74659 + 0.583806i
\(283\) 0.557256 0.404870i 0.0331254 0.0240670i −0.571099 0.820881i \(-0.693483\pi\)
0.604225 + 0.796814i \(0.293483\pi\)
\(284\) 5.66030 9.80392i 0.335877 0.581756i
\(285\) 14.7324 + 25.5173i 0.872675 + 1.51152i
\(286\) −2.93226 1.30553i −0.173388 0.0771974i
\(287\) 9.55629 + 6.94305i 0.564090 + 0.409835i
\(288\) −16.4020 + 7.30262i −0.966494 + 0.430311i
\(289\) −2.13015 0.452778i −0.125303 0.0266340i
\(290\) −0.0777030 0.739295i −0.00456288 0.0434129i
\(291\) −20.9102 + 23.2231i −1.22578 + 1.36136i
\(292\) 5.98885 + 6.65129i 0.350471 + 0.389237i
\(293\) −0.941998 + 8.96251i −0.0550321 + 0.523595i 0.931929 + 0.362640i \(0.118124\pi\)
−0.986962 + 0.160956i \(0.948542\pi\)
\(294\) 8.03938 24.7427i 0.468866 1.44302i
\(295\) −7.33750 + 22.5825i −0.427206 + 1.31480i
\(296\) −2.69335 + 25.6255i −0.156548 + 1.48945i
\(297\) −0.580994 0.645259i −0.0337127 0.0374417i
\(298\) −9.82305 + 10.9096i −0.569034 + 0.631976i
\(299\) −1.41076 13.4225i −0.0815864 0.776243i
\(300\) 10.2726 + 2.18351i 0.593088 + 0.126065i
\(301\) 0.337299 0.150175i 0.0194416 0.00865595i
\(302\) 10.3137 + 7.49336i 0.593488 + 0.431195i
\(303\) −17.0601 7.59563i −0.980076 0.436358i
\(304\) 0.937195 + 1.62327i 0.0537518 + 0.0931009i
\(305\) −9.79451 + 16.9646i −0.560832 + 0.971389i
\(306\) 28.3310 20.5837i 1.61958 1.17669i
\(307\) 30.6480 6.51442i 1.74917 0.371798i 0.781479 0.623932i \(-0.214466\pi\)
0.967692 + 0.252134i \(0.0811323\pi\)
\(308\) 1.20741 + 3.71602i 0.0687985 + 0.211740i
\(309\) −14.2107 −0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 4.55378 + 14.0151i 0.257807 + 0.793448i
\(313\) 21.1952 4.50518i 1.19802 0.254648i 0.434646 0.900601i \(-0.356873\pi\)
0.763377 + 0.645954i \(0.223540\pi\)
\(314\) −14.9243 + 10.8431i −0.842228 + 0.611914i
\(315\) 6.93475 12.0113i 0.390729 0.676762i
\(316\) −7.52698 13.0371i −0.423426 0.733395i
\(317\) 0.928205 + 0.413263i 0.0521332 + 0.0232112i 0.432638 0.901568i \(-0.357583\pi\)
−0.380504 + 0.924779i \(0.624250\pi\)
\(318\) 27.2195 + 19.7761i 1.52639 + 1.10899i
\(319\) −0.0864186 + 0.0384760i −0.00483851 + 0.00215425i
\(320\) −31.1919 6.63005i −1.74368 0.370631i
\(321\) 0.484838 + 4.61293i 0.0270610 + 0.257468i
\(322\) −17.6065 + 19.5540i −0.981173 + 1.08970i
\(323\) 13.5907 + 15.0940i 0.756209 + 0.839855i
\(324\) 2.56717 24.4249i 0.142620 1.35694i
\(325\) −0.727849 + 2.24009i −0.0403738 + 0.124258i
\(326\) −12.1687 + 37.4515i −0.673964 + 2.07425i
\(327\) 3.12706 29.7520i 0.172927 1.64529i
\(328\) −15.0824 16.7507i −0.832786 0.924903i
\(329\) −8.61408 + 9.56690i −0.474909 + 0.527440i
\(330\) −1.12421 10.6961i −0.0618855 0.588801i
\(331\) −26.1062 5.54905i −1.43493 0.305003i −0.576147 0.817346i \(-0.695444\pi\)
−0.858781 + 0.512343i \(0.828778\pi\)
\(332\) 8.11051 3.61103i 0.445122 0.198181i
\(333\) −23.6329 17.1703i −1.29508 0.940928i
\(334\) −51.3774 22.8747i −2.81124 1.25165i
\(335\) 6.02951 + 10.4434i 0.329427 + 0.570584i
\(336\) 0.823049 1.42556i 0.0449010 0.0777708i
\(337\) −25.8412 + 18.7748i −1.40766 + 1.02273i −0.414005 + 0.910274i \(0.635871\pi\)
−0.993657 + 0.112452i \(0.964129\pi\)
\(338\) 21.2287 4.51229i 1.15469 0.245436i
\(339\) −8.68604 26.7329i −0.471761 1.45193i
\(340\) 36.3765 1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) −5.65991 17.4194i −0.305606 0.940560i
\(344\) −0.689156 + 0.146485i −0.0371568 + 0.00789792i
\(345\) 36.5860 26.5813i 1.96973 1.43109i
\(346\) −10.3534 + 17.9326i −0.556603 + 0.964065i
\(347\) −1.56066 2.70314i −0.0837804 0.145112i 0.821090 0.570798i \(-0.193366\pi\)
−0.904871 + 0.425686i \(0.860033\pi\)
\(348\) 0.995780 + 0.443350i 0.0533794 + 0.0237660i
\(349\) 17.8198 + 12.9468i 0.953871 + 0.693028i 0.951719 0.306970i \(-0.0993151\pi\)
0.00215168 + 0.999998i \(0.499315\pi\)
\(350\) 4.19501 1.86774i 0.224233 0.0998348i
\(351\) −2.19485 0.466530i −0.117153 0.0249015i
\(352\) 0.397314 + 3.78019i 0.0211769 + 0.201485i
\(353\) 3.30041 3.66548i 0.175663 0.195094i −0.648883 0.760888i \(-0.724764\pi\)
0.824547 + 0.565794i \(0.191430\pi\)
\(354\) −37.3122 41.4394i −1.98312 2.20248i
\(355\) −0.889255 + 8.46069i −0.0471967 + 0.449047i
\(356\) −2.26495 + 6.97081i −0.120042 + 0.369452i
\(357\) 5.51201 16.9642i 0.291726 0.897842i
\(358\) 2.72330 25.9105i 0.143931 1.36941i
\(359\) −0.241462 0.268171i −0.0127439 0.0141535i 0.736739 0.676177i \(-0.236365\pi\)
−0.749483 + 0.662024i \(0.769698\pi\)
\(360\) −17.7092 + 19.6681i −0.933359 + 1.03660i
\(361\) −0.262501 2.49753i −0.0138158 0.131449i
\(362\) 33.7235 + 7.16814i 1.77247 + 0.376749i
\(363\) 24.3015 10.8197i 1.27550 0.567889i
\(364\) 8.16902 + 5.93514i 0.428173 + 0.311086i
\(365\) −6.14448 2.73570i −0.321617 0.143193i
\(366\) −23.0015 39.8398i −1.20231 2.08246i
\(367\) 14.6935 25.4498i 0.766992 1.32847i −0.172195 0.985063i \(-0.555086\pi\)
0.939187 0.343406i \(-0.111581\pi\)
\(368\) 2.32740 1.69095i 0.121324 0.0881470i
\(369\) 24.9957 5.31300i 1.30122 0.276584i
\(370\) −15.0177 46.2196i −0.780731 2.40284i
\(371\) 9.18555 0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) −2.29098 7.05090i −0.118464 0.364593i
\(375\) 23.3506 4.96332i 1.20582 0.256305i
\(376\) 19.8739 14.4392i 1.02492 0.744647i
\(377\) −0.122233 + 0.211713i −0.00629530 + 0.0109038i
\(378\) 2.18733 + 3.78857i 0.112504 + 0.194863i
\(379\) −2.24771 1.00074i −0.115457 0.0514047i 0.348195 0.937422i \(-0.386795\pi\)
−0.463652 + 0.886017i \(0.653461\pi\)
\(380\) −31.1683 22.6451i −1.59890 1.16167i
\(381\) 2.98964 1.33107i 0.153164 0.0681930i
\(382\) −5.10315 1.08471i −0.261100 0.0554984i
\(383\) 1.99837 + 19.0132i 0.102112 + 0.971528i 0.918873 + 0.394553i \(0.129101\pi\)
−0.816761 + 0.576975i \(0.804233\pi\)
\(384\) 32.4800 36.0727i 1.65749 1.84083i
\(385\) −1.96474 2.18207i −0.100133 0.111208i
\(386\) −6.19027 + 58.8965i −0.315077 + 2.99775i
\(387\) 0.246829 0.759663i 0.0125470 0.0386158i
\(388\) 12.6264 38.8600i 0.641008 1.97282i
\(389\) −0.550976 + 5.24218i −0.0279356 + 0.265789i 0.971635 + 0.236486i \(0.0759956\pi\)
−0.999571 + 0.0293036i \(0.990671\pi\)
\(390\) −18.5978 20.6550i −0.941737 1.04590i
\(391\) 20.8591 23.1664i 1.05489 1.17157i
\(392\) 1.41673 + 13.4793i 0.0715556 + 0.680806i
\(393\) −19.9479 4.24006i −1.00624 0.213883i
\(394\) −13.0607 + 5.81502i −0.657991 + 0.292956i
\(395\) 9.15232 + 6.64955i 0.460503 + 0.334575i
\(396\) 7.72204 + 3.43807i 0.388047 + 0.172770i
\(397\) −8.46275 14.6579i −0.424733 0.735660i 0.571662 0.820489i \(-0.306299\pi\)
−0.996395 + 0.0848295i \(0.972965\pi\)
\(398\) 5.27193 9.13124i 0.264258 0.457708i
\(399\) −15.2834 + 11.1040i −0.765126 + 0.555897i
\(400\) −0.491086 + 0.104384i −0.0245543 + 0.00521918i
\(401\) 11.7549 + 36.1779i 0.587012 + 1.80664i 0.591037 + 0.806644i \(0.298719\pi\)
−0.00402560 + 0.999992i \(0.501281\pi\)
\(402\) −28.3195 −1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) 5.70327 + 17.5529i 0.283398 + 0.872209i
\(406\) 0.466192 0.0990922i 0.0231367 0.00491786i
\(407\) −5.00324 + 3.63507i −0.248001 + 0.180183i
\(408\) −17.0187 + 29.4772i −0.842550 + 1.45934i
\(409\) −0.249342 0.431873i −0.0123292 0.0213547i 0.859795 0.510639i \(-0.170591\pi\)
−0.872124 + 0.489285i \(0.837258\pi\)
\(410\) 38.8375 + 17.2916i 1.91805 + 0.853969i
\(411\) −33.8944 24.6258i −1.67189 1.21470i
\(412\) 16.9744 7.55750i 0.836269 0.372331i
\(413\) −14.8911 3.16521i −0.732744 0.155750i
\(414\) 5.95013 + 56.6117i 0.292433 + 2.78231i
\(415\) −4.46428 + 4.95808i −0.219143 + 0.243383i
\(416\) 6.57279 + 7.29983i 0.322258 + 0.357903i
\(417\) 1.95083 18.5609i 0.0955325 0.908931i
\(418\) −2.42636 + 7.46757i −0.118677 + 0.365251i
\(419\) 4.17482 12.8488i 0.203953 0.627704i −0.795801 0.605558i \(-0.792950\pi\)
0.999755 0.0221460i \(-0.00704986\pi\)
\(420\) −3.53660 + 33.6485i −0.172568 + 1.64188i
\(421\) −20.6862 22.9744i −1.00819 1.11970i −0.992795 0.119822i \(-0.961767\pi\)
−0.0153907 0.999882i \(-0.504899\pi\)
\(422\) −28.7450 + 31.9245i −1.39928 + 1.55406i
\(423\) 2.91113 + 27.6976i 0.141544 + 1.34670i
\(424\) −17.1450 3.64428i −0.832635 0.176982i
\(425\) −4.96999 + 2.21278i −0.241080 + 0.107336i
\(426\) −16.1630 11.7431i −0.783102 0.568957i
\(427\) −11.4736 5.10838i −0.555247 0.247212i
\(428\) −3.03237 5.25223i −0.146575 0.253876i
\(429\) −1.76846 + 3.06306i −0.0853820 + 0.147886i
\(430\) 1.07506 0.781076i 0.0518439 0.0376668i
\(431\) 11.7914 2.50633i 0.567970 0.120726i 0.0850289 0.996378i \(-0.472902\pi\)
0.482941 + 0.875653i \(0.339568\pi\)
\(432\) −0.147801 0.454884i −0.00711108 0.0218856i
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) 12.0875 + 37.2013i 0.578884 + 1.78162i
\(437\) −32.2941 + 6.86433i −1.54484 + 0.328366i
\(438\) 12.7787 9.28426i 0.610589 0.443619i
\(439\) −6.18408 + 10.7111i −0.295150 + 0.511215i −0.975020 0.222118i \(-0.928703\pi\)
0.679870 + 0.733333i \(0.262036\pi\)
\(440\) 2.80151 + 4.85236i 0.133557 + 0.231327i
\(441\) −14.0373 6.24981i −0.668443 0.297610i
\(442\) −15.5001 11.2615i −0.737267 0.535656i
\(443\) −4.31505 + 1.92118i −0.205014 + 0.0912781i −0.506675 0.862137i \(-0.669126\pi\)
0.301661 + 0.953415i \(0.402459\pi\)
\(444\) 69.7034 + 14.8159i 3.30798 + 0.703132i
\(445\) −0.575750 5.47790i −0.0272932 0.259677i
\(446\) 9.59612 10.6576i 0.454389 0.504650i
\(447\) 10.8243 + 12.0216i 0.511971 + 0.568601i
\(448\) 2.13712 20.3334i 0.100970 0.960661i
\(449\) −4.93939 + 15.2019i −0.233104 + 0.717421i 0.764263 + 0.644905i \(0.223103\pi\)
−0.997367 + 0.0725162i \(0.976897\pi\)
\(450\) 3.06983 9.44797i 0.144713 0.445381i
\(451\) 0.565496 5.38033i 0.0266282 0.253350i
\(452\) 24.5924 + 27.3126i 1.15673 + 1.28468i
\(453\) 9.39986 10.4396i 0.441644 0.490495i
\(454\) 3.14716 + 29.9432i 0.147703 + 1.40530i
\(455\) −7.42231 1.57766i −0.347963 0.0739619i
\(456\) 32.9322 14.6623i 1.54219 0.686627i
\(457\) −3.68730 2.67898i −0.172484 0.125317i 0.498194 0.867066i \(-0.333997\pi\)
−0.670678 + 0.741748i \(0.733997\pi\)
\(458\) 32.2064 + 14.3392i 1.50490 + 0.670026i
\(459\) −2.59141 4.48846i −0.120957 0.209503i
\(460\) −29.5650 + 51.2081i −1.37848 + 2.38759i
\(461\) 13.7460 9.98705i 0.640215 0.465143i −0.219709 0.975565i \(-0.570511\pi\)
0.859924 + 0.510422i \(0.170511\pi\)
\(462\) 6.74486 1.43366i 0.313799 0.0667001i
\(463\) 8.47567 + 26.0854i 0.393898 + 1.21229i 0.929816 + 0.368024i \(0.119965\pi\)
−0.535918 + 0.844270i \(0.680035\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −7.07973 21.7892i −0.327611 1.00828i −0.970248 0.242112i \(-0.922160\pi\)
0.642637 0.766171i \(-0.277840\pi\)
\(468\) 21.3671 4.54172i 0.987696 0.209941i
\(469\) −6.25499 + 4.54452i −0.288829 + 0.209846i
\(470\) −23.1663 + 40.1253i −1.06858 + 1.85084i
\(471\) 10.1639 + 17.6043i 0.468327 + 0.811165i
\(472\) 26.5388 + 11.8158i 1.22155 + 0.543868i
\(473\) −0.136806 0.0993955i −0.00629036 0.00457021i
\(474\) −24.2704 + 10.8059i −1.11478 + 0.496331i
\(475\) 5.63591 + 1.19795i 0.258593 + 0.0549657i
\(476\) 2.43788 + 23.1949i 0.111740 + 1.06314i
\(477\) 13.2968 14.7675i 0.608817 0.676159i
\(478\) −36.1957 40.1993i −1.65555 1.83868i
\(479\) −0.945674 + 8.99749i −0.0432090 + 0.411106i 0.951443 + 0.307824i \(0.0996009\pi\)
−0.994652 + 0.103282i \(0.967066\pi\)
\(480\) −10.1709 + 31.3029i −0.464237 + 1.42877i
\(481\) −4.93874 + 15.1999i −0.225187 + 0.693054i
\(482\) −5.96061 + 56.7114i −0.271498 + 2.58313i
\(483\) 19.4011 + 21.5471i 0.882780 + 0.980426i
\(484\) −23.2737 + 25.8480i −1.05789 + 1.17491i
\(485\) 3.20962 + 30.5375i 0.145741 + 1.38664i
\(486\) −50.4093 10.7148i −2.28661 0.486035i
\(487\) −21.5804 + 9.60820i −0.977900 + 0.435389i −0.832525 0.553987i \(-0.813106\pi\)
−0.145375 + 0.989377i \(0.546439\pi\)
\(488\) 19.3890 + 14.0869i 0.877699 + 0.637686i
\(489\) 39.6411 + 17.6494i 1.79263 + 0.798132i
\(490\) −12.7815 22.1383i −0.577411 1.00011i
\(491\) −4.61346 + 7.99074i −0.208202 + 0.360617i −0.951148 0.308734i \(-0.900095\pi\)
0.742946 + 0.669351i \(0.233428\pi\)
\(492\) −50.4323 + 36.6412i −2.27366 + 1.65191i
\(493\) −0.552316 + 0.117398i −0.0248750 + 0.00528735i
\(494\) 6.27040 + 19.2983i 0.282119 + 0.868271i
\(495\) −6.35220 −0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) −4.84168 14.9012i −0.216961 0.667737i
\(499\) −27.7930 + 5.90759i −1.24419 + 0.264460i −0.782538 0.622603i \(-0.786075\pi\)
−0.461649 + 0.887063i \(0.652742\pi\)
\(500\) −25.2524 + 18.3469i −1.12932 + 0.820499i
\(501\) −30.9859 + 53.6692i −1.38435 + 2.39776i
\(502\) 26.7606 + 46.3506i 1.19438 + 2.06873i
\(503\) 16.6978 + 7.43436i 0.744520 + 0.331482i 0.743696 0.668518i \(-0.233071\pi\)
0.000824152 1.00000i \(0.499738\pi\)
\(504\) −13.7279 9.97390i −0.611489 0.444273i
\(505\) −16.7631 + 7.46341i −0.745948 + 0.332117i
\(506\) 11.7877 + 2.50556i 0.524029 + 0.111386i
\(507\) −2.49980 23.7840i −0.111020 1.05629i
\(508\) −2.86319 + 3.17990i −0.127034 + 0.141085i
\(509\) 6.94983 + 7.71857i 0.308046 + 0.342119i 0.877212 0.480103i \(-0.159401\pi\)
−0.569166 + 0.822222i \(0.692734\pi\)
\(510\) 6.71045 63.8457i 0.297144 2.82713i
\(511\) 1.33258 4.10127i 0.0589500 0.181429i
\(512\) −1.41050 + 4.34106i −0.0623357 + 0.191849i
\(513\) −0.573767 + 5.45903i −0.0253324 + 0.241022i
\(514\) 23.6950 + 26.3159i 1.04514 + 1.16075i
\(515\) −9.34325 + 10.3767i −0.411713 + 0.457253i
\(516\) 0.203676 + 1.93784i 0.00896632 + 0.0853088i
\(517\) 5.76721 + 1.22586i 0.253641 + 0.0539132i
\(518\) 28.4647 12.6733i 1.25067 0.556833i
\(519\) 18.4597 + 13.4117i 0.810289 + 0.588710i
\(520\) 13.2280 + 5.88947i 0.580084 + 0.258270i
\(521\) −4.62522 8.01111i −0.202635 0.350973i 0.746742 0.665114i \(-0.231617\pi\)
−0.949376 + 0.314141i \(0.898284\pi\)
\(522\) 0.515537 0.892937i 0.0225645 0.0390828i
\(523\) 5.31942 3.86478i 0.232602 0.168995i −0.465379 0.885111i \(-0.654082\pi\)
0.697981 + 0.716116i \(0.254082\pi\)
\(524\) 26.0824 5.54399i 1.13942 0.242190i
\(525\) −1.56364 4.81240i −0.0682429 0.210030i
\(526\) −15.7047 −0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) 8.55127 + 26.3181i 0.371794 + 1.14427i
\(530\) 32.3370 6.87343i 1.40463 0.298563i
\(531\) −26.6447 + 19.3585i −1.15628 + 0.840086i
\(532\) 12.3504 21.3916i 0.535460 0.927443i
\(533\) −6.99044 12.1078i −0.302790 0.524447i
\(534\) 11.8169 + 5.26122i 0.511367 + 0.227675i
\(535\) 3.68717 + 2.67888i 0.159410 + 0.115818i
\(536\) 13.4781 6.00082i 0.582163 0.259196i
\(537\) −28.0813 5.96887i −1.21180 0.257576i
\(538\) −2.53736 24.1414i −0.109393 1.04081i
\(539\) −2.17670 + 2.41747i −0.0937570 + 0.104128i
\(540\) 6.57811 + 7.30573i 0.283077 + 0.314389i
\(541\) 0.230305 2.19121i 0.00990159 0.0942073i −0.988455 0.151515i \(-0.951585\pi\)
0.998357 + 0.0573075i \(0.0182515\pi\)
\(542\) −1.12460 + 3.46117i −0.0483058 + 0.148670i
\(543\) 11.7398 36.1315i 0.503805 1.55055i
\(544\) −2.37159 + 22.5642i −0.101681 + 0.967431i
\(545\) −19.6692 21.8448i −0.842534 0.935729i
\(546\) 11.9239 13.2429i 0.510297 0.566742i
\(547\) 0.508368 + 4.83680i 0.0217363 + 0.206807i 1.00000 0.000558580i \(-0.000177802\pi\)
−0.978264 + 0.207365i \(0.933511\pi\)
\(548\) 53.5829 + 11.3894i 2.28895 + 0.486531i
\(549\) −24.8216 + 11.0513i −1.05936 + 0.471657i
\(550\) −1.70147 1.23619i −0.0725508 0.0527112i
\(551\) 0.546321 + 0.243238i 0.0232740 + 0.0103623i
\(552\) −27.6639 47.9152i −1.17745 2.03941i
\(553\) −3.62661 + 6.28147i −0.154219 + 0.267115i
\(554\) −22.5911 + 16.4134i −0.959806 + 0.697340i
\(555\) −52.3813 + 11.1340i −2.22346 + 0.472612i
\(556\) 7.54080 + 23.2082i 0.319801 + 0.984247i
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) −0.499817 1.53828i −0.0211211 0.0650041i
\(561\) −7.99089 + 1.69852i −0.337376 + 0.0717114i
\(562\) 40.0859 29.1241i 1.69092 1.22853i
\(563\) 5.59621 9.69292i 0.235852 0.408508i −0.723668 0.690148i \(-0.757545\pi\)
0.959520 + 0.281641i \(0.0908786\pi\)
\(564\) −33.9694 58.8366i −1.43037 2.47747i
\(565\) −25.2315 11.2338i −1.06150 0.472609i
\(566\) 1.28588 + 0.934249i 0.0540497 + 0.0392694i
\(567\) −10.8101 + 4.81296i −0.453981 + 0.202125i
\(568\) 10.1808 + 2.16399i 0.427176 + 0.0907991i
\(569\) 4.90468 + 46.6649i 0.205615 + 1.95630i 0.282530 + 0.959258i \(0.408826\pi\)
−0.0769152 + 0.997038i \(0.524507\pi\)
\(570\) −45.4949 + 50.5272i −1.90557 + 2.11635i
\(571\) −13.6902 15.2045i −0.572917 0.636288i 0.385143 0.922857i \(-0.374152\pi\)
−0.958060 + 0.286569i \(0.907485\pi\)
\(572\) 0.483404 4.59928i 0.0202121 0.192306i
\(573\) −1.77651 + 5.46755i −0.0742149 + 0.228410i
\(574\) −8.42288 + 25.9230i −0.351564 + 1.08200i
\(575\) 0.924372 8.79482i 0.0385490 0.366769i
\(576\) −29.5962 32.8699i −1.23317 1.36958i
\(577\) 2.44122 2.71125i 0.101629 0.112871i −0.690184 0.723634i \(-0.742470\pi\)
0.791814 + 0.610763i \(0.209137\pi\)
\(578\) −0.525276 4.99767i −0.0218486 0.207876i
\(579\) 63.8311 + 13.5677i 2.65273 + 0.563855i
\(580\) 0.978445 0.435632i 0.0406277 0.0180886i
\(581\) −3.46063 2.51430i −0.143571 0.104311i
\(582\) −65.8754 29.3296i −2.73062 1.21575i
\(583\) −2.10348 3.64334i −0.0871173 0.150892i
\(584\) −4.11443 + 7.12641i −0.170256 + 0.294893i
\(585\) −13.2807 + 9.64901i −0.549090 + 0.398938i
\(586\) −20.3407 + 4.32356i −0.840268 + 0.178604i
\(587\) −7.06802 21.7531i −0.291729 0.897848i −0.984301 0.176500i \(-0.943523\pi\)
0.692572 0.721349i \(-0.256477\pi\)
\(588\) 37.4838 1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) 4.86825 + 14.9829i 0.200253 + 0.616315i
\(592\) −3.33221 + 0.708282i −0.136953 + 0.0291102i
\(593\) 15.7433 11.4382i 0.646499 0.469709i −0.215578 0.976487i \(-0.569163\pi\)
0.862077 + 0.506778i \(0.169163\pi\)
\(594\) 1.00179 1.73515i 0.0411040 0.0711943i
\(595\) −8.76336 15.1786i −0.359263 0.622261i
\(596\) −19.3227 8.60304i −0.791490 0.352394i
\(597\) −9.39960 6.82921i −0.384700 0.279501i
\(598\) 28.4509 12.6672i 1.16344 0.517998i
\(599\) −34.4033 7.31264i −1.40568 0.298786i −0.558240 0.829679i \(-0.688523\pi\)
−0.847439 + 0.530893i \(0.821857\pi\)
\(600\) 1.00929 + 9.60279i 0.0412043 + 0.392032i
\(601\) 3.93988 4.37568i 0.160711 0.178488i −0.657411 0.753532i \(-0.728349\pi\)
0.818122 + 0.575044i \(0.195015\pi\)
\(602\) 0.570089 + 0.633148i 0.0232351 + 0.0258052i
\(603\) −1.74837 + 16.6346i −0.0711991 + 0.677414i
\(604\) −5.67602 + 17.4690i −0.230954 + 0.710803i
\(605\) 8.07716 24.8590i 0.328383 1.01066i
\(606\) 4.50435 42.8560i 0.182977 1.74091i
\(607\) 26.0190 + 28.8971i 1.05608 + 1.17290i 0.984486 + 0.175462i \(0.0561419\pi\)
0.0715939 + 0.997434i \(0.477191\pi\)
\(608\) 16.0787 17.8572i 0.652077 0.724205i
\(609\) −0.0548969 0.522309i −0.00222453 0.0211650i
\(610\) −44.2144 9.39806i −1.79019 0.380516i
\(611\) 13.9197 6.19747i 0.563132 0.250723i
\(612\) 40.8193 + 29.6569i 1.65002 + 1.19881i
\(613\) −41.6598 18.5482i −1.68263 0.749153i −0.999828 0.0185453i \(-0.994096\pi\)
−0.682797 0.730608i \(-0.739237\pi\)
\(614\) 36.1505 + 62.6144i 1.45891 + 2.52691i
\(615\) 23.4231 40.5699i 0.944509 1.63594i
\(616\) −2.90628 + 2.11154i −0.117097 + 0.0850762i
\(617\) 6.48167 1.37772i 0.260942 0.0554650i −0.0755826 0.997140i \(-0.524082\pi\)
0.336525 + 0.941675i \(0.390748\pi\)
\(618\) −10.1331 31.1865i −0.407614 1.25451i
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −12.6312 38.8748i −0.506465 1.55874i
\(623\) 3.45431 0.734236i 0.138394 0.0294165i
\(624\) −1.57622 + 1.14519i −0.0630992 + 0.0458443i
\(625\) 14.8341 25.6934i 0.593364 1.02774i
\(626\) 25.0006 + 43.3022i 0.999223 + 1.73071i
\(627\) 7.90416 + 3.51916i 0.315662 + 0.140542i
\(628\) −21.5029 15.6228i −0.858060 0.623417i
\(629\) −33.7233 + 15.0146i −1.34463 + 0.598670i
\(630\) 31.3049 + 6.65406i 1.24722 + 0.265104i
\(631\) −1.16494 11.0837i −0.0463755 0.441234i −0.992931 0.118693i \(-0.962130\pi\)
0.946556 0.322541i \(-0.104537\pi\)
\(632\) 9.26125 10.2857i 0.368393 0.409142i
\(633\) 31.6748 + 35.1785i 1.25896 + 1.39822i
\(634\) −0.245073 + 2.33171i −0.00973308 + 0.0926041i
\(635\) 0.993675 3.05822i 0.0394328 0.121362i
\(636\) −14.9798 + 46.1032i −0.593989 + 1.82811i
\(637\) −0.878742 + 8.36068i −0.0348170 + 0.331262i
\(638\) −0.146061 0.162217i −0.00578262 0.00642225i
\(639\) −7.89567 + 8.76903i −0.312348 + 0.346898i
\(640\) −4.98554 47.4343i −0.197071 1.87500i
\(641\) −17.1697 3.64954i −0.678163 0.144148i −0.144062 0.989569i \(-0.546017\pi\)
−0.534101 + 0.845421i \(0.679350\pi\)
\(642\) −9.77775 + 4.35334i −0.385897 + 0.171812i
\(643\) 1.77664 + 1.29081i 0.0700640 + 0.0509044i 0.622266 0.782806i \(-0.286212\pi\)
−0.552202 + 0.833710i \(0.686212\pi\)
\(644\) −34.6334 15.4198i −1.36475 0.607625i
\(645\) −0.732145 1.26811i −0.0288282 0.0499318i
\(646\) −23.4341 + 40.5891i −0.922003 + 1.59696i
\(647\) 26.2482 19.0704i 1.03192 0.749737i 0.0632310 0.997999i \(-0.479860\pi\)
0.968693 + 0.248262i \(0.0798595\pi\)
\(648\) 22.0867 4.69468i 0.867649 0.184424i
\(649\) 2.15461 + 6.63121i 0.0845759 + 0.260298i
\(650\) −5.43508 −0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) 5.09568 + 15.6829i 0.199409 + 0.613719i 0.999897 + 0.0143694i \(0.00457408\pi\)
−0.800487 + 0.599350i \(0.795426\pi\)
\(654\) 67.5232 14.3525i 2.64037 0.561227i
\(655\) −16.2115 + 11.7784i −0.633436 + 0.460218i
\(656\) 1.49004 2.58083i 0.0581764 0.100764i
\(657\) −4.66457 8.07927i −0.181982 0.315202i
\(658\) −27.1378 12.0825i −1.05794 0.471026i
\(659\) 15.9711 + 11.6037i 0.622147 + 0.452016i 0.853671 0.520813i \(-0.174371\pi\)
−0.231524 + 0.972829i \(0.574371\pi\)
\(660\) 14.1561 6.30271i 0.551026 0.245333i
\(661\) −11.5234 2.44937i −0.448207 0.0952694i −0.0217223 0.999764i \(-0.506915\pi\)
−0.426485 + 0.904495i \(0.640248\pi\)
\(662\) −6.43755 61.2492i −0.250203 2.38052i
\(663\) −14.1267 + 15.6893i −0.548637 + 0.609323i
\(664\) 5.46181 + 6.06596i 0.211959 + 0.235405i
\(665\) −1.94030 + 18.4608i −0.0752417 + 0.715877i
\(666\) 20.8300 64.1081i 0.807145 2.48414i
\(667\) 0.283630 0.872925i 0.0109822 0.0337998i
\(668\) 8.46992 80.5859i 0.327711 3.11796i
\(669\) −10.5742 11.7439i −0.408823 0.454044i
\(670\) −18.6196 + 20.6791i −0.719336 + 0.798904i
\(671\) 0.601267 + 5.72068i 0.0232117 + 0.220844i
\(672\) −20.6414 4.38747i −0.796260 0.169250i
\(673\) 46.0264 20.4923i 1.77419 0.789918i 0.789923 0.613206i \(-0.210120\pi\)
0.984263 0.176712i \(-0.0565462\pi\)
\(674\) −59.6294 43.3233i −2.29684 1.66875i
\(675\) −1.34315 0.598009i −0.0516979 0.0230174i
\(676\) 15.6348 + 27.0802i 0.601337 + 1.04155i
\(677\) 1.98998 3.44674i 0.0764810 0.132469i −0.825248 0.564770i \(-0.808965\pi\)
0.901729 + 0.432301i \(0.142298\pi\)
\(678\) 52.4740 38.1246i 2.01525 1.46417i
\(679\) −19.2567 + 4.09313i −0.739003 + 0.157080i
\(680\) 10.3350 + 31.8079i 0.396330 + 1.21978i
\(681\) 33.1770 1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) −16.5129 50.8216i −0.631388 1.94321i
\(685\) −40.2669 + 8.55900i −1.53852 + 0.327022i
\(686\) 34.1926 24.8423i 1.30548 0.948485i
\(687\) 19.4238 33.6430i 0.741064 1.28356i
\(688\) −0.0465749 0.0806701i −0.00177565 0.00307552i
\(689\) −9.93205 4.42203i −0.378381 0.168466i
\(690\) 84.4233 + 61.3371i 3.21394 + 2.33506i
\(691\) 8.40054 3.74016i 0.319571 0.142282i −0.240681 0.970604i \(-0.577371\pi\)
0.560252 + 0.828322i \(0.310704\pi\)
\(692\) −29.1824 6.20291i −1.10935 0.235799i
\(693\) −0.425712 4.05038i −0.0161715 0.153861i
\(694\) 4.81942 5.35251i 0.182943 0.203178i
\(695\) −12.2707 13.6280i −0.465453 0.516938i
\(696\) −0.104755 + 0.996679i −0.00397074 + 0.0377790i
\(697\) 9.97891 30.7119i 0.377978 1.16330i
\(698\) −15.7063 + 48.3390i −0.594492 + 1.82966i
\(699\) 3.47151 33.0292i 0.131305 1.24928i
\(700\) 4.42707 + 4.91676i 0.167328 + 0.185836i
\(701\) −27.1361 + 30.1377i −1.02492 + 1.13829i −0.0346089 + 0.999401i \(0.511019\pi\)
−0.990308 + 0.138885i \(0.955648\pi\)
\(702\) −0.541230 5.14946i −0.0204274 0.194354i
\(703\) 38.2418 + 8.12854i 1.44232 + 0.306574i
\(704\) −8.55438 + 3.80865i −0.322405 + 0.143544i
\(705\) 41.3045 + 30.0095i 1.55562 + 1.13022i
\(706\) 10.3976 + 4.62932i 0.391320 + 0.174227i
\(707\) −5.88235 10.1885i −0.221229 0.383179i
\(708\) 40.1710 69.5782i 1.50972 2.61491i
\(709\) 30.1651 21.9162i 1.13287 0.823080i 0.146762 0.989172i \(-0.453115\pi\)
0.986110 + 0.166092i \(0.0531148\pi\)
\(710\) −19.2018 + 4.08148i −0.720632 + 0.153175i
\(711\) 4.84889 + 14.9234i 0.181848 + 0.559670i
\(712\) −6.73883 −0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) 1.07394 + 3.30525i 0.0401631 + 0.123609i
\(716\) 36.7171 7.80446i 1.37218 0.291666i
\(717\) −48.2232 + 35.0362i −1.80093 + 1.30845i
\(718\) 0.416347 0.721134i 0.0155379 0.0269125i
\(719\) 9.28994 + 16.0906i 0.346456 + 0.600080i 0.985617 0.168993i \(-0.0540516\pi\)
−0.639161 + 0.769073i \(0.720718\pi\)
\(720\) −3.19660 1.42322i −0.119130 0.0530402i
\(721\) −7.24272 5.26215i −0.269733 0.195973i
\(722\) 5.29387 2.35698i 0.197017 0.0877178i
\(723\) 61.4629 + 13.0643i 2.28583 + 0.485868i
\(724\) 5.19237 + 49.4021i 0.192973 + 1.83601i
\(725\) −0.107182 + 0.119038i −0.00398064 + 0.00442094i
\(726\) 41.0734 + 45.6167i 1.52438 + 1.69299i
\(727\) −1.71188 + 16.2875i −0.0634901 + 0.604068i 0.915804 + 0.401626i \(0.131555\pi\)
−0.979294 + 0.202443i \(0.935112\pi\)
\(728\) −2.86881 + 8.82930i −0.106325 + 0.327236i
\(729\) −10.7004 + 32.9325i −0.396312 + 1.21972i
\(730\) 1.62232 15.4353i 0.0600447 0.571287i
\(731\) −0.675406 0.750114i −0.0249808 0.0277440i
\(732\) 44.3507 49.2564i 1.63925 1.82057i
\(733\) 0.120348 + 1.14503i 0.00444514 + 0.0422927i 0.996520 0.0833585i \(-0.0265647\pi\)
−0.992074 + 0.125651i \(0.959898\pi\)
\(734\) 66.3292 + 14.0987i 2.44826 + 0.520393i
\(735\) −25.7333 + 11.4572i −0.949188 + 0.422606i
\(736\) −29.8367 21.6776i −1.09979 0.799047i
\(737\) 3.23491 + 1.44028i 0.119160 + 0.0530532i
\(738\) 29.4834 + 51.0668i 1.08530 + 1.87979i
\(739\) 10.3579 17.9404i 0.381022 0.659949i −0.610187 0.792257i \(-0.708906\pi\)
0.991209 + 0.132309i \(0.0422390\pi\)
\(740\) 56.6474 41.1568i 2.08240 1.51295i
\(741\) 21.8710 4.64883i 0.803453 0.170779i
\(742\) 6.54990 + 20.1585i 0.240454 + 0.740042i
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) 12.6415 + 38.9065i 0.462838 + 1.42447i
\(747\) −9.05173 + 1.92400i −0.331185 + 0.0703956i
\(748\) 8.64170 6.27856i 0.315972 0.229567i
\(749\) −1.46104 + 2.53060i −0.0533853 + 0.0924660i
\(750\) 27.5429 + 47.7058i 1.00573 + 1.74197i
\(751\) −39.4157 17.5490i −1.43830 0.640372i −0.468320 0.883559i \(-0.655141\pi\)
−0.969980 + 0.243187i \(0.921807\pi\)
\(752\) 2.62756 + 1.90903i 0.0958173 + 0.0696153i
\(753\) 53.8775 23.9878i 1.96341 0.874165i
\(754\) −0.551783 0.117285i −0.0200947 0.00427127i
\(755\) −1.44284 13.7277i −0.0525103 0.499602i
\(756\) −4.21753 + 4.68404i −0.153390 + 0.170357i
\(757\) −18.2931 20.3165i −0.664873 0.738417i 0.312505 0.949916i \(-0.398832\pi\)
−0.977378 + 0.211500i \(0.932165\pi\)
\(758\) 0.593459 5.64638i 0.0215554 0.205086i
\(759\) 4.10356 12.6295i 0.148950 0.458420i
\(760\) 10.9457 33.6875i 0.397044 1.22198i
\(761\) −1.79705 + 17.0978i −0.0651430 + 0.619794i 0.912435 + 0.409221i \(0.134200\pi\)
−0.977578 + 0.210573i \(0.932467\pi\)
\(762\) 5.05297 + 5.61189i 0.183050 + 0.203297i
\(763\) 12.6108 14.0057i 0.456542 0.507041i
\(764\) −0.785726 7.47569i −0.0284266 0.270461i
\(765\) −37.0881 7.88332i −1.34092 0.285022i
\(766\) −40.3011 + 17.9432i −1.45614 + 0.648315i
\(767\) 14.5775 + 10.5912i 0.526364 + 0.382426i
\(768\) 43.0291 + 19.1578i 1.55268 + 0.691297i
\(769\) −7.02837 12.1735i −0.253450 0.438987i 0.711024 0.703168i \(-0.248232\pi\)
−0.964473 + 0.264181i \(0.914899\pi\)
\(770\) 3.38775 5.86776i 0.122086 0.211459i
\(771\) 31.5686 22.9359i 1.13691 0.826017i
\(772\) −83.4609 + 17.7402i −3.00382 + 0.638482i
\(773\) −6.87156 21.1485i −0.247153 0.760658i −0.995275 0.0970970i \(-0.969044\pi\)
0.748122 0.663561i \(-0.230956\pi\)
\(774\) 1.84315 0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −10.6099 32.6539i −0.380628 1.17145i
\(778\) −11.8973 + 2.52885i −0.426539 + 0.0906638i
\(779\) −27.6690 + 20.1027i −0.991343 + 0.720253i
\(780\) 20.0228 34.6804i 0.716930 1.24176i
\(781\) 1.24906 + 2.16343i 0.0446948 + 0.0774136i
\(782\) 65.7146 + 29.2580i 2.34995 + 1.04626i
\(783\) −0.123455 0.0896956i −0.00441193 0.00320546i
\(784\) −1.63701 + 0.728844i −0.0584646 + 0.0260301i
\(785\) 19.5374 + 4.15280i 0.697320 + 0.148220i
\(786\) −4.91897 46.8009i −0.175454 1.66933i
\(787\) 21.4348 23.8058i 0.764068 0.848584i −0.228081 0.973642i \(-0.573245\pi\)
0.992149 + 0.125058i \(0.0399118\pi\)
\(788\) −13.7833 15.3079i −0.491008 0.545320i
\(789\) −1.80891 + 17.2107i −0.0643990 + 0.612716i
\(790\) −8.06682 + 24.8271i −0.287005 + 0.883310i
\(791\) 5.47208 16.8413i 0.194565 0.598809i
\(792\) −0.812352 + 7.72901i −0.0288657 + 0.274638i
\(793\) 9.94681 + 11.0471i 0.353222 + 0.392292i
\(794\) 26.1336 29.0243i 0.927447 1.03003i
\(795\) −3.80787 36.2294i −0.135051 1.28493i
\(796\) 14.8596 + 3.15850i 0.526684 + 0.111950i
\(797\) 23.7972 10.5952i 0.842940 0.375301i 0.0606069 0.998162i \(-0.480696\pi\)
0.782333 + 0.622861i \(0.214030\pi\)
\(798\) −35.2668 25.6228i −1.24843 0.907039i
\(799\) 32.1512 + 14.3146i 1.13743 + 0.506415i
\(800\) 3.21812 + 5.57395i 0.113778 + 0.197069i
\(801\) 3.81994 6.61633i 0.134971 0.233776i
\(802\) −71.0135 + 51.5943i −2.50757 + 1.82186i
\(803\) −1.93188 + 0.410633i −0.0681745 + 0.0144909i
\(804\) −12.6087 38.8056i −0.444675 1.36857i
\(805\) 28.4897 1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) 6.93732 + 21.3509i 0.244054 + 0.751121i
\(809\) 8.53866 1.81495i 0.300203 0.0638101i −0.0553475 0.998467i \(-0.517627\pi\)
0.355551 + 0.934657i \(0.384293\pi\)
\(810\) −34.4545 + 25.0327i −1.21061 + 0.879559i
\(811\) 25.0392 43.3692i 0.879245 1.52290i 0.0270750 0.999633i \(-0.491381\pi\)
0.852170 0.523264i \(-0.175286\pi\)
\(812\) 0.343347 + 0.594695i 0.0120491 + 0.0208697i
\(813\) 3.66353 + 1.63111i 0.128486 + 0.0572054i
\(814\) −11.5451 8.38801i −0.404656 0.294000i
\(815\) 38.9510 17.3421i 1.36440 0.607468i
\(816\) −4.40179 0.935629i −0.154093 0.0327536i
\(817\) 0.111744 + 1.06317i 0.00390942 + 0.0371956i
\(818\) 0.769986 0.855156i 0.0269219 0.0298998i
\(819\) −7.04259 7.82159i −0.246088 0.273308i
\(820\) −6.40263 + 60.9170i −0.223590 + 2.12731i
\(821\) −15.6928 + 48.2976i −0.547684 + 1.68560i 0.166839 + 0.985984i \(0.446644\pi\)
−0.714522 + 0.699613i \(0.753356\pi\)
\(822\) 29.8745 91.9441i 1.04199 3.20692i
\(823\) 0.661582 6.29453i 0.0230613 0.219414i −0.976922 0.213597i \(-0.931482\pi\)
0.999983 0.00581624i \(-0.00185138\pi\)
\(824\) 11.4310 + 12.6954i 0.398217 + 0.442265i
\(825\) −1.55071 + 1.72223i −0.0539886 + 0.0599604i
\(826\) −3.67201 34.9369i −0.127766 1.21561i
\(827\) −3.61665 0.768743i −0.125763 0.0267318i 0.144600 0.989490i \(-0.453810\pi\)
−0.270363 + 0.962758i \(0.587144\pi\)
\(828\) −74.9247 + 33.3586i −2.60381 + 1.15929i
\(829\) −21.0681 15.3068i −0.731724 0.531629i 0.158384 0.987378i \(-0.449372\pi\)
−0.890108 + 0.455749i \(0.849372\pi\)
\(830\) −14.0643 6.26182i −0.488178 0.217351i
\(831\) 15.3852 + 26.6479i 0.533707 + 0.924407i
\(832\) −12.0995 + 20.9570i −0.419475 + 0.726553i
\(833\) −15.7091 + 11.4133i −0.544287 + 0.395448i
\(834\) 42.1246 8.95386i 1.45866 0.310047i
\(835\) 18.8170 + 57.9127i 0.651188 + 2.00415i
\(836\) −11.3130 −0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) 2.31546 + 7.12626i 0.0799387 + 0.246026i 0.983037 0.183408i \(-0.0587130\pi\)
−0.903098 + 0.429434i \(0.858713\pi\)
\(840\) −30.4273 + 6.46752i −1.04984 + 0.223151i
\(841\) 23.4480 17.0360i 0.808553 0.587448i
\(842\) 35.6687 61.7800i 1.22923 2.12908i
\(843\) −27.2996 47.2843i −0.940249 1.62856i
\(844\) −56.5437 25.1749i −1.94631 0.866555i
\(845\) −19.0108 13.8122i −0.653993 0.475154i
\(846\) −58.7089 + 26.1389i −2.01845 + 0.898674i
\(847\) 16.3922 + 3.48428i 0.563244 + 0.119721i
\(848\) −0.242235 2.30471i −0.00831839 0.0791442i
\(849\) 1.17195 1.30158i 0.0402211 0.0446700i
\(850\) −8.40006 9.32922i −0.288120 0.319990i
\(851\) 6.27222 59.6762i 0.215009 2.04567i
\(852\) 8.89510 27.3763i 0.304741 0.937896i
\(853\) −13.4691 + 41.4536i −0.461173 + 1.41935i 0.402559 + 0.915394i \(0.368121\pi\)
−0.863732 + 0.503951i \(0.831879\pi\)
\(854\) 3.02936 28.8225i 0.103663 0.986284i
\(855\) 26.8705 + 29.8427i 0.918951 + 1.02060i
\(856\) 3.73105 4.14375i 0.127525 0.141631i
\(857\) −4.09990 39.0079i −0.140050 1.33249i −0.808398 0.588636i \(-0.799665\pi\)
0.668348 0.743849i \(-0.267002\pi\)
\(858\) −7.98318 1.69688i −0.272541 0.0579304i
\(859\) −16.6277 + 7.40313i −0.567330 + 0.252592i −0.670297 0.742093i \(-0.733833\pi\)
0.102967 + 0.994685i \(0.467167\pi\)
\(860\) 1.54894 + 1.12537i 0.0528185 + 0.0383749i
\(861\) 27.4385 + 12.2164i 0.935103 + 0.416335i
\(862\) 13.9084 + 24.0900i 0.473721 + 0.820509i
\(863\) −22.4738 + 38.9258i −0.765018 + 1.32505i 0.175219 + 0.984530i \(0.443937\pi\)
−0.940237 + 0.340521i \(0.889397\pi\)
\(864\) −4.96057 + 3.60407i −0.168762 + 0.122613i
\(865\) 21.9302 4.66142i 0.745651 0.158493i
\(866\) −23.0975 71.0868i −0.784885 2.41563i
\(867\) −5.53740 −0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) −0.584097 1.79767i −0.0198027 0.0609466i
\(871\) 8.95110 1.90262i 0.303297 0.0644677i
\(872\) −29.0950 + 21.1387i −0.985280 + 0.715848i
\(873\) −21.2949 + 36.8839i −0.720724 + 1.24833i
\(874\) −38.0922 65.9776i −1.28849 2.23173i
\(875\) 13.7390 + 6.11698i 0.464462 + 0.206792i
\(876\) 18.4115 + 13.3767i 0.622067 + 0.451958i
\(877\) −38.9637 + 17.3477i −1.31571 + 0.585792i −0.940072 0.340975i \(-0.889243\pi\)
−0.375637 + 0.926767i \(0.622576\pi\)
\(878\) −27.9162 5.93377i −0.942126 0.200255i
\(879\) 2.39524 + 22.7892i 0.0807895 + 0.768660i
\(880\) −0.495682 + 0.550510i −0.0167094 + 0.0185577i
\(881\) −5.96632 6.62627i −0.201010 0.223245i 0.634209 0.773162i \(-0.281326\pi\)
−0.835219 + 0.549917i \(0.814659\pi\)
\(882\) 3.70625 35.2626i 0.124796 1.18735i
\(883\) 14.5449 44.7647i 0.489475 1.50645i −0.335917 0.941892i \(-0.609046\pi\)
0.825393 0.564559i \(-0.190954\pi\)
\(884\) 8.53029 26.2535i 0.286905 0.883002i
\(885\) −6.31102 + 60.0454i −0.212143 + 2.01840i
\(886\) −7.29311 8.09982i −0.245017 0.272119i
\(887\) 2.11216 2.34579i 0.0709193 0.0787638i −0.706641 0.707572i \(-0.749790\pi\)
0.777560 + 0.628808i \(0.216457\pi\)
\(888\) 6.84845 + 65.1586i 0.229819 + 2.18658i
\(889\) 2.01662 + 0.428645i 0.0676352 + 0.0143763i
\(890\) 11.6112 5.16963i 0.389208 0.173286i
\(891\) 4.38450 + 3.18553i 0.146886 + 0.106719i
\(892\) 18.8763 + 8.40429i 0.632027 + 0.281396i
\(893\) −18.6368 32.2799i −0.623657 1.08021i
\(894\) −18.6640 + 32.3270i −0.624217 + 1.08118i
\(895\) −22.8215 + 16.5808i −0.762838 + 0.554234i
\(896\) 29.9116 6.35791i 0.999276 0.212403i
\(897\) −10.6048 32.6381i −0.354082 1.08975i
\(898\) −36.8840 −1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) −7.75991 23.8826i −0.258520 0.795643i
\(902\) 12.2109 2.59550i 0.406577 0.0864206i
\(903\) 0.759524 0.551827i 0.0252754 0.0183636i
\(904\) −16.8954 + 29.2637i −0.561932 + 0.973295i
\(905\) −18.6648 32.3284i −0.620439 1.07463i
\(906\) 29.6133 + 13.1847i 0.983838 + 0.438033i
\(907\) −21.8137 15.8486i −0.724311 0.526242i 0.163448 0.986552i \(-0.447738\pi\)
−0.887759 + 0.460309i \(0.847738\pi\)
\(908\) −39.6294 + 17.6441i −1.31515 + 0.585541i
\(909\) −24.8952 5.29163i −0.825721 0.175512i
\(910\) −1.83027 17.4139i −0.0606730 0.577265i
\(911\) 3.39786 3.77370i 0.112576 0.125028i −0.684223 0.729273i \(-0.739858\pi\)
0.796799 + 0.604245i \(0.206525\pi\)
\(912\) 3.18911 + 3.54187i 0.105602 + 0.117283i
\(913\) −0.204784 + 1.94839i −0.00677735 + 0.0644822i
\(914\) 3.24997 10.0024i 0.107500 0.330849i
\(915\) −15.3920 + 47.3716i −0.508843 + 1.56606i
\(916\) −5.30944 + 50.5160i −0.175429 + 1.66909i
\(917\) −8.59674 9.54765i −0.283889 0.315291i
\(918\) 8.00248 8.88765i 0.264121 0.293336i
\(919\) 5.15085 + 49.0070i 0.169911 + 1.61659i 0.664378 + 0.747396i \(0.268696\pi\)
−0.494468 + 0.869196i \(0.664637\pi\)
\(920\) −53.1766 11.3030i −1.75318 0.372650i
\(921\) 72.7824 32.4048i 2.39826 1.06778i
\(922\) 31.7193 + 23.0454i 1.04462 + 0.758959i
\(923\) 5.89769 + 2.62582i 0.194125 + 0.0864300i
\(924\) 4.96754 + 8.60403i 0.163420 + 0.283052i
\(925\) −5.23597 + 9.06896i −0.172158 + 0.298186i
\(926\) −51.2031 + 37.2012i −1.68264 + 1.22251i
\(927\) −18.9443 + 4.02673i −0.622212 + 0.132255i
\(928\) 0.206430 + 0.635327i 0.00677640 + 0.0208556i
\(929\) −39.9606 −1.31107 −0.655533 0.755167i \(-0.727556\pi\)
−0.655533 + 0.755167i \(0.727556\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 13.4189 + 41.2991i 0.439551 + 1.35280i
\(933\) −44.0574 + 9.36469i −1.44237 + 0.306586i
\(934\) 42.7700 31.0742i 1.39948 1.01678i
\(935\) −4.01360 + 6.95176i −0.131259 + 0.227347i
\(936\) 10.0420 + 17.3932i 0.328232 + 0.568515i
\(937\) 41.1911 + 18.3395i 1.34566 + 0.599124i 0.947959 0.318393i \(-0.103143\pi\)
0.397696 + 0.917517i \(0.369810\pi\)
\(938\) −14.4336 10.4866i −0.471272 0.342399i
\(939\) 50.3341 22.4102i 1.64259 0.731329i
\(940\) −65.2972 13.8794i −2.12976 0.452695i
\(941\) −5.24653 49.9174i −0.171032 1.62726i −0.657425 0.753520i \(-0.728354\pi\)
0.486393 0.873740i \(-0.338312\pi\)
\(942\) −31.3868 + 34.8586i −1.02264 + 1.13575i
\(943\) 35.1236 + 39.0087i 1.14378 + 1.27030i
\(944\) −0.401472 + 3.81975i −0.0130668 + 0.124322i
\(945\) 1.46370 4.50481i 0.0476142 0.146541i
\(946\) 0.120581 0.371109i 0.00392041 0.0120658i
\(947\) −3.16992 + 30.1598i −0.103009 + 0.980062i 0.813911 + 0.580990i \(0.197334\pi\)
−0.916919 + 0.399072i \(0.869332\pi\)
\(948\) −25.6130 28.4462i −0.831873 0.923888i
\(949\) −3.41528 + 3.79305i −0.110865 + 0.123128i
\(950\) 1.38976 + 13.2227i 0.0450899 + 0.429001i
\(951\) 2.52707 + 0.537145i 0.0819458 + 0.0174181i
\(952\) −19.5892 + 8.72166i −0.634889 + 0.282671i
\(953\) 28.7019 + 20.8531i 0.929745 + 0.675499i 0.945930 0.324370i \(-0.105152\pi\)
−0.0161857 + 0.999869i \(0.505152\pi\)
\(954\) 41.8901 + 18.6507i 1.35624 + 0.603838i
\(955\) 2.82442 + 4.89204i 0.0913961 + 0.158303i
\(956\) 38.9689 67.4962i 1.26035 2.18298i
\(957\) −0.194596 + 0.141382i −0.00629040 + 0.00457024i
\(958\) −20.4201 + 4.34043i −0.659744 + 0.140233i
\(959\) −8.15612 25.1020i −0.263375 0.810584i
\(960\) −81.0843 −2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) 1.95346 + 6.01213i 0.0629493 + 0.193738i
\(964\) −80.3644 + 17.0820i −2.58836 + 0.550173i
\(965\) 51.8751 37.6894i 1.66992 1.21327i
\(966\) −33.4527 + 57.9418i −1.07632 + 1.86425i
\(967\) 17.7222 + 30.6957i 0.569906 + 0.987107i 0.996575 + 0.0826987i \(0.0263539\pi\)
−0.426668 + 0.904408i \(0.640313\pi\)
\(968\) −29.2141 13.0069i −0.938976 0.418059i
\(969\) 41.7820 + 30.3564i 1.34223 + 0.975187i
\(970\) −64.7286 + 28.8190i −2.07831 + 0.925324i
\(971\) 39.2210 + 8.33668i 1.25866 + 0.267537i 0.788495 0.615041i \(-0.210860\pi\)
0.470167 + 0.882578i \(0.344194\pi\)
\(972\) −7.76148 73.8455i −0.248949 2.36860i
\(973\) 7.86730 8.73752i 0.252214 0.280112i
\(974\) −36.4743 40.5088i −1.16871 1.29798i
\(975\) −0.626027 + 5.95625i −0.0200489 + 0.190753i
\(976\) −0.979151 + 3.01352i −0.0313418 + 0.0964603i
\(977\) −11.9499 + 36.7782i −0.382313 + 1.17664i 0.556098 + 0.831117i \(0.312298\pi\)
−0.938411 + 0.345521i \(0.887702\pi\)
\(978\) −10.4664 + 99.5811i −0.334678 + 3.18425i
\(979\) −1.08226 1.20197i −0.0345891 0.0384151i
\(980\) 24.6449 27.3709i 0.787253 0.874333i
\(981\) −4.26183 40.5486i −0.136070 1.29462i
\(982\) −20.8261 4.42672i −0.664587 0.141262i
\(983\) −19.7139 + 8.77721i −0.628777 + 0.279950i −0.696281 0.717769i \(-0.745163\pi\)
0.0675038 + 0.997719i \(0.478497\pi\)
\(984\) −46.3678 33.6882i −1.47815 1.07394i
\(985\) 14.1414 + 6.29617i 0.450584 + 0.200613i
\(986\) −0.651478 1.12839i −0.0207473 0.0359354i
\(987\) −16.3669 + 28.3483i −0.520965 + 0.902338i
\(988\) −23.6523 + 17.1844i −0.752480 + 0.546709i
\(989\) 1.60489 0.341130i 0.0510326 0.0108473i
\(990\) −4.52953 13.9405i −0.143958 0.443057i
\(991\) 46.8764 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) −3.88936 11.9702i −0.123363 0.379672i
\(995\) −11.1668 + 2.37358i −0.354012 + 0.0752475i
\(996\) 18.2631 13.2689i 0.578689 0.420442i
\(997\) −22.2695 + 38.5718i −0.705281 + 1.22158i 0.261309 + 0.965255i \(0.415846\pi\)
−0.966590 + 0.256327i \(0.917488\pi\)
\(998\) −32.7830 56.7818i −1.03773 1.79740i
\(999\) −9.11378 4.05772i −0.288347 0.128381i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.s.844.2 16
31.2 even 5 961.2.g.k.338.1 16
31.3 odd 30 961.2.a.j.1.8 8
31.4 even 5 31.2.g.a.19.1 yes 16
31.5 even 3 961.2.g.t.547.2 16
31.6 odd 6 961.2.d.q.531.4 16
31.7 even 15 961.2.d.o.374.1 16
31.8 even 5 961.2.g.t.448.2 16
31.9 even 15 inner 961.2.g.s.846.2 16
31.10 even 15 31.2.g.a.18.1 16
31.11 odd 30 961.2.g.j.816.1 16
31.12 odd 30 961.2.d.n.388.1 16
31.13 odd 30 961.2.c.i.439.8 16
31.14 even 15 961.2.d.p.628.4 16
31.15 odd 10 961.2.c.i.521.8 16
31.16 even 5 961.2.c.j.521.8 16
31.17 odd 30 961.2.d.q.628.4 16
31.18 even 15 961.2.c.j.439.8 16
31.19 even 15 961.2.d.o.388.1 16
31.20 even 15 961.2.g.k.816.1 16
31.21 odd 30 961.2.g.l.235.1 16
31.22 odd 30 961.2.g.m.846.2 16
31.23 odd 10 961.2.g.n.448.2 16
31.24 odd 30 961.2.d.n.374.1 16
31.25 even 3 961.2.d.p.531.4 16
31.26 odd 6 961.2.g.n.547.2 16
31.27 odd 10 961.2.g.l.732.1 16
31.28 even 15 961.2.a.i.1.8 8
31.29 odd 10 961.2.g.j.338.1 16
31.30 odd 2 961.2.g.m.844.2 16
93.35 odd 10 279.2.y.c.19.2 16
93.41 odd 30 279.2.y.c.235.2 16
93.59 odd 30 8649.2.a.bf.1.1 8
93.65 even 30 8649.2.a.be.1.1 8
124.35 odd 10 496.2.bg.c.81.2 16
124.103 odd 30 496.2.bg.c.49.2 16
155.4 even 10 775.2.bl.a.701.2 16
155.72 odd 60 775.2.ck.a.49.1 32
155.97 odd 20 775.2.ck.a.174.4 32
155.103 odd 60 775.2.ck.a.49.4 32
155.128 odd 20 775.2.ck.a.174.1 32
155.134 even 30 775.2.bl.a.576.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.10 even 15
31.2.g.a.19.1 yes 16 31.4 even 5
279.2.y.c.19.2 16 93.35 odd 10
279.2.y.c.235.2 16 93.41 odd 30
496.2.bg.c.49.2 16 124.103 odd 30
496.2.bg.c.81.2 16 124.35 odd 10
775.2.bl.a.576.2 16 155.134 even 30
775.2.bl.a.701.2 16 155.4 even 10
775.2.ck.a.49.1 32 155.72 odd 60
775.2.ck.a.49.4 32 155.103 odd 60
775.2.ck.a.174.1 32 155.128 odd 20
775.2.ck.a.174.4 32 155.97 odd 20
961.2.a.i.1.8 8 31.28 even 15
961.2.a.j.1.8 8 31.3 odd 30
961.2.c.i.439.8 16 31.13 odd 30
961.2.c.i.521.8 16 31.15 odd 10
961.2.c.j.439.8 16 31.18 even 15
961.2.c.j.521.8 16 31.16 even 5
961.2.d.n.374.1 16 31.24 odd 30
961.2.d.n.388.1 16 31.12 odd 30
961.2.d.o.374.1 16 31.7 even 15
961.2.d.o.388.1 16 31.19 even 15
961.2.d.p.531.4 16 31.25 even 3
961.2.d.p.628.4 16 31.14 even 15
961.2.d.q.531.4 16 31.6 odd 6
961.2.d.q.628.4 16 31.17 odd 30
961.2.g.j.338.1 16 31.29 odd 10
961.2.g.j.816.1 16 31.11 odd 30
961.2.g.k.338.1 16 31.2 even 5
961.2.g.k.816.1 16 31.20 even 15
961.2.g.l.235.1 16 31.21 odd 30
961.2.g.l.732.1 16 31.27 odd 10
961.2.g.m.844.2 16 31.30 odd 2
961.2.g.m.846.2 16 31.22 odd 30
961.2.g.n.448.2 16 31.23 odd 10
961.2.g.n.547.2 16 31.26 odd 6
961.2.g.s.844.2 16 1.1 even 1 trivial
961.2.g.s.846.2 16 31.9 even 15 inner
961.2.g.t.448.2 16 31.8 even 5
961.2.g.t.547.2 16 31.5 even 3
8649.2.a.be.1.1 8 93.65 even 30
8649.2.a.bf.1.1 8 93.59 odd 30