Properties

Label 961.2.d.q.531.4
Level $961$
Weight $2$
Character 961.531
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 531.4
Root \(1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 961.531
Dual form 961.2.d.q.628.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.713065 + 2.19459i) q^{2} +(0.785745 - 2.41827i) q^{3} +(-2.68972 + 1.95420i) q^{4} -2.49846 q^{5} +5.86740 q^{6} +(-1.29595 + 0.941560i) q^{7} +(-2.47295 - 1.79670i) q^{8} +(-2.80360 - 2.03694i) q^{9} +(-1.78156 - 5.48309i) q^{10} +(0.593541 - 0.431233i) q^{11} +(2.61235 + 8.03999i) q^{12} +(0.585889 - 1.80318i) q^{13} +(-2.99043 - 2.17268i) q^{14} +(-1.96315 + 6.04196i) q^{15} +(0.124885 - 0.384356i) q^{16} +(-3.54288 - 2.57405i) q^{17} +(2.47109 - 7.60523i) q^{18} +(-1.43323 - 4.41103i) q^{19} +(6.72016 - 4.88248i) q^{20} +(1.25867 + 3.87378i) q^{21} +(1.36961 + 0.995081i) q^{22} +(-5.75896 - 4.18413i) q^{23} +(-6.28803 + 4.56852i) q^{24} +1.24230 q^{25} +4.37501 q^{26} +(-0.957471 + 0.695643i) q^{27} +(1.64574 - 5.06507i) q^{28} +(0.0398443 + 0.122628i) q^{29} -14.6595 q^{30} -5.18091 q^{32} +(-0.576467 - 1.77418i) q^{33} +(3.12268 - 9.61063i) q^{34} +(3.23787 - 2.35245i) q^{35} +11.5215 q^{36} -8.42948 q^{37} +(8.65840 - 6.29069i) q^{38} +(-3.90022 - 2.83368i) q^{39} +(6.17856 + 4.48899i) q^{40} +(-2.27869 - 7.01307i) q^{41} +(-7.60384 + 5.52452i) q^{42} +(-0.0712259 - 0.219211i) q^{43} +(-0.753746 + 2.31979i) q^{44} +(7.00469 + 5.08921i) q^{45} +(5.07593 - 15.6221i) q^{46} +(-2.48342 + 7.64319i) q^{47} +(-0.831350 - 0.604011i) q^{48} +(-1.37018 + 4.21697i) q^{49} +(0.885840 + 2.72634i) q^{50} +(-9.00856 + 6.54511i) q^{51} +(1.94789 + 5.99500i) q^{52} +(4.63910 + 3.37050i) q^{53} +(-2.20939 - 1.60522i) q^{54} +(-1.48294 + 1.07742i) q^{55} +4.89652 q^{56} -11.7932 q^{57} +(-0.240707 + 0.174884i) q^{58} +(2.93681 - 9.03857i) q^{59} +(-6.52685 - 20.0876i) q^{60} +7.84044 q^{61} +5.55122 q^{63} +(-3.94410 - 12.1387i) q^{64} +(-1.46382 + 4.50517i) q^{65} +(3.48254 - 2.53022i) q^{66} +4.82658 q^{67} +14.5596 q^{68} +(-14.6434 + 10.6391i) q^{69} +(7.47147 + 5.42834i) q^{70} +(2.75472 + 2.00142i) q^{71} +(3.27340 + 10.0745i) q^{72} +(2.17791 - 1.58234i) q^{73} +(-6.01076 - 18.4992i) q^{74} +(0.976130 - 3.00422i) q^{75} +(12.4750 + 9.06362i) q^{76} +(-0.363166 + 1.11771i) q^{77} +(3.43765 - 10.5800i) q^{78} +(3.66318 + 2.66146i) q^{79} +(-0.312019 + 0.960297i) q^{80} +(-2.28272 - 7.02548i) q^{81} +(13.7660 - 10.0016i) q^{82} +(-0.825183 - 2.53965i) q^{83} +(-10.9556 - 7.95971i) q^{84} +(8.85174 + 6.43117i) q^{85} +(0.430288 - 0.312623i) q^{86} +0.327856 q^{87} -2.24259 q^{88} +(-1.78355 + 1.29582i) q^{89} +(-6.17391 + 19.0013i) q^{90} +(0.938522 + 2.88847i) q^{91} +23.6666 q^{92} -18.5445 q^{94} +(3.58086 + 11.0208i) q^{95} +(-4.07088 + 12.5289i) q^{96} +(-9.94271 + 7.22380i) q^{97} -10.2315 q^{98} -2.54245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 22 q^{6} - 9 q^{7} - 8 q^{8} - 10 q^{9} - 6 q^{10} - 4 q^{11} + 5 q^{12} - 9 q^{13} - 18 q^{14} - 4 q^{15} - 2 q^{16} - 17 q^{17} - 14 q^{18} - 7 q^{19} + 36 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.713065 + 2.19459i 0.504213 + 1.55181i 0.802089 + 0.597204i \(0.203722\pi\)
−0.297876 + 0.954604i \(0.596278\pi\)
\(3\) 0.785745 2.41827i 0.453650 1.39619i −0.419063 0.907957i \(-0.637641\pi\)
0.872713 0.488234i \(-0.162359\pi\)
\(4\) −2.68972 + 1.95420i −1.34486 + 0.977099i
\(5\) −2.49846 −1.11735 −0.558673 0.829388i \(-0.688689\pi\)
−0.558673 + 0.829388i \(0.688689\pi\)
\(6\) 5.86740 2.39536
\(7\) −1.29595 + 0.941560i −0.489822 + 0.355876i −0.805116 0.593118i \(-0.797897\pi\)
0.315294 + 0.948994i \(0.397897\pi\)
\(8\) −2.47295 1.79670i −0.874320 0.635230i
\(9\) −2.80360 2.03694i −0.934535 0.678979i
\(10\) −1.78156 5.48309i −0.563380 1.73391i
\(11\) 0.593541 0.431233i 0.178959 0.130022i −0.494699 0.869064i \(-0.664722\pi\)
0.673659 + 0.739043i \(0.264722\pi\)
\(12\) 2.61235 + 8.03999i 0.754121 + 2.32094i
\(13\) 0.585889 1.80318i 0.162496 0.500112i −0.836347 0.548201i \(-0.815313\pi\)
0.998843 + 0.0480886i \(0.0153130\pi\)
\(14\) −2.99043 2.17268i −0.799227 0.580672i
\(15\) −1.96315 + 6.04196i −0.506884 + 1.56003i
\(16\) 0.124885 0.384356i 0.0312212 0.0960889i
\(17\) −3.54288 2.57405i −0.859274 0.624299i 0.0684130 0.997657i \(-0.478206\pi\)
−0.927687 + 0.373358i \(0.878206\pi\)
\(18\) 2.47109 7.60523i 0.582441 1.79257i
\(19\) −1.43323 4.41103i −0.328805 1.01196i −0.969694 0.244324i \(-0.921434\pi\)
0.640888 0.767634i \(-0.278566\pi\)
\(20\) 6.72016 4.88248i 1.50267 1.09176i
\(21\) 1.25867 + 3.87378i 0.274664 + 0.845328i
\(22\) 1.36961 + 0.995081i 0.292002 + 0.212152i
\(23\) −5.75896 4.18413i −1.20083 0.872451i −0.206460 0.978455i \(-0.566194\pi\)
−0.994366 + 0.106004i \(0.966194\pi\)
\(24\) −6.28803 + 4.56852i −1.28354 + 0.932545i
\(25\) 1.24230 0.248460
\(26\) 4.37501 0.858011
\(27\) −0.957471 + 0.695643i −0.184265 + 0.133877i
\(28\) 1.64574 5.06507i 0.311016 0.957209i
\(29\) 0.0398443 + 0.122628i 0.00739891 + 0.0227715i 0.954688 0.297609i \(-0.0961892\pi\)
−0.947289 + 0.320381i \(0.896189\pi\)
\(30\) −14.6595 −2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) −0.576467 1.77418i −0.100350 0.308846i
\(34\) 3.12268 9.61063i 0.535536 1.64821i
\(35\) 3.23787 2.35245i 0.547300 0.397637i
\(36\) 11.5215 1.92025
\(37\) −8.42948 −1.38580 −0.692899 0.721035i \(-0.743667\pi\)
−0.692899 + 0.721035i \(0.743667\pi\)
\(38\) 8.65840 6.29069i 1.40458 1.02049i
\(39\) −3.90022 2.83368i −0.624536 0.453752i
\(40\) 6.17856 + 4.48899i 0.976917 + 0.709772i
\(41\) −2.27869 7.01307i −0.355871 1.09526i −0.955503 0.294982i \(-0.904686\pi\)
0.599632 0.800276i \(-0.295314\pi\)
\(42\) −7.60384 + 5.52452i −1.17330 + 0.852451i
\(43\) −0.0712259 0.219211i −0.0108618 0.0334293i 0.945479 0.325684i \(-0.105595\pi\)
−0.956341 + 0.292255i \(0.905595\pi\)
\(44\) −0.753746 + 2.31979i −0.113631 + 0.349722i
\(45\) 7.00469 + 5.08921i 1.04420 + 0.758654i
\(46\) 5.07593 15.6221i 0.748404 2.30335i
\(47\) −2.48342 + 7.64319i −0.362244 + 1.11487i 0.589444 + 0.807809i \(0.299347\pi\)
−0.951689 + 0.307065i \(0.900653\pi\)
\(48\) −0.831350 0.604011i −0.119995 0.0871815i
\(49\) −1.37018 + 4.21697i −0.195740 + 0.602424i
\(50\) 0.885840 + 2.72634i 0.125277 + 0.385562i
\(51\) −9.00856 + 6.54511i −1.26145 + 0.916498i
\(52\) 1.94789 + 5.99500i 0.270124 + 0.831356i
\(53\) 4.63910 + 3.37050i 0.637229 + 0.462974i 0.858897 0.512148i \(-0.171150\pi\)
−0.221668 + 0.975122i \(0.571150\pi\)
\(54\) −2.20939 1.60522i −0.300660 0.218442i
\(55\) −1.48294 + 1.07742i −0.199959 + 0.145279i
\(56\) 4.89652 0.654324
\(57\) −11.7932 −1.56205
\(58\) −0.240707 + 0.174884i −0.0316064 + 0.0229634i
\(59\) 2.93681 9.03857i 0.382340 1.17672i −0.556051 0.831148i \(-0.687684\pi\)
0.938392 0.345574i \(-0.112316\pi\)
\(60\) −6.52685 20.0876i −0.842613 2.59330i
\(61\) 7.84044 1.00387 0.501933 0.864907i \(-0.332623\pi\)
0.501933 + 0.864907i \(0.332623\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) −3.94410 12.1387i −0.493012 1.51734i
\(65\) −1.46382 + 4.50517i −0.181564 + 0.558798i
\(66\) 3.48254 2.53022i 0.428671 0.311448i
\(67\) 4.82658 0.589660 0.294830 0.955550i \(-0.404737\pi\)
0.294830 + 0.955550i \(0.404737\pi\)
\(68\) 14.5596 1.76561
\(69\) −14.6434 + 10.6391i −1.76286 + 1.28079i
\(70\) 7.47147 + 5.42834i 0.893012 + 0.648811i
\(71\) 2.75472 + 2.00142i 0.326925 + 0.237525i 0.739125 0.673569i \(-0.235239\pi\)
−0.412200 + 0.911093i \(0.635239\pi\)
\(72\) 3.27340 + 10.0745i 0.385774 + 1.18729i
\(73\) 2.17791 1.58234i 0.254905 0.185199i −0.452993 0.891514i \(-0.649644\pi\)
0.707898 + 0.706315i \(0.249644\pi\)
\(74\) −6.01076 18.4992i −0.698737 2.15049i
\(75\) 0.976130 3.00422i 0.112714 0.346898i
\(76\) 12.4750 + 9.06362i 1.43098 + 1.03967i
\(77\) −0.363166 + 1.11771i −0.0413866 + 0.127375i
\(78\) 3.43765 10.5800i 0.389237 1.19795i
\(79\) 3.66318 + 2.66146i 0.412140 + 0.299438i 0.774468 0.632613i \(-0.218018\pi\)
−0.362327 + 0.932051i \(0.618018\pi\)
\(80\) −0.312019 + 0.960297i −0.0348848 + 0.107364i
\(81\) −2.28272 7.02548i −0.253635 0.780609i
\(82\) 13.7660 10.0016i 1.52020 1.10449i
\(83\) −0.825183 2.53965i −0.0905756 0.278763i 0.895500 0.445062i \(-0.146818\pi\)
−0.986075 + 0.166299i \(0.946818\pi\)
\(84\) −10.9556 7.95971i −1.19535 0.868476i
\(85\) 8.85174 + 6.43117i 0.960106 + 0.697558i
\(86\) 0.430288 0.312623i 0.0463992 0.0337110i
\(87\) 0.327856 0.0351499
\(88\) −2.24259 −0.239061
\(89\) −1.78355 + 1.29582i −0.189056 + 0.137357i −0.678287 0.734797i \(-0.737277\pi\)
0.489231 + 0.872154i \(0.337277\pi\)
\(90\) −6.17391 + 19.0013i −0.650788 + 2.00292i
\(91\) 0.938522 + 2.88847i 0.0983839 + 0.302794i
\(92\) 23.6666 2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) 3.58086 + 11.0208i 0.367389 + 1.13071i
\(96\) −4.07088 + 12.5289i −0.415482 + 1.27872i
\(97\) −9.94271 + 7.22380i −1.00953 + 0.733466i −0.964110 0.265502i \(-0.914462\pi\)
−0.0454190 + 0.998968i \(0.514462\pi\)
\(98\) −10.2315 −1.03354
\(99\) −2.54245 −0.255526
\(100\) −3.34144 + 2.42770i −0.334144 + 0.242770i
\(101\) −5.94168 4.31688i −0.591219 0.429546i 0.251532 0.967849i \(-0.419066\pi\)
−0.842751 + 0.538303i \(0.819066\pi\)
\(102\) −20.7875 15.1030i −2.05827 1.49542i
\(103\) 1.72702 + 5.31522i 0.170168 + 0.523724i 0.999380 0.0352107i \(-0.0112102\pi\)
−0.829212 + 0.558935i \(0.811210\pi\)
\(104\) −4.68865 + 3.40651i −0.459760 + 0.334035i
\(105\) −3.14473 9.67849i −0.306894 0.944523i
\(106\) −4.08889 + 12.5843i −0.397148 + 1.22229i
\(107\) −1.47578 1.07221i −0.142669 0.103655i 0.514162 0.857693i \(-0.328103\pi\)
−0.656830 + 0.754038i \(0.728103\pi\)
\(108\) 1.21591 3.74218i 0.117001 0.360091i
\(109\) 3.63567 11.1895i 0.348234 1.07176i −0.611595 0.791171i \(-0.709472\pi\)
0.959829 0.280584i \(-0.0905282\pi\)
\(110\) −3.42192 2.48617i −0.326267 0.237047i
\(111\) −6.62342 + 20.3848i −0.628667 + 1.93484i
\(112\) 0.200050 + 0.615691i 0.0189030 + 0.0581773i
\(113\) −8.94331 + 6.49769i −0.841315 + 0.611251i −0.922738 0.385428i \(-0.874054\pi\)
0.0814223 + 0.996680i \(0.474054\pi\)
\(114\) −8.40933 25.8813i −0.787606 2.42400i
\(115\) 14.3885 + 10.4539i 1.34174 + 0.974829i
\(116\) −0.346810 0.251972i −0.0322005 0.0233950i
\(117\) −5.31557 + 3.86198i −0.491424 + 0.357041i
\(118\) 21.9301 2.01883
\(119\) 7.01501 0.643065
\(120\) 15.7104 11.4143i 1.43416 1.04197i
\(121\) −3.23286 + 9.94971i −0.293896 + 0.904519i
\(122\) 5.59074 + 17.2065i 0.506162 + 1.55781i
\(123\) −18.7500 −1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) 3.95838 + 12.1826i 0.352641 + 1.08532i
\(127\) 0.397715 1.22404i 0.0352915 0.108616i −0.931859 0.362821i \(-0.881814\pi\)
0.967150 + 0.254205i \(0.0818137\pi\)
\(128\) 15.4441 11.2208i 1.36508 0.991789i
\(129\) −0.586077 −0.0516012
\(130\) −10.9308 −0.958694
\(131\) 6.48860 4.71425i 0.566912 0.411886i −0.267070 0.963677i \(-0.586056\pi\)
0.833982 + 0.551792i \(0.186056\pi\)
\(132\) 5.01764 + 3.64553i 0.436730 + 0.317303i
\(133\) 6.01064 + 4.36698i 0.521188 + 0.378665i
\(134\) 3.44166 + 10.5924i 0.297315 + 0.915040i
\(135\) 2.39220 1.73804i 0.205888 0.149586i
\(136\) 4.13655 + 12.7310i 0.354707 + 1.09167i
\(137\) 5.09160 15.6703i 0.435005 1.33881i −0.458077 0.888912i \(-0.651462\pi\)
0.893082 0.449894i \(-0.148538\pi\)
\(138\) −33.7901 24.5500i −2.87641 2.08983i
\(139\) −2.26813 + 6.98058i −0.192380 + 0.592085i 0.807617 + 0.589707i \(0.200757\pi\)
−0.999997 + 0.00237796i \(0.999243\pi\)
\(140\) −4.11182 + 12.6549i −0.347512 + 1.06953i
\(141\) 16.5320 + 12.0112i 1.39224 + 1.01152i
\(142\) −2.42800 + 7.47261i −0.203753 + 0.627088i
\(143\) −0.429841 1.32292i −0.0359451 0.110628i
\(144\) −1.13304 + 0.823199i −0.0944196 + 0.0685999i
\(145\) −0.0995495 0.306382i −0.00826713 0.0254436i
\(146\) 5.02559 + 3.65130i 0.415921 + 0.302184i
\(147\) 9.12118 + 6.62693i 0.752302 + 0.546580i
\(148\) 22.6730 16.4729i 1.86371 1.35406i
\(149\) −6.36193 −0.521189 −0.260595 0.965448i \(-0.583919\pi\)
−0.260595 + 0.965448i \(0.583919\pi\)
\(150\) 7.28907 0.595150
\(151\) −4.46960 + 3.24736i −0.363731 + 0.264266i −0.754607 0.656177i \(-0.772172\pi\)
0.390875 + 0.920444i \(0.372172\pi\)
\(152\) −4.38100 + 13.4833i −0.355346 + 1.09364i
\(153\) 4.68965 + 14.4332i 0.379135 + 1.16686i
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 2.47043 + 7.60320i 0.197162 + 0.606801i 0.999945 + 0.0105298i \(0.00335181\pi\)
−0.802783 + 0.596271i \(0.796648\pi\)
\(158\) −3.22872 + 9.93698i −0.256863 + 0.790543i
\(159\) 11.7959 8.57025i 0.935479 0.679665i
\(160\) 12.9443 1.02334
\(161\) 11.4029 0.898675
\(162\) 13.7903 10.0192i 1.08347 0.787186i
\(163\) 13.8062 + 10.0308i 1.08138 + 0.785672i 0.977924 0.208961i \(-0.0670083\pi\)
0.103461 + 0.994634i \(0.467008\pi\)
\(164\) 19.8340 + 14.4102i 1.54877 + 1.12525i
\(165\) 1.44028 + 4.43272i 0.112126 + 0.345087i
\(166\) 4.98508 3.62188i 0.386918 0.281112i
\(167\) 7.53143 + 23.1793i 0.582799 + 1.79367i 0.607934 + 0.793988i \(0.291999\pi\)
−0.0251344 + 0.999684i \(0.508001\pi\)
\(168\) 3.84741 11.8411i 0.296834 0.913562i
\(169\) 7.60903 + 5.52828i 0.585310 + 0.425253i
\(170\) −7.80190 + 24.0118i −0.598378 + 1.84162i
\(171\) −4.96678 + 15.2862i −0.379819 + 1.16896i
\(172\) 0.619959 + 0.450426i 0.0472714 + 0.0343447i
\(173\) 2.77300 8.53440i 0.210827 0.648859i −0.788597 0.614911i \(-0.789192\pi\)
0.999424 0.0339478i \(-0.0108080\pi\)
\(174\) 0.233783 + 0.719510i 0.0177230 + 0.0545459i
\(175\) −1.60995 + 1.16970i −0.121701 + 0.0884210i
\(176\) −0.0916225 0.281985i −0.00690630 0.0212554i
\(177\) −19.5502 14.2040i −1.46948 1.06764i
\(178\) −4.11558 2.99015i −0.308476 0.224121i
\(179\) −9.13422 + 6.63640i −0.682724 + 0.496028i −0.874260 0.485458i \(-0.838653\pi\)
0.191536 + 0.981486i \(0.438653\pi\)
\(180\) −28.7860 −2.14558
\(181\) 14.9410 1.11056 0.555279 0.831664i \(-0.312611\pi\)
0.555279 + 0.831664i \(0.312611\pi\)
\(182\) −5.66979 + 4.11934i −0.420273 + 0.305346i
\(183\) 6.16058 18.9603i 0.455403 1.40159i
\(184\) 6.72398 + 20.6943i 0.495698 + 1.52560i
\(185\) 21.0607 1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) −8.25658 25.4112i −0.602173 1.85330i
\(189\) 0.585841 1.80303i 0.0426137 0.131151i
\(190\) −21.6327 + 15.7170i −1.56940 + 1.14023i
\(191\) 2.26093 0.163595 0.0817975 0.996649i \(-0.473934\pi\)
0.0817975 + 0.996649i \(0.473934\pi\)
\(192\) −32.4537 −2.34215
\(193\) −20.7628 + 15.0851i −1.49454 + 1.08585i −0.522047 + 0.852917i \(0.674831\pi\)
−0.972493 + 0.232930i \(0.925169\pi\)
\(194\) −22.9431 16.6691i −1.64722 1.19677i
\(195\) 9.74455 + 7.07983i 0.697822 + 0.506997i
\(196\) −4.55540 14.0201i −0.325386 1.00143i
\(197\) −5.01244 + 3.64175i −0.357121 + 0.259464i −0.751850 0.659334i \(-0.770838\pi\)
0.394729 + 0.918798i \(0.370838\pi\)
\(198\) −1.81293 5.57962i −0.128839 0.396527i
\(199\) 1.41200 4.34569i 0.100094 0.308058i −0.888454 0.458966i \(-0.848220\pi\)
0.988548 + 0.150908i \(0.0482199\pi\)
\(200\) −3.07214 2.23204i −0.217233 0.157829i
\(201\) 3.79246 11.6720i 0.267499 0.823279i
\(202\) 5.23698 16.1178i 0.368472 1.13404i
\(203\) −0.167098 0.121404i −0.0117280 0.00852088i
\(204\) 11.4401 35.2090i 0.800968 2.46513i
\(205\) 5.69320 + 17.5219i 0.397630 + 1.22378i
\(206\) −10.4332 + 7.58019i −0.726918 + 0.528137i
\(207\) 7.62303 + 23.4613i 0.529837 + 1.63067i
\(208\) −0.619894 0.450379i −0.0429819 0.0312282i
\(209\) −2.75286 2.00007i −0.190419 0.138348i
\(210\) 18.9979 13.8028i 1.31098 0.952482i
\(211\) −18.6168 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(212\) −19.0645 −1.30936
\(213\) 7.00448 5.08906i 0.479939 0.348696i
\(214\) 1.30074 4.00328i 0.0889171 0.273659i
\(215\) 0.177955 + 0.547689i 0.0121364 + 0.0373521i
\(216\) 3.61764 0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) −2.11526 6.51010i −0.142936 0.439912i
\(220\) 1.88320 5.79591i 0.126966 0.390760i
\(221\) −6.71721 + 4.88034i −0.451849 + 0.328287i
\(222\) −49.4591 −3.31948
\(223\) −6.21495 −0.416184 −0.208092 0.978109i \(-0.566725\pi\)
−0.208092 + 0.978109i \(0.566725\pi\)
\(224\) 6.71419 4.87814i 0.448611 0.325935i
\(225\) −3.48292 2.53049i −0.232194 0.168699i
\(226\) −20.6369 14.9936i −1.37275 0.997359i
\(227\) −4.03199 12.4092i −0.267613 0.823627i −0.991080 0.133268i \(-0.957453\pi\)
0.723467 0.690359i \(-0.242547\pi\)
\(228\) 31.7205 23.0463i 2.10074 1.52628i
\(229\) −4.72114 14.5302i −0.311982 0.960181i −0.976979 0.213335i \(-0.931567\pi\)
0.664997 0.746846i \(-0.268433\pi\)
\(230\) −12.6820 + 39.0312i −0.836226 + 2.57364i
\(231\) 2.41757 + 1.75647i 0.159065 + 0.115567i
\(232\) 0.121794 0.374842i 0.00799614 0.0246096i
\(233\) 4.03615 12.4220i 0.264417 0.813792i −0.727410 0.686203i \(-0.759276\pi\)
0.991827 0.127589i \(-0.0407238\pi\)
\(234\) −12.2658 8.91163i −0.801841 0.582572i
\(235\) 6.20473 19.0962i 0.404752 1.24570i
\(236\) 9.76395 + 30.0504i 0.635579 + 1.95611i
\(237\) 9.31447 6.76736i 0.605040 0.439587i
\(238\) 5.00216 + 15.3951i 0.324242 + 0.997913i
\(239\) −18.9652 13.7790i −1.22675 0.891289i −0.230111 0.973164i \(-0.573909\pi\)
−0.996643 + 0.0818753i \(0.973909\pi\)
\(240\) 2.07709 + 1.50910i 0.134076 + 0.0974118i
\(241\) 19.9925 14.5254i 1.28783 0.935663i 0.288071 0.957609i \(-0.406986\pi\)
0.999759 + 0.0219459i \(0.00698616\pi\)
\(242\) −24.1408 −1.55183
\(243\) −22.3337 −1.43271
\(244\) −21.0886 + 15.3218i −1.35006 + 0.980875i
\(245\) 3.42333 10.5359i 0.218709 0.673116i
\(246\) −13.3700 41.1485i −0.852438 2.62353i
\(247\) −8.79358 −0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) 6.69458 + 20.6038i 0.423403 + 1.30310i
\(251\) 7.16738 22.0589i 0.452401 1.39235i −0.421758 0.906709i \(-0.638587\pi\)
0.874159 0.485640i \(-0.161413\pi\)
\(252\) −14.9312 + 10.8482i −0.940580 + 0.683371i
\(253\) −5.22251 −0.328336
\(254\) 2.96986 0.186346
\(255\) 22.5075 16.3527i 1.40948 1.02404i
\(256\) 14.9862 + 10.8881i 0.936635 + 0.680505i
\(257\) −12.4153 9.02022i −0.774443 0.562666i 0.128863 0.991662i \(-0.458867\pi\)
−0.903306 + 0.428997i \(0.858867\pi\)
\(258\) −0.417911 1.28620i −0.0260180 0.0800752i
\(259\) 10.9242 7.93686i 0.678794 0.493173i
\(260\) −4.86673 14.9783i −0.301822 0.928912i
\(261\) 0.138078 0.424962i 0.00854684 0.0263045i
\(262\) 14.9726 + 10.8782i 0.925012 + 0.672060i
\(263\) 2.10313 6.47277i 0.129685 0.399128i −0.865041 0.501701i \(-0.832708\pi\)
0.994725 + 0.102573i \(0.0327076\pi\)
\(264\) −1.76211 + 5.42321i −0.108450 + 0.333775i
\(265\) −11.5906 8.42106i −0.712005 0.517302i
\(266\) −5.29775 + 16.3048i −0.324826 + 0.999712i
\(267\) 1.73224 + 5.33129i 0.106012 + 0.326270i
\(268\) −12.9822 + 9.43209i −0.793011 + 0.576157i
\(269\) −3.25075 10.0048i −0.198202 0.610002i −0.999924 0.0123058i \(-0.996083\pi\)
0.801723 0.597696i \(-0.203917\pi\)
\(270\) 5.52007 + 4.01057i 0.335941 + 0.244075i
\(271\) −1.27593 0.927019i −0.0775074 0.0563124i 0.548357 0.836244i \(-0.315254\pi\)
−0.625864 + 0.779932i \(0.715254\pi\)
\(272\) −1.43180 + 1.04027i −0.0868158 + 0.0630754i
\(273\) 7.72256 0.467391
\(274\) 38.0206 2.29691
\(275\) 0.737355 0.535720i 0.0444642 0.0323051i
\(276\) 18.5959 57.2323i 1.11934 3.44498i
\(277\) −3.73952 11.5091i −0.224686 0.691513i −0.998323 0.0578841i \(-0.981565\pi\)
0.773637 0.633629i \(-0.218435\pi\)
\(278\) −16.9368 −1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) −6.63544 20.4218i −0.395837 1.21826i −0.928308 0.371813i \(-0.878736\pi\)
0.532470 0.846449i \(-0.321264\pi\)
\(282\) −14.5712 + 44.8457i −0.867705 + 2.67052i
\(283\) 0.557256 0.404870i 0.0331254 0.0240670i −0.571099 0.820881i \(-0.693483\pi\)
0.604225 + 0.796814i \(0.293483\pi\)
\(284\) −11.3206 −0.671753
\(285\) 29.4649 1.74535
\(286\) 2.59675 1.88665i 0.153549 0.111560i
\(287\) 9.55629 + 6.94305i 0.564090 + 0.409835i
\(288\) 14.5252 + 10.5532i 0.855908 + 0.621853i
\(289\) 0.672959 + 2.07116i 0.0395858 + 0.121833i
\(290\) 0.601397 0.436940i 0.0353152 0.0256580i
\(291\) 9.65670 + 29.7203i 0.566086 + 1.74223i
\(292\) −2.76576 + 8.51214i −0.161854 + 0.498135i
\(293\) −7.29076 5.29705i −0.425931 0.309457i 0.354089 0.935212i \(-0.384791\pi\)
−0.780020 + 0.625755i \(0.784791\pi\)
\(294\) −8.03938 + 24.7427i −0.468866 + 1.44302i
\(295\) −7.33750 + 22.5825i −0.427206 + 1.31480i
\(296\) 20.8457 + 15.1453i 1.21163 + 0.880301i
\(297\) −0.268314 + 0.825785i −0.0155692 + 0.0479169i
\(298\) −4.53647 13.9618i −0.262791 0.808786i
\(299\) −10.9188 + 7.93300i −0.631453 + 0.458777i
\(300\) 3.24532 + 9.98807i 0.187369 + 0.576662i
\(301\) 0.298705 + 0.217022i 0.0172171 + 0.0125089i
\(302\) −10.3137 7.49336i −0.593488 0.431195i
\(303\) −15.1081 + 10.9766i −0.867935 + 0.630592i
\(304\) −1.87439 −0.107504
\(305\) −19.5890 −1.12166
\(306\) −28.3310 + 20.5837i −1.61958 + 1.17669i
\(307\) −9.68232 + 29.7991i −0.552599 + 1.70073i 0.149601 + 0.988746i \(0.452201\pi\)
−0.702201 + 0.711979i \(0.747799\pi\)
\(308\) −1.20741 3.71602i −0.0687985 0.211740i
\(309\) 14.2107 0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 4.55378 + 14.0151i 0.257807 + 0.793448i
\(313\) 6.69600 20.6082i 0.378480 1.16484i −0.562620 0.826715i \(-0.690207\pi\)
0.941101 0.338127i \(-0.109793\pi\)
\(314\) −14.9243 + 10.8431i −0.842228 + 0.611914i
\(315\) −13.8695 −0.781458
\(316\) −15.0540 −0.846852
\(317\) −0.821999 + 0.597217i −0.0461681 + 0.0335431i −0.610630 0.791916i \(-0.709084\pi\)
0.564462 + 0.825459i \(0.309084\pi\)
\(318\) 27.2195 + 19.7761i 1.52639 + 1.10899i
\(319\) 0.0765305 + 0.0556027i 0.00428489 + 0.00311315i
\(320\) 9.85417 + 30.3280i 0.550865 + 1.69539i
\(321\) −3.75249 + 2.72635i −0.209444 + 0.152170i
\(322\) 8.13102 + 25.0247i 0.453124 + 1.39457i
\(323\) −6.27645 + 19.3169i −0.349231 + 1.07482i
\(324\) 19.8690 + 14.4357i 1.10384 + 0.801984i
\(325\) 0.727849 2.24009i 0.0403738 0.124258i
\(326\) −12.1687 + 37.4515i −0.673964 + 2.07425i
\(327\) −24.2025 17.5841i −1.33840 0.972404i
\(328\) −6.96533 + 21.4371i −0.384596 + 1.18367i
\(329\) −3.97814 12.2435i −0.219322 0.675004i
\(330\) −8.70099 + 6.32164i −0.478974 + 0.347995i
\(331\) −8.24749 25.3832i −0.453323 1.39519i −0.873093 0.487554i \(-0.837889\pi\)
0.419769 0.907631i \(-0.362111\pi\)
\(332\) 7.18250 + 5.21839i 0.394191 + 0.286396i
\(333\) 23.6329 + 17.1703i 1.29508 + 0.940928i
\(334\) −45.4987 + 33.0568i −2.48958 + 1.80879i
\(335\) −12.0590 −0.658854
\(336\) 1.64610 0.0898020
\(337\) 25.8412 18.7748i 1.40766 1.02273i 0.414005 0.910274i \(-0.364129\pi\)
0.993657 0.112452i \(-0.0358705\pi\)
\(338\) −6.70657 + 20.6407i −0.364789 + 1.12271i
\(339\) 8.68604 + 26.7329i 0.471761 + 1.45193i
\(340\) −36.3765 −1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) −5.65991 17.4194i −0.305606 0.940560i
\(344\) −0.217718 + 0.670069i −0.0117386 + 0.0361277i
\(345\) 36.5860 26.5813i 1.96973 1.43109i
\(346\) 20.7068 1.11321
\(347\) −3.12131 −0.167561 −0.0837804 0.996484i \(-0.526699\pi\)
−0.0837804 + 0.996484i \(0.526699\pi\)
\(348\) −0.881842 + 0.640696i −0.0472717 + 0.0343449i
\(349\) 17.8198 + 12.9468i 0.953871 + 0.693028i 0.951719 0.306970i \(-0.0993151\pi\)
0.00215168 + 0.999998i \(0.499315\pi\)
\(350\) −3.71501 2.69911i −0.198576 0.144274i
\(351\) 0.693399 + 2.13406i 0.0370109 + 0.113908i
\(352\) −3.07508 + 2.23418i −0.163903 + 0.119082i
\(353\) −1.52419 4.69098i −0.0811246 0.249676i 0.902265 0.431181i \(-0.141903\pi\)
−0.983390 + 0.181505i \(0.941903\pi\)
\(354\) 17.2315 53.0330i 0.915841 2.81867i
\(355\) −6.88255 5.00046i −0.365288 0.265397i
\(356\) 2.26495 6.97081i 0.120042 0.369452i
\(357\) 5.51201 16.9642i 0.291726 0.897842i
\(358\) −21.0775 15.3137i −1.11398 0.809353i
\(359\) −0.111512 + 0.343198i −0.00588537 + 0.0181133i −0.953956 0.299946i \(-0.903031\pi\)
0.948071 + 0.318060i \(0.103031\pi\)
\(360\) −8.17846 25.1707i −0.431042 1.32661i
\(361\) −2.03167 + 1.47610i −0.106930 + 0.0776893i
\(362\) 10.6539 + 32.7894i 0.559958 + 1.72337i
\(363\) 21.5209 + 15.6359i 1.12956 + 0.820671i
\(364\) −8.16902 5.93514i −0.428173 0.311086i
\(365\) −5.44142 + 3.95342i −0.284817 + 0.206932i
\(366\) 46.0030 2.40462
\(367\) 29.3869 1.53398 0.766992 0.641657i \(-0.221753\pi\)
0.766992 + 0.641657i \(0.221753\pi\)
\(368\) −2.32740 + 1.69095i −0.121324 + 0.0881470i
\(369\) −7.89666 + 24.3034i −0.411084 + 1.26519i
\(370\) 15.0177 + 46.2196i 0.780731 + 2.40284i
\(371\) −9.18555 −0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) −2.29098 7.05090i −0.118464 0.364593i
\(375\) 7.37694 22.7039i 0.380943 1.17242i
\(376\) 19.8739 14.4392i 1.02492 0.744647i
\(377\) 0.244465 0.0125906
\(378\) 4.37466 0.225008
\(379\) 1.99052 1.44620i 0.102246 0.0742862i −0.535487 0.844543i \(-0.679872\pi\)
0.637734 + 0.770257i \(0.279872\pi\)
\(380\) −31.1683 22.6451i −1.59890 1.16167i
\(381\) −2.64756 1.92357i −0.135639 0.0985474i
\(382\) 1.61219 + 4.96181i 0.0824868 + 0.253868i
\(383\) −15.4667 + 11.2372i −0.790312 + 0.574196i −0.908056 0.418848i \(-0.862434\pi\)
0.117744 + 0.993044i \(0.462434\pi\)
\(384\) −14.9999 46.1648i −0.765458 2.35584i
\(385\) 0.907355 2.79255i 0.0462431 0.142322i
\(386\) −47.9108 34.8092i −2.43859 1.77174i
\(387\) −0.246829 + 0.759663i −0.0125470 + 0.0386158i
\(388\) 12.6264 38.8600i 0.641008 1.97282i
\(389\) 4.26438 + 3.09825i 0.216212 + 0.157088i 0.690620 0.723218i \(-0.257338\pi\)
−0.474408 + 0.880305i \(0.657338\pi\)
\(390\) −8.58882 + 26.4337i −0.434912 + 1.33852i
\(391\) 9.63313 + 29.6477i 0.487168 + 1.49935i
\(392\) 10.9650 7.96656i 0.553817 0.402372i
\(393\) −6.30195 19.3954i −0.317891 0.978369i
\(394\) −11.5663 8.40343i −0.582703 0.423359i
\(395\) −9.15232 6.64955i −0.460503 0.334575i
\(396\) 6.83848 4.96844i 0.343646 0.249674i
\(397\) 16.9255 0.849467 0.424733 0.905319i \(-0.360368\pi\)
0.424733 + 0.905319i \(0.360368\pi\)
\(398\) 10.5439 0.528516
\(399\) 15.2834 11.1040i 0.765126 0.555897i
\(400\) 0.155144 0.477485i 0.00775721 0.0238742i
\(401\) −11.7549 36.1779i −0.587012 1.80664i −0.591037 0.806644i \(-0.701281\pi\)
0.00402560 0.999992i \(-0.498719\pi\)
\(402\) 28.3195 1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) 5.70327 + 17.5529i 0.283398 + 0.872209i
\(406\) 0.147280 0.453280i 0.00730937 0.0224959i
\(407\) −5.00324 + 3.63507i −0.248001 + 0.180183i
\(408\) 34.0373 1.68510
\(409\) −0.498684 −0.0246583 −0.0123292 0.999924i \(-0.503925\pi\)
−0.0123292 + 0.999924i \(0.503925\pi\)
\(410\) −34.3937 + 24.9885i −1.69858 + 1.23409i
\(411\) −33.8944 24.6258i −1.67189 1.21470i
\(412\) −15.0322 10.9215i −0.740583 0.538065i
\(413\) 4.70441 + 14.4787i 0.231489 + 0.712450i
\(414\) −46.0521 + 33.4588i −2.26334 + 1.64441i
\(415\) 2.06169 + 6.34522i 0.101204 + 0.311475i
\(416\) −3.03544 + 9.34212i −0.148825 + 0.458035i
\(417\) 15.0988 + 10.9699i 0.739391 + 0.537199i
\(418\) 2.42636 7.46757i 0.118677 0.365251i
\(419\) 4.17482 12.8488i 0.203953 0.627704i −0.795801 0.605558i \(-0.792950\pi\)
0.999755 0.0221460i \(-0.00704986\pi\)
\(420\) 27.3721 + 19.8870i 1.33562 + 0.970387i
\(421\) −9.55329 + 29.4020i −0.465599 + 1.43297i 0.392628 + 0.919697i \(0.371566\pi\)
−0.858227 + 0.513269i \(0.828434\pi\)
\(422\) −13.2750 40.8561i −0.646215 1.98885i
\(423\) 22.5312 16.3699i 1.09551 0.795932i
\(424\) −5.41646 16.6702i −0.263047 0.809574i
\(425\) −4.40132 3.19774i −0.213495 0.155113i
\(426\) 16.1630 + 11.7431i 0.783102 + 0.568957i
\(427\) −10.1608 + 7.38225i −0.491715 + 0.357252i
\(428\) 6.06475 0.293151
\(429\) −3.53692 −0.170764
\(430\) −1.07506 + 0.781076i −0.0518439 + 0.0376668i
\(431\) −3.72514 + 11.4648i −0.179434 + 0.552240i −0.999808 0.0195869i \(-0.993765\pi\)
0.820375 + 0.571826i \(0.193765\pi\)
\(432\) 0.147801 + 0.454884i 0.00711108 + 0.0218856i
\(433\) 32.3919 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) 12.0875 + 37.2013i 0.578884 + 1.78162i
\(437\) −10.2024 + 31.3997i −0.488046 + 1.50205i
\(438\) 12.7787 9.28426i 0.610589 0.443619i
\(439\) 12.3682 0.590300 0.295150 0.955451i \(-0.404630\pi\)
0.295150 + 0.955451i \(0.404630\pi\)
\(440\) 5.60303 0.267114
\(441\) 12.4311 9.03175i 0.591959 0.430083i
\(442\) −15.5001 11.2615i −0.737267 0.535656i
\(443\) 3.82132 + 2.77635i 0.181556 + 0.131908i 0.674851 0.737954i \(-0.264208\pi\)
−0.493295 + 0.869862i \(0.664208\pi\)
\(444\) −22.0207 67.7729i −1.04506 3.21636i
\(445\) 4.45612 3.23756i 0.211240 0.153475i
\(446\) −4.43167 13.6393i −0.209845 0.645838i
\(447\) −4.99885 + 15.3849i −0.236438 + 0.727680i
\(448\) 16.5406 + 12.0175i 0.781472 + 0.567773i
\(449\) 4.93939 15.2019i 0.233104 0.717421i −0.764263 0.644905i \(-0.776897\pi\)
0.997367 0.0725162i \(-0.0231029\pi\)
\(450\) 3.06983 9.44797i 0.144713 0.445381i
\(451\) −4.37676 3.17990i −0.206093 0.149736i
\(452\) 11.3572 34.9540i 0.534199 1.64410i
\(453\) 4.34103 + 13.3603i 0.203959 + 0.627723i
\(454\) 24.3580 17.6971i 1.14318 0.830567i
\(455\) −2.34486 7.21674i −0.109929 0.338326i
\(456\) 29.1640 + 21.1889i 1.36573 + 0.992262i
\(457\) 3.68730 + 2.67898i 0.172484 + 0.125317i 0.670678 0.741748i \(-0.266003\pi\)
−0.498194 + 0.867066i \(0.666003\pi\)
\(458\) 28.5213 20.7219i 1.33271 0.968272i
\(459\) 5.18283 0.241914
\(460\) −59.1301 −2.75695
\(461\) −13.7460 + 9.98705i −0.640215 + 0.465143i −0.859924 0.510422i \(-0.829489\pi\)
0.219709 + 0.975565i \(0.429489\pi\)
\(462\) −2.13084 + 6.55805i −0.0991356 + 0.305108i
\(463\) −8.47567 26.0854i −0.393898 1.21229i −0.929816 0.368024i \(-0.880035\pi\)
0.535918 0.844270i \(-0.319965\pi\)
\(464\) 0.0521088 0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −7.07973 21.7892i −0.327611 1.00828i −0.970248 0.242112i \(-0.922160\pi\)
0.642637 0.766171i \(-0.277840\pi\)
\(468\) 6.75031 20.7753i 0.312033 0.960340i
\(469\) −6.25499 + 4.54452i −0.288829 + 0.209846i
\(470\) 46.3327 2.13717
\(471\) 20.3277 0.936653
\(472\) −23.5022 + 17.0754i −1.08178 + 0.785957i
\(473\) −0.136806 0.0993955i −0.00629036 0.00457021i
\(474\) 21.4934 + 15.6159i 0.987224 + 0.717260i
\(475\) −1.78050 5.47981i −0.0816949 0.251431i
\(476\) −18.8684 + 13.7087i −0.864833 + 0.628338i
\(477\) −6.14069 18.8991i −0.281163 0.865330i
\(478\) 16.7158 51.4460i 0.764564 2.35309i
\(479\) −7.31922 5.31772i −0.334424 0.242973i 0.407882 0.913035i \(-0.366268\pi\)
−0.742305 + 0.670062i \(0.766268\pi\)
\(480\) 10.1709 31.3029i 0.464237 1.42877i
\(481\) −4.93874 + 15.1999i −0.225187 + 0.693054i
\(482\) 46.1332 + 33.5177i 2.10131 + 1.52669i
\(483\) 8.95978 27.5754i 0.407684 1.25472i
\(484\) −10.7482 33.0796i −0.488555 1.50362i
\(485\) 24.8415 18.0484i 1.12799 0.819535i
\(486\) −15.9254 49.0132i −0.722389 2.22328i
\(487\) −19.1111 13.8851i −0.866008 0.629192i 0.0635046 0.997982i \(-0.479772\pi\)
−0.929513 + 0.368790i \(0.879772\pi\)
\(488\) −19.3890 14.0869i −0.877699 0.637686i
\(489\) 35.1054 25.5055i 1.58752 1.15340i
\(490\) 25.5631 1.15482
\(491\) −9.22692 −0.416405 −0.208202 0.978086i \(-0.566761\pi\)
−0.208202 + 0.978086i \(0.566761\pi\)
\(492\) 50.4323 36.6412i 2.27366 1.65191i
\(493\) 0.174488 0.537019i 0.00785854 0.0241861i
\(494\) −6.27040 19.2983i −0.282119 0.868271i
\(495\) 6.35220 0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) −4.84168 14.9012i −0.216961 0.667737i
\(499\) −8.78039 + 27.0233i −0.393064 + 1.20973i 0.537394 + 0.843331i \(0.319409\pi\)
−0.930459 + 0.366397i \(0.880591\pi\)
\(500\) −25.2524 + 18.3469i −1.12932 + 0.820499i
\(501\) 61.9718 2.76870
\(502\) 53.5211 2.38876
\(503\) −14.7873 + 10.7436i −0.659332 + 0.479033i −0.866437 0.499286i \(-0.833596\pi\)
0.207105 + 0.978319i \(0.433596\pi\)
\(504\) −13.7279 9.97390i −0.611489 0.444273i
\(505\) 14.8450 + 10.7856i 0.660596 + 0.479951i
\(506\) −3.72399 11.4613i −0.165551 0.509515i
\(507\) 19.3477 14.0569i 0.859260 0.624289i
\(508\) 1.32227 + 4.06954i 0.0586665 + 0.180557i
\(509\) −3.20956 + 9.87801i −0.142261 + 0.437835i −0.996649 0.0818015i \(-0.973933\pi\)
0.854387 + 0.519637i \(0.173933\pi\)
\(510\) 51.9367 + 37.7342i 2.29980 + 1.67090i
\(511\) −1.33258 + 4.10127i −0.0589500 + 0.181429i
\(512\) −1.41050 + 4.34106i −0.0623357 + 0.191849i
\(513\) 4.44078 + 3.22641i 0.196065 + 0.142450i
\(514\) 10.9428 33.6784i 0.482665 1.48549i
\(515\) −4.31489 13.2799i −0.190137 0.585180i
\(516\) 1.57638 1.14531i 0.0693964 0.0504195i
\(517\) 1.82198 + 5.60748i 0.0801306 + 0.246617i
\(518\) 25.2078 + 18.3145i 1.10757 + 0.804694i
\(519\) −18.4597 13.4117i −0.810289 0.588710i
\(520\) 11.7144 8.51101i 0.513711 0.373233i
\(521\) 9.25044 0.405269 0.202635 0.979254i \(-0.435050\pi\)
0.202635 + 0.979254i \(0.435050\pi\)
\(522\) 1.03107 0.0451289
\(523\) −5.31942 + 3.86478i −0.232602 + 0.168995i −0.697981 0.716116i \(-0.745918\pi\)
0.465379 + 0.885111i \(0.345918\pi\)
\(524\) −8.23997 + 25.3600i −0.359965 + 1.10786i
\(525\) 1.56364 + 4.81240i 0.0682429 + 0.210030i
\(526\) 15.7047 0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) 8.55127 + 26.3181i 0.371794 + 1.14427i
\(530\) 10.2159 31.4413i 0.443751 1.36572i
\(531\) −26.6447 + 19.3585i −1.15628 + 0.840086i
\(532\) −24.7009 −1.07092
\(533\) −13.9809 −0.605579
\(534\) −10.4648 + 7.60312i −0.452856 + 0.329019i
\(535\) 3.68717 + 2.67888i 0.159410 + 0.115818i
\(536\) −11.9359 8.67193i −0.515552 0.374570i
\(537\) 8.87147 + 27.3036i 0.382832 + 1.17824i
\(538\) 19.6384 14.2681i 0.846670 0.615142i
\(539\) 1.00524 + 3.09381i 0.0432987 + 0.133260i
\(540\) −3.03789 + 9.34967i −0.130730 + 0.402346i
\(541\) 1.78249 + 1.29505i 0.0766351 + 0.0556787i 0.625443 0.780270i \(-0.284918\pi\)
−0.548808 + 0.835948i \(0.684918\pi\)
\(542\) 1.12460 3.46117i 0.0483058 0.148670i
\(543\) 11.7398 36.1315i 0.503805 1.55055i
\(544\) 18.3554 + 13.3359i 0.786979 + 0.571774i
\(545\) −9.08358 + 27.9564i −0.389098 + 1.19752i
\(546\) 5.50669 + 16.9478i 0.235665 + 0.725301i
\(547\) 3.93461 2.85866i 0.168232 0.122228i −0.500484 0.865746i \(-0.666844\pi\)
0.668715 + 0.743518i \(0.266844\pi\)
\(548\) 16.9279 + 52.0988i 0.723125 + 2.22555i
\(549\) −21.9815 15.9705i −0.938147 0.681604i
\(550\) 1.70147 + 1.23619i 0.0725508 + 0.0527112i
\(551\) 0.483810 0.351509i 0.0206110 0.0149748i
\(552\) 55.3277 2.35491
\(553\) −7.25322 −0.308438
\(554\) 22.5911 16.4134i 0.959806 0.697340i
\(555\) 16.5483 50.9306i 0.702438 2.16188i
\(556\) −7.54080 23.2082i −0.319801 0.984247i
\(557\) −11.0363 −0.467623 −0.233811 0.972282i \(-0.575120\pi\)
−0.233811 + 0.972282i \(0.575120\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) −0.499817 1.53828i −0.0211211 0.0650041i
\(561\) −2.52449 + 7.76957i −0.106584 + 0.328032i
\(562\) 40.0859 29.1241i 1.69092 1.22853i
\(563\) −11.1924 −0.471704 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(564\) −67.9387 −2.86074
\(565\) 22.3445 16.2342i 0.940040 0.682979i
\(566\) 1.28588 + 0.934249i 0.0540497 + 0.0392694i
\(567\) 9.57319 + 6.95533i 0.402036 + 0.292096i
\(568\) −3.21632 9.89881i −0.134954 0.415345i
\(569\) −37.9607 + 27.5800i −1.59139 + 1.15622i −0.689477 + 0.724308i \(0.742160\pi\)
−0.901918 + 0.431908i \(0.857840\pi\)
\(570\) 21.0104 + 64.6633i 0.880028 + 2.70845i
\(571\) 6.32238 19.4583i 0.264584 0.814304i −0.727206 0.686420i \(-0.759181\pi\)
0.991789 0.127885i \(-0.0408187\pi\)
\(572\) 3.74139 + 2.71828i 0.156435 + 0.113657i
\(573\) 1.77651 5.46755i 0.0742149 0.228410i
\(574\) −8.42288 + 25.9230i −0.351564 + 1.08200i
\(575\) −7.15435 5.19794i −0.298357 0.216769i
\(576\) −13.6681 + 42.0659i −0.569502 + 1.75275i
\(577\) 1.12740 + 3.46978i 0.0469343 + 0.144449i 0.971777 0.235900i \(-0.0758038\pi\)
−0.924843 + 0.380349i \(0.875804\pi\)
\(578\) −4.06547 + 2.95374i −0.169101 + 0.122859i
\(579\) 20.1656 + 62.0632i 0.838052 + 2.57926i
\(580\) 0.866491 + 0.629543i 0.0359791 + 0.0261403i
\(581\) 3.46063 + 2.51430i 0.143571 + 0.104311i
\(582\) −58.3379 + 42.3850i −2.41818 + 1.75691i
\(583\) 4.20696 0.174235
\(584\) −8.22887 −0.340513
\(585\) 13.2807 9.64901i 0.549090 0.398938i
\(586\) 6.42606 19.7774i 0.265458 0.816995i
\(587\) 7.06802 + 21.7531i 0.291729 + 0.897848i 0.984301 + 0.176500i \(0.0564774\pi\)
−0.692572 + 0.721349i \(0.743523\pi\)
\(588\) −37.4838 −1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) 4.86825 + 14.9829i 0.200253 + 0.616315i
\(592\) −1.05271 + 3.23992i −0.0432662 + 0.133160i
\(593\) 15.7433 11.4382i 0.646499 0.469709i −0.215578 0.976487i \(-0.569163\pi\)
0.862077 + 0.506778i \(0.169163\pi\)
\(594\) −2.00358 −0.0822081
\(595\) −17.5267 −0.718525
\(596\) 17.1118 12.4325i 0.700927 0.509254i
\(597\) −9.39960 6.82921i −0.384700 0.279501i
\(598\) −25.1955 18.3056i −1.03032 0.748572i
\(599\) 10.8687 + 33.4504i 0.444083 + 1.36675i 0.883486 + 0.468457i \(0.155190\pi\)
−0.439403 + 0.898290i \(0.644810\pi\)
\(600\) −7.81161 + 5.67547i −0.318908 + 0.231700i
\(601\) −1.81951 5.59988i −0.0742194 0.228424i 0.907064 0.420992i \(-0.138318\pi\)
−0.981283 + 0.192569i \(0.938318\pi\)
\(602\) −0.263278 + 0.810285i −0.0107304 + 0.0330248i
\(603\) −13.5318 9.83144i −0.551058 0.400367i
\(604\) 5.67602 17.4690i 0.230954 0.710803i
\(605\) 8.07716 24.8590i 0.328383 1.01066i
\(606\) −34.8622 25.3289i −1.41618 1.02892i
\(607\) 12.0161 36.9817i 0.487717 1.50104i −0.340289 0.940321i \(-0.610525\pi\)
0.828006 0.560719i \(-0.189475\pi\)
\(608\) 7.42544 + 22.8531i 0.301141 + 0.926817i
\(609\) −0.424884 + 0.308697i −0.0172172 + 0.0125090i
\(610\) −13.9682 42.9898i −0.565557 1.74061i
\(611\) 12.3270 + 8.95612i 0.498698 + 0.362326i
\(612\) −40.8193 29.6569i −1.65002 1.19881i
\(613\) −36.8931 + 26.8044i −1.49010 + 1.08262i −0.515975 + 0.856604i \(0.672570\pi\)
−0.974124 + 0.226016i \(0.927430\pi\)
\(614\) −72.3009 −2.91783
\(615\) 46.8461 1.88902
\(616\) 2.90628 2.11154i 0.117097 0.0850762i
\(617\) −2.04769 + 6.30216i −0.0824371 + 0.253715i −0.983777 0.179398i \(-0.942585\pi\)
0.901339 + 0.433113i \(0.142585\pi\)
\(618\) 10.1331 + 31.1865i 0.407614 + 1.25451i
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −12.6312 38.8748i −0.506465 1.55874i
\(623\) 1.09129 3.35864i 0.0437215 0.134561i
\(624\) −1.57622 + 1.14519i −0.0630992 + 0.0458443i
\(625\) −29.6682 −1.18673
\(626\) 50.0011 1.99845
\(627\) −6.99976 + 5.08562i −0.279543 + 0.203100i
\(628\) −21.5029 15.6228i −0.858060 0.623417i
\(629\) 29.8646 + 21.6979i 1.19078 + 0.865153i
\(630\) −9.88986 30.4378i −0.394021 1.21267i
\(631\) 9.01626 6.55070i 0.358932 0.260779i −0.393675 0.919250i \(-0.628796\pi\)
0.752606 + 0.658471i \(0.228796\pi\)
\(632\) −4.27702 13.1633i −0.170131 0.523608i
\(633\) −14.6280 + 45.0205i −0.581412 + 1.78940i
\(634\) −1.89678 1.37809i −0.0753309 0.0547311i
\(635\) −0.993675 + 3.05822i −0.0394328 + 0.121362i
\(636\) −14.9798 + 46.1032i −0.593989 + 1.82811i
\(637\) 6.80119 + 4.94135i 0.269473 + 0.195783i
\(638\) −0.0674538 + 0.207601i −0.00267052 + 0.00821902i
\(639\) −3.64637 11.2224i −0.144248 0.443950i
\(640\) −38.5865 + 28.0347i −1.52527 + 1.10817i
\(641\) −5.42427 16.6942i −0.214246 0.659381i −0.999206 0.0398348i \(-0.987317\pi\)
0.784961 0.619546i \(-0.212683\pi\)
\(642\) −8.65898 6.29111i −0.341743 0.248290i
\(643\) −1.77664 1.29081i −0.0700640 0.0509044i 0.552202 0.833710i \(-0.313788\pi\)
−0.622266 + 0.782806i \(0.713788\pi\)
\(644\) −30.6707 + 22.2835i −1.20859 + 0.878095i
\(645\) 1.46429 0.0576563
\(646\) −46.8682 −1.84401
\(647\) −26.2482 + 19.0704i −1.03192 + 0.749737i −0.968693 0.248262i \(-0.920140\pi\)
−0.0632310 + 0.997999i \(0.520140\pi\)
\(648\) −6.97765 + 21.4750i −0.274108 + 0.843618i
\(649\) −2.15461 6.63121i −0.0845759 0.260298i
\(650\) 5.43508 0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) 5.09568 + 15.6829i 0.199409 + 0.613719i 0.999897 + 0.0143694i \(0.00457408\pi\)
−0.800487 + 0.599350i \(0.795426\pi\)
\(654\) 21.3320 65.6530i 0.834146 2.56724i
\(655\) −16.2115 + 11.7784i −0.633436 + 0.460218i
\(656\) −2.98009 −0.116353
\(657\) −9.32914 −0.363964
\(658\) 24.0327 17.4608i 0.936891 0.680691i
\(659\) 15.9711 + 11.6037i 0.622147 + 0.452016i 0.853671 0.520813i \(-0.174371\pi\)
−0.231524 + 0.972829i \(0.574371\pi\)
\(660\) −12.5364 9.10821i −0.487978 0.354536i
\(661\) 3.64047 + 11.2042i 0.141598 + 0.435794i 0.996558 0.0829005i \(-0.0264184\pi\)
−0.854960 + 0.518694i \(0.826418\pi\)
\(662\) 49.8246 36.1997i 1.93649 1.40694i
\(663\) 6.52399 + 20.0788i 0.253371 + 0.779795i
\(664\) −2.52237 + 7.76304i −0.0978868 + 0.301265i
\(665\) −15.0173 10.9107i −0.582347 0.423100i
\(666\) −20.8300 + 64.1081i −0.807145 + 2.48414i
\(667\) 0.283630 0.872925i 0.0109822 0.0337998i
\(668\) −65.5545 47.6281i −2.53638 1.84279i
\(669\) −4.88337 + 15.0295i −0.188802 + 0.581073i
\(670\) −8.59886 26.4646i −0.332203 1.02242i
\(671\) 4.65362 3.38105i 0.179651 0.130524i
\(672\) −6.52105 20.0697i −0.251555 0.774207i
\(673\) 40.7600 + 29.6139i 1.57118 + 1.14153i 0.926013 + 0.377490i \(0.123213\pi\)
0.645169 + 0.764040i \(0.276787\pi\)
\(674\) 59.6294 + 43.3233i 2.29684 + 1.66875i
\(675\) −1.18947 + 0.864197i −0.0457826 + 0.0332630i
\(676\) −31.2695 −1.20267
\(677\) 3.97995 0.152962 0.0764810 0.997071i \(-0.475632\pi\)
0.0764810 + 0.997071i \(0.475632\pi\)
\(678\) −52.4740 + 38.1246i −2.01525 + 1.46417i
\(679\) 6.08358 18.7233i 0.233466 0.718535i
\(680\) −10.3350 31.8079i −0.396330 1.21978i
\(681\) −33.1770 −1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) −16.5129 50.8216i −0.631388 1.94321i
\(685\) −12.7211 + 39.1517i −0.486050 + 1.49591i
\(686\) 34.1926 24.8423i 1.30548 0.948485i
\(687\) −38.8476 −1.48213
\(688\) −0.0931499 −0.00355130
\(689\) 8.79561 6.39039i 0.335086 0.243454i
\(690\) 84.4233 + 61.3371i 3.21394 + 2.33506i
\(691\) −7.43934 5.40500i −0.283006 0.205616i 0.437222 0.899354i \(-0.355963\pi\)
−0.720227 + 0.693738i \(0.755963\pi\)
\(692\) 9.21932 + 28.3742i 0.350466 + 1.07862i
\(693\) 3.29488 2.39387i 0.125162 0.0909355i
\(694\) −2.22570 6.84999i −0.0844863 0.260022i
\(695\) 5.66683 17.4407i 0.214955 0.661564i
\(696\) −0.810772 0.589060i −0.0307322 0.0223283i
\(697\) −9.97891 + 30.7119i −0.377978 + 1.16330i
\(698\) −15.7063 + 48.3390i −0.594492 + 1.82966i
\(699\) −26.8684 19.5210i −1.01626 0.738353i
\(700\) 2.04450 6.29234i 0.0772750 0.237828i
\(701\) −12.5320 38.5694i −0.473326 1.45675i −0.848202 0.529673i \(-0.822315\pi\)
0.374876 0.927075i \(-0.377685\pi\)
\(702\) −4.18895 + 3.04345i −0.158102 + 0.114868i
\(703\) 12.0814 + 37.1826i 0.455657 + 1.40237i
\(704\) −7.57558 5.50398i −0.285515 0.207439i
\(705\) −41.3045 30.0095i −1.55562 1.13022i
\(706\) 9.20793 6.68995i 0.346545 0.251780i
\(707\) 11.7647 0.442457
\(708\) 80.3420 3.01944
\(709\) −30.1651 + 21.9162i −1.13287 + 0.823080i −0.986110 0.166092i \(-0.946885\pi\)
−0.146762 + 0.989172i \(0.546885\pi\)
\(710\) 6.06626 18.6700i 0.227663 0.700673i
\(711\) −4.84889 14.9234i −0.181848 0.559670i
\(712\) 6.73883 0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) 1.07394 + 3.30525i 0.0401631 + 0.123609i
\(716\) 11.5997 35.7001i 0.433500 1.33418i
\(717\) −48.2232 + 35.0362i −1.80093 + 1.30845i
\(718\) −0.832694 −0.0310759
\(719\) 18.5799 0.692912 0.346456 0.938066i \(-0.387385\pi\)
0.346456 + 0.938066i \(0.387385\pi\)
\(720\) 2.83084 2.05673i 0.105499 0.0766497i
\(721\) −7.24272 5.26215i −0.269733 0.195973i
\(722\) −4.68814 3.40613i −0.174475 0.126763i
\(723\) −19.4174 59.7606i −0.722141 2.22252i
\(724\) −40.1873 + 29.1978i −1.49355 + 1.08513i
\(725\) 0.0494986 + 0.152341i 0.00183833 + 0.00565780i
\(726\) −18.9685 + 58.3790i −0.703986 + 2.16665i
\(727\) −13.2494 9.62626i −0.491394 0.357018i 0.314326 0.949315i \(-0.398221\pi\)
−0.805720 + 0.592297i \(0.798221\pi\)
\(728\) 2.86881 8.82930i 0.106325 0.327236i
\(729\) −10.7004 + 32.9325i −0.396312 + 1.21972i
\(730\) −12.5562 9.12263i −0.464727 0.337644i
\(731\) −0.311915 + 0.959976i −0.0115366 + 0.0355060i
\(732\) 20.4820 + 63.0370i 0.757035 + 2.32992i
\(733\) 0.931452 0.676740i 0.0344040 0.0249959i −0.570450 0.821332i \(-0.693231\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(734\) 20.9548 + 64.4922i 0.773455 + 2.38045i
\(735\) −22.7889 16.5571i −0.840581 0.610718i
\(736\) 29.8367 + 21.6776i 1.09979 + 0.799047i
\(737\) 2.86477 2.08138i 0.105525 0.0766685i
\(738\) −58.9668 −2.17060
\(739\) 20.7158 0.762043 0.381022 0.924566i \(-0.375572\pi\)
0.381022 + 0.924566i \(0.375572\pi\)
\(740\) −56.6474 + 41.1568i −2.08240 + 1.51295i
\(741\) −6.90951 + 21.2653i −0.253827 + 0.781200i
\(742\) −6.54990 20.1585i −0.240454 0.740042i
\(743\) 35.2367 1.29271 0.646354 0.763038i \(-0.276293\pi\)
0.646354 + 0.763038i \(0.276293\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) 12.6415 + 38.9065i 0.462838 + 1.42447i
\(747\) −2.85963 + 8.80103i −0.104628 + 0.322013i
\(748\) 8.64170 6.27856i 0.315972 0.229567i
\(749\) 2.92208 0.106771
\(750\) 55.0859 2.01145
\(751\) 34.9057 25.3605i 1.27373 0.925418i 0.274384 0.961620i \(-0.411526\pi\)
0.999344 + 0.0362024i \(0.0115261\pi\)
\(752\) 2.62756 + 1.90903i 0.0958173 + 0.0696153i
\(753\) −47.7128 34.6654i −1.73875 1.26328i
\(754\) 0.174320 + 0.536500i 0.00634834 + 0.0195382i
\(755\) 11.1671 8.11339i 0.406413 0.295277i
\(756\) 1.94773 + 5.99451i 0.0708384 + 0.218018i
\(757\) 8.44808 26.0005i 0.307051 0.945005i −0.671853 0.740684i \(-0.734501\pi\)
0.978904 0.204321i \(-0.0654986\pi\)
\(758\) 4.59318 + 3.33714i 0.166832 + 0.121210i
\(759\) −4.10356 + 12.6295i −0.148950 + 0.458420i
\(760\) 10.9457 33.6875i 0.397044 1.22198i
\(761\) 13.9086 + 10.1052i 0.504186 + 0.366312i 0.810614 0.585581i \(-0.199134\pi\)
−0.306428 + 0.951894i \(0.599134\pi\)
\(762\) 2.33355 7.18194i 0.0845357 0.260174i
\(763\) 5.82391 + 17.9241i 0.210840 + 0.648898i
\(764\) −6.08127 + 4.41830i −0.220013 + 0.159849i
\(765\) −11.7169 36.0609i −0.423625 1.30378i
\(766\) −35.6899 25.9302i −1.28953 0.936896i
\(767\) −14.5775 10.5912i −0.526364 0.382426i
\(768\) 38.1057 27.6854i 1.37502 0.999011i
\(769\) 14.0567 0.506899 0.253450 0.967349i \(-0.418435\pi\)
0.253450 + 0.967349i \(0.418435\pi\)
\(770\) 6.77550 0.244172
\(771\) −31.5686 + 22.9359i −1.13691 + 0.826017i
\(772\) 26.3670 81.1493i 0.948969 2.92063i
\(773\) 6.87156 + 21.1485i 0.247153 + 0.760658i 0.995275 + 0.0970970i \(0.0309557\pi\)
−0.748122 + 0.663561i \(0.769044\pi\)
\(774\) −1.84315 −0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −10.6099 32.6539i −0.380628 1.17145i
\(778\) −3.75861 + 11.5678i −0.134753 + 0.414726i
\(779\) −27.6690 + 20.1027i −0.991343 + 0.720253i
\(780\) −40.0455 −1.43386
\(781\) 2.49811 0.0893895
\(782\) −58.1955 + 42.2815i −2.08107 + 1.51198i
\(783\) −0.123455 0.0896956i −0.00441193 0.00320546i
\(784\) 1.44970 + 1.05327i 0.0517751 + 0.0376168i
\(785\) −6.17227 18.9963i −0.220298 0.678006i
\(786\) 38.0712 27.6604i 1.35796 0.986613i
\(787\) −9.89899 30.4660i −0.352861 1.08599i −0.957239 0.289297i \(-0.906578\pi\)
0.604378 0.796697i \(-0.293422\pi\)
\(788\) 6.36536 19.5906i 0.226757 0.697885i
\(789\) −14.0004 10.1719i −0.498428 0.362129i
\(790\) 8.06682 24.8271i 0.287005 0.883310i
\(791\) 5.47208 16.8413i 0.194565 0.598809i
\(792\) 6.28734 + 4.56802i 0.223411 + 0.162318i
\(793\) 4.59362 14.1377i 0.163124 0.502045i
\(794\) 12.0690 + 37.1445i 0.428312 + 1.31821i
\(795\) −29.4717 + 21.4124i −1.04525 + 0.759421i
\(796\) 4.69445 + 14.4480i 0.166390 + 0.512097i
\(797\) 21.0743 + 15.3114i 0.746490 + 0.542357i 0.894737 0.446594i \(-0.147363\pi\)
−0.148247 + 0.988950i \(0.547363\pi\)
\(798\) 35.2668 + 25.6228i 1.24843 + 0.907039i
\(799\) 28.4724 20.6864i 1.00728 0.731833i
\(800\) −6.43625 −0.227556
\(801\) 7.63987 0.269942
\(802\) 71.0135 51.5943i 2.50757 1.82186i
\(803\) 0.610320 1.87837i 0.0215377 0.0662863i
\(804\) 12.6087 + 38.8056i 0.444675 + 1.36857i
\(805\) −28.4897 −1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) 6.93732 + 21.3509i 0.244054 + 0.751121i
\(809\) 2.69754 8.30217i 0.0948404 0.291889i −0.892372 0.451301i \(-0.850960\pi\)
0.987212 + 0.159413i \(0.0509600\pi\)
\(810\) −34.4545 + 25.0327i −1.21061 + 0.879559i
\(811\) −50.0784 −1.75849 −0.879245 0.476369i \(-0.841953\pi\)
−0.879245 + 0.476369i \(0.841953\pi\)
\(812\) 0.686695 0.0240983
\(813\) −3.24434 + 2.35715i −0.113784 + 0.0826690i
\(814\) −11.5451 8.38801i −0.404656 0.294000i
\(815\) −34.4942 25.0615i −1.20828 0.877867i
\(816\) 1.39062 + 4.27988i 0.0486813 + 0.149826i
\(817\) −0.864861 + 0.628358i −0.0302576 + 0.0219835i
\(818\) −0.355594 1.09441i −0.0124330 0.0382650i
\(819\) 3.25240 10.0099i 0.113648 0.349773i
\(820\) −49.5543 36.0033i −1.73051 1.25729i
\(821\) 15.6928 48.2976i 0.547684 1.68560i −0.166839 0.985984i \(-0.553356\pi\)
0.714522 0.699613i \(-0.246644\pi\)
\(822\) 29.8745 91.9441i 1.04199 3.20692i
\(823\) −5.12043 3.72021i −0.178487 0.129678i 0.494955 0.868919i \(-0.335185\pi\)
−0.673442 + 0.739240i \(0.735185\pi\)
\(824\) 5.27904 16.2472i 0.183904 0.565998i
\(825\) −0.716145 2.20407i −0.0249330 0.0767357i
\(826\) −28.4202 + 20.6485i −0.988866 + 0.718453i
\(827\) −1.14258 3.51649i −0.0397312 0.122280i 0.929224 0.369518i \(-0.120477\pi\)
−0.968955 + 0.247238i \(0.920477\pi\)
\(828\) −66.3518 48.2074i −2.30588 1.67532i
\(829\) 21.0681 + 15.3068i 0.731724 + 0.531629i 0.890108 0.455749i \(-0.150628\pi\)
−0.158384 + 0.987378i \(0.550628\pi\)
\(830\) −12.4550 + 9.04911i −0.432320 + 0.314099i
\(831\) −30.7704 −1.06741
\(832\) −24.1990 −0.838951
\(833\) 15.7091 11.4133i 0.544287 0.395448i
\(834\) −13.3080 + 40.9579i −0.460819 + 1.41826i
\(835\) −18.8170 57.9127i −0.651188 2.00415i
\(836\) 11.3130 0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) 2.31546 + 7.12626i 0.0799387 + 0.246026i 0.983037 0.183408i \(-0.0587130\pi\)
−0.903098 + 0.429434i \(0.858713\pi\)
\(840\) −9.61260 + 29.5846i −0.331666 + 1.02076i
\(841\) 23.4480 17.0360i 0.808553 0.587448i
\(842\) −71.3374 −2.45845
\(843\) −54.5992 −1.88050
\(844\) 50.0739 36.3809i 1.72362 1.25228i
\(845\) −19.0108 13.8122i −0.653993 0.475154i
\(846\) 51.9914 + 37.7740i 1.78750 + 1.29870i
\(847\) −5.17865 15.9382i −0.177940 0.547644i
\(848\) 1.87482 1.36214i 0.0643817 0.0467760i
\(849\) −0.541226 1.66572i −0.0185748 0.0571675i
\(850\) 3.87931 11.9393i 0.133059 0.409514i
\(851\) 48.5450 + 35.2700i 1.66410 + 1.20904i
\(852\) −8.89510 + 27.3763i −0.304741 + 0.937896i
\(853\) −13.4691 + 41.4536i −0.461173 + 1.41935i 0.402559 + 0.915394i \(0.368121\pi\)
−0.863732 + 0.503951i \(0.831879\pi\)
\(854\) −23.4463 17.0347i −0.802316 0.582916i
\(855\) 12.4093 38.1919i 0.424389 1.30613i
\(856\) 1.72307 + 5.30306i 0.0588933 + 0.181255i
\(857\) −31.7319 + 23.0546i −1.08394 + 0.787529i −0.978366 0.206882i \(-0.933668\pi\)
−0.105575 + 0.994411i \(0.533668\pi\)
\(858\) −2.52205 7.76208i −0.0861014 0.264993i
\(859\) −14.7252 10.6985i −0.502416 0.365026i 0.307523 0.951541i \(-0.400500\pi\)
−0.809939 + 0.586514i \(0.800500\pi\)
\(860\) −1.54894 1.12537i −0.0528185 0.0383749i
\(861\) 24.2990 17.6543i 0.828108 0.601655i
\(862\) −27.8168 −0.947443
\(863\) −44.9477 −1.53004 −0.765018 0.644009i \(-0.777270\pi\)
−0.765018 + 0.644009i \(0.777270\pi\)
\(864\) 4.96057 3.60407i 0.168762 0.122613i
\(865\) −6.92822 + 21.3229i −0.235566 + 0.724999i
\(866\) 23.0975 + 71.0868i 0.784885 + 2.41563i
\(867\) 5.53740 0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) −0.584097 1.79767i −0.0198027 0.0609466i
\(871\) 2.82784 8.70319i 0.0958176 0.294896i
\(872\) −29.0950 + 21.1387i −0.985280 + 0.715848i
\(873\) 42.5899 1.44145
\(874\) −76.1844 −2.57698
\(875\) −12.1669 + 8.83981i −0.411318 + 0.298840i
\(876\) 18.4115 + 13.3767i 0.622067 + 0.451958i
\(877\) 34.5054 + 25.0697i 1.16517 + 0.846542i 0.990422 0.138072i \(-0.0440905\pi\)
0.174743 + 0.984614i \(0.444090\pi\)
\(878\) 8.81930 + 27.1430i 0.297637 + 0.916032i
\(879\) −18.5384 + 13.4689i −0.625285 + 0.454296i
\(880\) 0.228915 + 0.704528i 0.00771673 + 0.0237496i
\(881\) 2.75536 8.48012i 0.0928303 0.285702i −0.893852 0.448362i \(-0.852007\pi\)
0.986682 + 0.162660i \(0.0520074\pi\)
\(882\) 28.6852 + 20.8410i 0.965881 + 0.701753i
\(883\) −14.5449 + 44.7647i −0.489475 + 1.50645i 0.335917 + 0.941892i \(0.390954\pi\)
−0.825393 + 0.564559i \(0.809046\pi\)
\(884\) 8.53029 26.2535i 0.286905 0.883002i
\(885\) 48.8453 + 35.4882i 1.64192 + 1.19292i
\(886\) −3.36810 + 10.3659i −0.113153 + 0.348250i
\(887\) 0.975433 + 3.00207i 0.0327518 + 0.100800i 0.966096 0.258183i \(-0.0831237\pi\)
−0.933344 + 0.358983i \(0.883124\pi\)
\(888\) 53.0048 38.5102i 1.77872 1.29232i
\(889\) 0.637091 + 1.96076i 0.0213673 + 0.0657619i
\(890\) 10.2826 + 7.47076i 0.344674 + 0.250421i
\(891\) −4.38450 3.18553i −0.146886 0.106719i
\(892\) 16.7165 12.1452i 0.559710 0.406653i
\(893\) 37.2736 1.24731
\(894\) −37.3280 −1.24843
\(895\) 22.8215 16.5808i 0.762838 0.554234i
\(896\) −9.44969 + 29.0832i −0.315692 + 0.971600i
\(897\) 10.6048 + 32.6381i 0.354082 + 1.08975i
\(898\) 36.8840 1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) −7.75991 23.8826i −0.258520 0.795643i
\(902\) 3.85766 11.8727i 0.128446 0.395316i
\(903\) 0.759524 0.551827i 0.0252754 0.0183636i
\(904\) 33.7908 1.12386
\(905\) −37.3296 −1.24088
\(906\) −26.2250 + 19.0536i −0.871266 + 0.633012i
\(907\) −21.8137 15.8486i −0.724311 0.526242i 0.163448 0.986552i \(-0.447738\pi\)
−0.887759 + 0.460309i \(0.847738\pi\)
\(908\) 35.0950 + 25.4980i 1.16467 + 0.846180i
\(909\) 7.86490 + 24.2057i 0.260862 + 0.802851i
\(910\) 14.1657 10.2920i 0.469589 0.341177i
\(911\) −1.56919 4.82948i −0.0519897 0.160008i 0.921691 0.387926i \(-0.126808\pi\)
−0.973680 + 0.227918i \(0.926808\pi\)
\(912\) −1.47279 + 4.53279i −0.0487690 + 0.150096i
\(913\) −1.58496 1.15154i −0.0524546 0.0381105i
\(914\) −3.24997 + 10.0024i −0.107500 + 0.330849i
\(915\) −15.3920 + 47.3716i −0.508843 + 1.56606i
\(916\) 41.0934 + 29.8561i 1.35776 + 0.986473i
\(917\) −3.97014 + 12.2188i −0.131105 + 0.403501i
\(918\) 3.69569 + 11.3742i 0.121976 + 0.375404i
\(919\) 39.8659 28.9643i 1.31505 0.955443i 0.315075 0.949067i \(-0.397970\pi\)
0.999980 0.00637645i \(-0.00202970\pi\)
\(920\) −16.7996 51.7038i −0.553866 1.70462i
\(921\) 64.4546 + 46.8290i 2.12385 + 1.54307i
\(922\) −31.7193 23.0454i −1.04462 0.758959i
\(923\) 5.22288 3.79464i 0.171913 0.124902i
\(924\) −9.93508 −0.326840
\(925\) −10.4719 −0.344315
\(926\) 51.2031 37.2012i 1.68264 1.22251i
\(927\) 5.98489 18.4196i 0.196570 0.604979i
\(928\) −0.206430 0.635327i −0.00677640 0.0208556i
\(929\) 39.9606 1.31107 0.655533 0.755167i \(-0.272444\pi\)
0.655533 + 0.755167i \(0.272444\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 13.4189 + 41.2991i 0.439551 + 1.35280i
\(933\) −13.9186 + 42.8372i −0.455676 + 1.40243i
\(934\) 42.7700 31.0742i 1.39948 1.01678i
\(935\) 8.02720 0.262517
\(936\) 20.0840 0.656465
\(937\) −36.4780 + 26.5028i −1.19168 + 0.865809i −0.993441 0.114343i \(-0.963524\pi\)
−0.198243 + 0.980153i \(0.563524\pi\)
\(938\) −14.4336 10.4866i −0.471272 0.342399i
\(939\) −44.5748 32.3855i −1.45464 1.05686i
\(940\) 20.6287 + 63.4887i 0.672835 + 2.07077i
\(941\) 40.6064 29.5023i 1.32373 0.961748i 0.323855 0.946107i \(-0.395021\pi\)
0.999878 0.0156409i \(-0.00497885\pi\)
\(942\) 14.4950 + 44.6110i 0.472273 + 1.45351i
\(943\) −16.2207 + 49.9223i −0.528220 + 1.62569i
\(944\) −3.10726 2.25756i −0.101133 0.0734773i
\(945\) −1.46370 + 4.50481i −0.0476142 + 0.146541i
\(946\) 0.120581 0.371109i 0.00392041 0.0120658i
\(947\) 24.5342 + 17.8251i 0.797255 + 0.579239i 0.910107 0.414372i \(-0.135999\pi\)
−0.112853 + 0.993612i \(0.535999\pi\)
\(948\) −11.8286 + 36.4046i −0.384174 + 1.18237i
\(949\) −1.57724 4.85424i −0.0511993 0.157575i
\(950\) 10.7563 7.81493i 0.348981 0.253550i
\(951\) 0.798353 + 2.45708i 0.0258884 + 0.0796762i
\(952\) −17.3478 12.6039i −0.562244 0.408494i
\(953\) −28.7019 20.8531i −0.929745 0.675499i 0.0161857 0.999869i \(-0.494848\pi\)
−0.945930 + 0.324370i \(0.894848\pi\)
\(954\) 37.0970 26.9526i 1.20106 0.872622i
\(955\) −5.64884 −0.182792
\(956\) 77.9379 2.52069
\(957\) 0.194596 0.141382i 0.00629040 0.00457024i
\(958\) 6.45114 19.8546i 0.208427 0.641472i
\(959\) 8.15612 + 25.1020i 0.263375 + 0.810584i
\(960\) 81.0843 2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) 1.95346 + 6.01213i 0.0629493 + 0.193738i
\(964\) −25.3888 + 78.1386i −0.817717 + 2.51667i
\(965\) 51.8751 37.6894i 1.66992 1.21327i
\(966\) 66.9055 2.15265
\(967\) 35.4443 1.13981 0.569906 0.821710i \(-0.306979\pi\)
0.569906 + 0.821710i \(0.306979\pi\)
\(968\) 25.8714 18.7967i 0.831537 0.604147i
\(969\) 41.7820 + 30.3564i 1.34223 + 0.975187i
\(970\) 57.3223 + 41.6471i 1.84051 + 1.33721i
\(971\) −12.3907 38.1347i −0.397637 1.22380i −0.926889 0.375337i \(-0.877527\pi\)
0.529251 0.848465i \(-0.322473\pi\)
\(972\) 60.0713 43.6444i 1.92679 1.39989i
\(973\) −3.63327 11.1820i −0.116477 0.358480i
\(974\) 16.8445 51.8420i 0.539732 1.66113i
\(975\) −4.84525 3.52028i −0.155172 0.112739i
\(976\) 0.979151 3.01352i 0.0313418 0.0964603i
\(977\) −11.9499 + 36.7782i −0.382313 + 1.17664i 0.556098 + 0.831117i \(0.312298\pi\)
−0.938411 + 0.345521i \(0.887702\pi\)
\(978\) 81.0065 + 58.8547i 2.59030 + 1.88197i
\(979\) −0.499807 + 1.53825i −0.0159739 + 0.0491626i
\(980\) 11.3815 + 35.0286i 0.363568 + 1.11895i
\(981\) −32.9852 + 23.9652i −1.05314 + 0.765149i
\(982\) −6.57939 20.2493i −0.209957 0.646181i
\(983\) −17.4583 12.6842i −0.556832 0.404562i 0.273466 0.961882i \(-0.411830\pi\)
−0.830298 + 0.557320i \(0.811830\pi\)
\(984\) 46.3678 + 33.6882i 1.47815 + 1.07394i
\(985\) 12.5234 9.09876i 0.399028 0.289911i
\(986\) 1.30296 0.0414946
\(987\) −32.7338 −1.04193
\(988\) 23.6523 17.1844i 0.752480 0.546709i
\(989\) −0.507019 + 1.56044i −0.0161223 + 0.0496192i
\(990\) 4.52953 + 13.9405i 0.143958 + 0.443057i
\(991\) −46.8764 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) −3.88936 11.9702i −0.123363 0.379672i
\(995\) −3.52783 + 10.8575i −0.111840 + 0.344207i
\(996\) 18.2631 13.2689i 0.578689 0.420442i
\(997\) 44.5389 1.41056 0.705281 0.708928i \(-0.250821\pi\)
0.705281 + 0.708928i \(0.250821\pi\)
\(998\) −65.5659 −2.07545
\(999\) 8.07098 5.86391i 0.255354 0.185526i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.q.531.4 16
31.2 even 5 961.2.d.n.388.1 16
31.3 odd 30 961.2.c.j.439.8 16
31.4 even 5 961.2.d.n.374.1 16
31.5 even 3 961.2.g.m.844.2 16
31.6 odd 6 961.2.g.t.547.2 16
31.7 even 15 961.2.g.j.816.1 16
31.8 even 5 inner 961.2.d.q.628.4 16
31.9 even 15 961.2.g.n.448.2 16
31.10 even 15 961.2.g.j.338.1 16
31.11 odd 30 31.2.g.a.19.1 yes 16
31.12 odd 30 31.2.g.a.18.1 16
31.13 odd 30 961.2.c.j.521.8 16
31.14 even 15 961.2.g.m.846.2 16
31.15 odd 10 961.2.a.i.1.8 8
31.16 even 5 961.2.a.j.1.8 8
31.17 odd 30 961.2.g.s.846.2 16
31.18 even 15 961.2.c.i.521.8 16
31.19 even 15 961.2.g.l.235.1 16
31.20 even 15 961.2.g.l.732.1 16
31.21 odd 30 961.2.g.k.338.1 16
31.22 odd 30 961.2.g.t.448.2 16
31.23 odd 10 961.2.d.p.628.4 16
31.24 odd 30 961.2.g.k.816.1 16
31.25 even 3 961.2.g.n.547.2 16
31.26 odd 6 961.2.g.s.844.2 16
31.27 odd 10 961.2.d.o.374.1 16
31.28 even 15 961.2.c.i.439.8 16
31.29 odd 10 961.2.d.o.388.1 16
31.30 odd 2 961.2.d.p.531.4 16
93.11 even 30 279.2.y.c.19.2 16
93.47 odd 10 8649.2.a.be.1.1 8
93.74 even 30 279.2.y.c.235.2 16
93.77 even 10 8649.2.a.bf.1.1 8
124.11 even 30 496.2.bg.c.81.2 16
124.43 even 30 496.2.bg.c.49.2 16
155.12 even 60 775.2.ck.a.49.1 32
155.42 even 60 775.2.ck.a.174.4 32
155.43 even 60 775.2.ck.a.49.4 32
155.73 even 60 775.2.ck.a.174.1 32
155.74 odd 30 775.2.bl.a.576.2 16
155.104 odd 30 775.2.bl.a.701.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.12 odd 30
31.2.g.a.19.1 yes 16 31.11 odd 30
279.2.y.c.19.2 16 93.11 even 30
279.2.y.c.235.2 16 93.74 even 30
496.2.bg.c.49.2 16 124.43 even 30
496.2.bg.c.81.2 16 124.11 even 30
775.2.bl.a.576.2 16 155.74 odd 30
775.2.bl.a.701.2 16 155.104 odd 30
775.2.ck.a.49.1 32 155.12 even 60
775.2.ck.a.49.4 32 155.43 even 60
775.2.ck.a.174.1 32 155.73 even 60
775.2.ck.a.174.4 32 155.42 even 60
961.2.a.i.1.8 8 31.15 odd 10
961.2.a.j.1.8 8 31.16 even 5
961.2.c.i.439.8 16 31.28 even 15
961.2.c.i.521.8 16 31.18 even 15
961.2.c.j.439.8 16 31.3 odd 30
961.2.c.j.521.8 16 31.13 odd 30
961.2.d.n.374.1 16 31.4 even 5
961.2.d.n.388.1 16 31.2 even 5
961.2.d.o.374.1 16 31.27 odd 10
961.2.d.o.388.1 16 31.29 odd 10
961.2.d.p.531.4 16 31.30 odd 2
961.2.d.p.628.4 16 31.23 odd 10
961.2.d.q.531.4 16 1.1 even 1 trivial
961.2.d.q.628.4 16 31.8 even 5 inner
961.2.g.j.338.1 16 31.10 even 15
961.2.g.j.816.1 16 31.7 even 15
961.2.g.k.338.1 16 31.21 odd 30
961.2.g.k.816.1 16 31.24 odd 30
961.2.g.l.235.1 16 31.19 even 15
961.2.g.l.732.1 16 31.20 even 15
961.2.g.m.844.2 16 31.5 even 3
961.2.g.m.846.2 16 31.14 even 15
961.2.g.n.448.2 16 31.9 even 15
961.2.g.n.547.2 16 31.25 even 3
961.2.g.s.844.2 16 31.26 odd 6
961.2.g.s.846.2 16 31.17 odd 30
961.2.g.t.448.2 16 31.22 odd 30
961.2.g.t.547.2 16 31.6 odd 6
8649.2.a.be.1.1 8 93.47 odd 10
8649.2.a.bf.1.1 8 93.77 even 10