Properties

Label 8649.2.a.be.1.1
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,8,-3,0,-2,9,0,-13,-18,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.11562\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30753 q^{2} +3.32468 q^{4} +2.49846 q^{5} +1.60188 q^{7} -3.05673 q^{8} -5.76526 q^{10} +0.733657 q^{11} +1.89598 q^{13} -3.69638 q^{14} +0.404135 q^{16} -4.37924 q^{17} -4.63803 q^{19} +8.30658 q^{20} -1.69293 q^{22} -7.11846 q^{23} +1.24230 q^{25} -4.37501 q^{26} +5.32573 q^{28} -0.128939 q^{29} +5.18091 q^{32} +10.1052 q^{34} +4.00223 q^{35} -8.42948 q^{37} +10.7024 q^{38} -7.63712 q^{40} +7.37398 q^{41} -0.230492 q^{43} +2.43917 q^{44} +16.4260 q^{46} +8.03652 q^{47} -4.43399 q^{49} -2.86664 q^{50} +6.30351 q^{52} +5.73424 q^{53} +1.83301 q^{55} -4.89652 q^{56} +0.297530 q^{58} -9.50372 q^{59} +7.84044 q^{61} -12.7634 q^{64} +4.73702 q^{65} +4.82658 q^{67} -14.5596 q^{68} -9.23525 q^{70} +3.40502 q^{71} -2.69205 q^{73} +19.4512 q^{74} -15.4200 q^{76} +1.17523 q^{77} -4.52794 q^{79} +1.00972 q^{80} -17.0157 q^{82} +2.67035 q^{83} -10.9414 q^{85} +0.531866 q^{86} -2.24259 q^{88} -2.20459 q^{89} +3.03712 q^{91} -23.6666 q^{92} -18.5445 q^{94} -11.5879 q^{95} +12.2899 q^{97} +10.2315 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 8 q^{4} - 3 q^{5} - 2 q^{7} + 9 q^{8} - 13 q^{10} - 18 q^{11} + 8 q^{13} + 9 q^{14} + 4 q^{16} - 14 q^{17} - 6 q^{19} + 7 q^{20} + 4 q^{22} - 22 q^{23} + 13 q^{25} - 9 q^{26} - 5 q^{28}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30753 −1.63167 −0.815834 0.578286i \(-0.803722\pi\)
−0.815834 + 0.578286i \(0.803722\pi\)
\(3\) 0 0
\(4\) 3.32468 1.66234
\(5\) 2.49846 1.11735 0.558673 0.829388i \(-0.311311\pi\)
0.558673 + 0.829388i \(0.311311\pi\)
\(6\) 0 0
\(7\) 1.60188 0.605453 0.302727 0.953077i \(-0.402103\pi\)
0.302727 + 0.953077i \(0.402103\pi\)
\(8\) −3.05673 −1.08072
\(9\) 0 0
\(10\) −5.76526 −1.82314
\(11\) 0.733657 0.221206 0.110603 0.993865i \(-0.464722\pi\)
0.110603 + 0.993865i \(0.464722\pi\)
\(12\) 0 0
\(13\) 1.89598 0.525849 0.262925 0.964816i \(-0.415313\pi\)
0.262925 + 0.964816i \(0.415313\pi\)
\(14\) −3.69638 −0.987898
\(15\) 0 0
\(16\) 0.404135 0.101034
\(17\) −4.37924 −1.06212 −0.531061 0.847334i \(-0.678206\pi\)
−0.531061 + 0.847334i \(0.678206\pi\)
\(18\) 0 0
\(19\) −4.63803 −1.06404 −0.532018 0.846733i \(-0.678566\pi\)
−0.532018 + 0.846733i \(0.678566\pi\)
\(20\) 8.30658 1.85741
\(21\) 0 0
\(22\) −1.69293 −0.360934
\(23\) −7.11846 −1.48430 −0.742151 0.670233i \(-0.766194\pi\)
−0.742151 + 0.670233i \(0.766194\pi\)
\(24\) 0 0
\(25\) 1.24230 0.248460
\(26\) −4.37501 −0.858011
\(27\) 0 0
\(28\) 5.32573 1.00647
\(29\) −0.128939 −0.0239434 −0.0119717 0.999928i \(-0.503811\pi\)
−0.0119717 + 0.999928i \(0.503811\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) 5.18091 0.915865
\(33\) 0 0
\(34\) 10.1052 1.73303
\(35\) 4.00223 0.676500
\(36\) 0 0
\(37\) −8.42948 −1.38580 −0.692899 0.721035i \(-0.743667\pi\)
−0.692899 + 0.721035i \(0.743667\pi\)
\(38\) 10.7024 1.73615
\(39\) 0 0
\(40\) −7.63712 −1.20754
\(41\) 7.37398 1.15162 0.575811 0.817583i \(-0.304686\pi\)
0.575811 + 0.817583i \(0.304686\pi\)
\(42\) 0 0
\(43\) −0.230492 −0.0351497 −0.0175748 0.999846i \(-0.505595\pi\)
−0.0175748 + 0.999846i \(0.505595\pi\)
\(44\) 2.43917 0.367719
\(45\) 0 0
\(46\) 16.4260 2.42189
\(47\) 8.03652 1.17225 0.586124 0.810222i \(-0.300653\pi\)
0.586124 + 0.810222i \(0.300653\pi\)
\(48\) 0 0
\(49\) −4.43399 −0.633427
\(50\) −2.86664 −0.405404
\(51\) 0 0
\(52\) 6.30351 0.874140
\(53\) 5.73424 0.787658 0.393829 0.919184i \(-0.371150\pi\)
0.393829 + 0.919184i \(0.371150\pi\)
\(54\) 0 0
\(55\) 1.83301 0.247163
\(56\) −4.89652 −0.654324
\(57\) 0 0
\(58\) 0.297530 0.0390676
\(59\) −9.50372 −1.23728 −0.618639 0.785675i \(-0.712316\pi\)
−0.618639 + 0.785675i \(0.712316\pi\)
\(60\) 0 0
\(61\) 7.84044 1.00387 0.501933 0.864907i \(-0.332623\pi\)
0.501933 + 0.864907i \(0.332623\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −12.7634 −1.59542
\(65\) 4.73702 0.587555
\(66\) 0 0
\(67\) 4.82658 0.589660 0.294830 0.955550i \(-0.404737\pi\)
0.294830 + 0.955550i \(0.404737\pi\)
\(68\) −14.5596 −1.76561
\(69\) 0 0
\(70\) −9.23525 −1.10382
\(71\) 3.40502 0.404101 0.202051 0.979375i \(-0.435239\pi\)
0.202051 + 0.979375i \(0.435239\pi\)
\(72\) 0 0
\(73\) −2.69205 −0.315080 −0.157540 0.987513i \(-0.550356\pi\)
−0.157540 + 0.987513i \(0.550356\pi\)
\(74\) 19.4512 2.26116
\(75\) 0 0
\(76\) −15.4200 −1.76879
\(77\) 1.17523 0.133930
\(78\) 0 0
\(79\) −4.52794 −0.509434 −0.254717 0.967016i \(-0.581982\pi\)
−0.254717 + 0.967016i \(0.581982\pi\)
\(80\) 1.00972 0.112890
\(81\) 0 0
\(82\) −17.0157 −1.87906
\(83\) 2.67035 0.293109 0.146554 0.989203i \(-0.453182\pi\)
0.146554 + 0.989203i \(0.453182\pi\)
\(84\) 0 0
\(85\) −10.9414 −1.18676
\(86\) 0.531866 0.0573526
\(87\) 0 0
\(88\) −2.24259 −0.239061
\(89\) −2.20459 −0.233686 −0.116843 0.993150i \(-0.537277\pi\)
−0.116843 + 0.993150i \(0.537277\pi\)
\(90\) 0 0
\(91\) 3.03712 0.318377
\(92\) −23.6666 −2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) −11.5879 −1.18890
\(96\) 0 0
\(97\) 12.2899 1.24785 0.623923 0.781485i \(-0.285538\pi\)
0.623923 + 0.781485i \(0.285538\pi\)
\(98\) 10.2315 1.03354
\(99\) 0 0
\(100\) 4.13025 0.413025
\(101\) −7.34432 −0.730787 −0.365394 0.930853i \(-0.619066\pi\)
−0.365394 + 0.930853i \(0.619066\pi\)
\(102\) 0 0
\(103\) 5.58875 0.550676 0.275338 0.961347i \(-0.411210\pi\)
0.275338 + 0.961347i \(0.411210\pi\)
\(104\) −5.79549 −0.568295
\(105\) 0 0
\(106\) −13.2319 −1.28520
\(107\) −1.82416 −0.176348 −0.0881741 0.996105i \(-0.528103\pi\)
−0.0881741 + 0.996105i \(0.528103\pi\)
\(108\) 0 0
\(109\) 11.7653 1.12691 0.563455 0.826147i \(-0.309472\pi\)
0.563455 + 0.826147i \(0.309472\pi\)
\(110\) −4.22972 −0.403288
\(111\) 0 0
\(112\) 0.647376 0.0611712
\(113\) −11.0545 −1.03992 −0.519962 0.854190i \(-0.674054\pi\)
−0.519962 + 0.854190i \(0.674054\pi\)
\(114\) 0 0
\(115\) −17.7852 −1.65848
\(116\) −0.428681 −0.0398020
\(117\) 0 0
\(118\) 21.9301 2.01883
\(119\) −7.01501 −0.643065
\(120\) 0 0
\(121\) −10.4617 −0.951068
\(122\) −18.0920 −1.63797
\(123\) 0 0
\(124\) 0 0
\(125\) −9.38846 −0.839730
\(126\) 0 0
\(127\) 1.28703 0.114206 0.0571028 0.998368i \(-0.481814\pi\)
0.0571028 + 0.998368i \(0.481814\pi\)
\(128\) 19.0900 1.68733
\(129\) 0 0
\(130\) −10.9308 −0.958694
\(131\) 8.02035 0.700742 0.350371 0.936611i \(-0.386056\pi\)
0.350371 + 0.936611i \(0.386056\pi\)
\(132\) 0 0
\(133\) −7.42955 −0.644224
\(134\) −11.1375 −0.962130
\(135\) 0 0
\(136\) 13.3862 1.14785
\(137\) −16.4768 −1.40770 −0.703852 0.710347i \(-0.748538\pi\)
−0.703852 + 0.710347i \(0.748538\pi\)
\(138\) 0 0
\(139\) −7.33982 −0.622555 −0.311278 0.950319i \(-0.600757\pi\)
−0.311278 + 0.950319i \(0.600757\pi\)
\(140\) 13.3061 1.12457
\(141\) 0 0
\(142\) −7.85717 −0.659359
\(143\) 1.39100 0.116321
\(144\) 0 0
\(145\) −0.322149 −0.0267530
\(146\) 6.21197 0.514106
\(147\) 0 0
\(148\) −28.0253 −2.30367
\(149\) 6.36193 0.521189 0.260595 0.965448i \(-0.416081\pi\)
0.260595 + 0.965448i \(0.416081\pi\)
\(150\) 0 0
\(151\) 5.52473 0.449596 0.224798 0.974405i \(-0.427828\pi\)
0.224798 + 0.974405i \(0.427828\pi\)
\(152\) 14.1772 1.14992
\(153\) 0 0
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 0 0
\(157\) 7.99448 0.638029 0.319014 0.947750i \(-0.396648\pi\)
0.319014 + 0.947750i \(0.396648\pi\)
\(158\) 10.4484 0.831226
\(159\) 0 0
\(160\) 12.9443 1.02334
\(161\) −11.4029 −0.898675
\(162\) 0 0
\(163\) −17.0654 −1.33667 −0.668333 0.743863i \(-0.732992\pi\)
−0.668333 + 0.743863i \(0.732992\pi\)
\(164\) 24.5161 1.91439
\(165\) 0 0
\(166\) −6.16190 −0.478256
\(167\) −24.3722 −1.88598 −0.942989 0.332824i \(-0.891999\pi\)
−0.942989 + 0.332824i \(0.891999\pi\)
\(168\) 0 0
\(169\) −9.40528 −0.723483
\(170\) 25.2475 1.93639
\(171\) 0 0
\(172\) −0.766311 −0.0584307
\(173\) −8.97360 −0.682250 −0.341125 0.940018i \(-0.610808\pi\)
−0.341125 + 0.940018i \(0.610808\pi\)
\(174\) 0 0
\(175\) 1.99001 0.150431
\(176\) 0.296497 0.0223493
\(177\) 0 0
\(178\) 5.08714 0.381297
\(179\) −11.2905 −0.843893 −0.421946 0.906621i \(-0.638653\pi\)
−0.421946 + 0.906621i \(0.638653\pi\)
\(180\) 0 0
\(181\) 14.9410 1.11056 0.555279 0.831664i \(-0.312611\pi\)
0.555279 + 0.831664i \(0.312611\pi\)
\(182\) −7.00824 −0.519485
\(183\) 0 0
\(184\) 21.7592 1.60411
\(185\) −21.0607 −1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) 26.7189 1.94867
\(189\) 0 0
\(190\) 26.7394 1.93988
\(191\) −2.26093 −0.163595 −0.0817975 0.996649i \(-0.526066\pi\)
−0.0817975 + 0.996649i \(0.526066\pi\)
\(192\) 0 0
\(193\) 25.6643 1.84735 0.923677 0.383173i \(-0.125169\pi\)
0.923677 + 0.383173i \(0.125169\pi\)
\(194\) −28.3592 −2.03607
\(195\) 0 0
\(196\) −14.7416 −1.05297
\(197\) −6.19571 −0.441426 −0.220713 0.975339i \(-0.570838\pi\)
−0.220713 + 0.975339i \(0.570838\pi\)
\(198\) 0 0
\(199\) 4.56933 0.323911 0.161956 0.986798i \(-0.448220\pi\)
0.161956 + 0.986798i \(0.448220\pi\)
\(200\) −3.79738 −0.268515
\(201\) 0 0
\(202\) 16.9472 1.19240
\(203\) −0.206545 −0.0144966
\(204\) 0 0
\(205\) 18.4236 1.28676
\(206\) −12.8962 −0.898520
\(207\) 0 0
\(208\) 0.766231 0.0531285
\(209\) −3.40272 −0.235371
\(210\) 0 0
\(211\) −18.6168 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(212\) 19.0645 1.30936
\(213\) 0 0
\(214\) 4.20930 0.287742
\(215\) −0.575874 −0.0392743
\(216\) 0 0
\(217\) 0 0
\(218\) −27.1487 −1.83874
\(219\) 0 0
\(220\) 6.09418 0.410869
\(221\) −8.30293 −0.558516
\(222\) 0 0
\(223\) −6.21495 −0.416184 −0.208092 0.978109i \(-0.566725\pi\)
−0.208092 + 0.978109i \(0.566725\pi\)
\(224\) 8.29919 0.554513
\(225\) 0 0
\(226\) 25.5086 1.69681
\(227\) 13.0478 0.866013 0.433006 0.901391i \(-0.357453\pi\)
0.433006 + 0.901391i \(0.357453\pi\)
\(228\) 0 0
\(229\) −15.2779 −1.00959 −0.504797 0.863238i \(-0.668433\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(230\) 41.0398 2.70608
\(231\) 0 0
\(232\) 0.394132 0.0258760
\(233\) −13.0613 −0.855671 −0.427836 0.903857i \(-0.640724\pi\)
−0.427836 + 0.903857i \(0.640724\pi\)
\(234\) 0 0
\(235\) 20.0789 1.30980
\(236\) −31.5968 −2.05678
\(237\) 0 0
\(238\) 16.1873 1.04927
\(239\) −23.4422 −1.51635 −0.758176 0.652050i \(-0.773909\pi\)
−0.758176 + 0.652050i \(0.773909\pi\)
\(240\) 0 0
\(241\) −24.7121 −1.59185 −0.795923 0.605398i \(-0.793014\pi\)
−0.795923 + 0.605398i \(0.793014\pi\)
\(242\) 24.1408 1.55183
\(243\) 0 0
\(244\) 26.0669 1.66876
\(245\) −11.0781 −0.707756
\(246\) 0 0
\(247\) −8.79358 −0.559522
\(248\) 0 0
\(249\) 0 0
\(250\) 21.6641 1.37016
\(251\) −23.1941 −1.46400 −0.732001 0.681304i \(-0.761413\pi\)
−0.732001 + 0.681304i \(0.761413\pi\)
\(252\) 0 0
\(253\) −5.22251 −0.328336
\(254\) −2.96986 −0.186346
\(255\) 0 0
\(256\) −18.5239 −1.15774
\(257\) −15.3461 −0.957264 −0.478632 0.878016i \(-0.658867\pi\)
−0.478632 + 0.878016i \(0.658867\pi\)
\(258\) 0 0
\(259\) −13.5030 −0.839035
\(260\) 15.7491 0.976716
\(261\) 0 0
\(262\) −18.5072 −1.14338
\(263\) −6.80588 −0.419668 −0.209834 0.977737i \(-0.567292\pi\)
−0.209834 + 0.977737i \(0.567292\pi\)
\(264\) 0 0
\(265\) 14.3268 0.880086
\(266\) 17.1439 1.05116
\(267\) 0 0
\(268\) 16.0468 0.980216
\(269\) 10.5196 0.641394 0.320697 0.947182i \(-0.396083\pi\)
0.320697 + 0.947182i \(0.396083\pi\)
\(270\) 0 0
\(271\) 1.57714 0.0958044 0.0479022 0.998852i \(-0.484746\pi\)
0.0479022 + 0.998852i \(0.484746\pi\)
\(272\) −1.76981 −0.107310
\(273\) 0 0
\(274\) 38.0206 2.29691
\(275\) 0.911421 0.0549608
\(276\) 0 0
\(277\) −12.1014 −0.727100 −0.363550 0.931575i \(-0.618435\pi\)
−0.363550 + 0.931575i \(0.618435\pi\)
\(278\) 16.9368 1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) 21.4727 1.28096 0.640478 0.767976i \(-0.278736\pi\)
0.640478 + 0.767976i \(0.278736\pi\)
\(282\) 0 0
\(283\) −0.688807 −0.0409453 −0.0204726 0.999790i \(-0.506517\pi\)
−0.0204726 + 0.999790i \(0.506517\pi\)
\(284\) 11.3206 0.671753
\(285\) 0 0
\(286\) −3.20976 −0.189797
\(287\) 11.8122 0.697253
\(288\) 0 0
\(289\) 2.17774 0.128102
\(290\) 0.743367 0.0436520
\(291\) 0 0
\(292\) −8.95019 −0.523770
\(293\) −9.01188 −0.526480 −0.263240 0.964730i \(-0.584791\pi\)
−0.263240 + 0.964730i \(0.584791\pi\)
\(294\) 0 0
\(295\) −23.7447 −1.38247
\(296\) 25.7667 1.49766
\(297\) 0 0
\(298\) −14.6803 −0.850408
\(299\) −13.4964 −0.780519
\(300\) 0 0
\(301\) −0.369220 −0.0212815
\(302\) −12.7485 −0.733592
\(303\) 0 0
\(304\) −1.87439 −0.107504
\(305\) 19.5890 1.12166
\(306\) 0 0
\(307\) −31.3326 −1.78825 −0.894124 0.447819i \(-0.852201\pi\)
−0.894124 + 0.447819i \(0.852201\pi\)
\(308\) 3.90726 0.222637
\(309\) 0 0
\(310\) 0 0
\(311\) 17.7139 1.00447 0.502233 0.864732i \(-0.332512\pi\)
0.502233 + 0.864732i \(0.332512\pi\)
\(312\) 0 0
\(313\) 21.6687 1.22479 0.612394 0.790553i \(-0.290207\pi\)
0.612394 + 0.790553i \(0.290207\pi\)
\(314\) −18.4475 −1.04105
\(315\) 0 0
\(316\) −15.0540 −0.846852
\(317\) −1.01605 −0.0570669 −0.0285334 0.999593i \(-0.509084\pi\)
−0.0285334 + 0.999593i \(0.509084\pi\)
\(318\) 0 0
\(319\) −0.0945970 −0.00529641
\(320\) −31.8888 −1.78264
\(321\) 0 0
\(322\) 26.3125 1.46634
\(323\) 20.3110 1.13014
\(324\) 0 0
\(325\) 2.35537 0.130652
\(326\) 39.3789 2.18099
\(327\) 0 0
\(328\) −22.5403 −1.24458
\(329\) 12.8735 0.709741
\(330\) 0 0
\(331\) −26.6894 −1.46698 −0.733492 0.679698i \(-0.762111\pi\)
−0.733492 + 0.679698i \(0.762111\pi\)
\(332\) 8.87806 0.487247
\(333\) 0 0
\(334\) 56.2395 3.07729
\(335\) 12.0590 0.658854
\(336\) 0 0
\(337\) −31.9415 −1.73997 −0.869983 0.493081i \(-0.835871\pi\)
−0.869983 + 0.493081i \(0.835871\pi\)
\(338\) 21.7029 1.18048
\(339\) 0 0
\(340\) −36.3765 −1.97279
\(341\) 0 0
\(342\) 0 0
\(343\) −18.3159 −0.988963
\(344\) 0.704552 0.0379869
\(345\) 0 0
\(346\) 20.7068 1.11321
\(347\) 3.12131 0.167561 0.0837804 0.996484i \(-0.473301\pi\)
0.0837804 + 0.996484i \(0.473301\pi\)
\(348\) 0 0
\(349\) −22.0265 −1.17905 −0.589525 0.807750i \(-0.700685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(350\) −4.59201 −0.245453
\(351\) 0 0
\(352\) 3.80101 0.202595
\(353\) 4.93239 0.262525 0.131262 0.991348i \(-0.458097\pi\)
0.131262 + 0.991348i \(0.458097\pi\)
\(354\) 0 0
\(355\) 8.50730 0.451520
\(356\) −7.32954 −0.388465
\(357\) 0 0
\(358\) 26.0532 1.37695
\(359\) 0.360860 0.0190455 0.00952273 0.999955i \(-0.496969\pi\)
0.00952273 + 0.999955i \(0.496969\pi\)
\(360\) 0 0
\(361\) 2.51129 0.132173
\(362\) −34.4769 −1.81206
\(363\) 0 0
\(364\) 10.0975 0.529251
\(365\) −6.72597 −0.352053
\(366\) 0 0
\(367\) 29.3869 1.53398 0.766992 0.641657i \(-0.221753\pi\)
0.766992 + 0.641657i \(0.221753\pi\)
\(368\) −2.87682 −0.149965
\(369\) 0 0
\(370\) 48.5981 2.52650
\(371\) 9.18555 0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 7.41376 0.383356
\(375\) 0 0
\(376\) −24.5655 −1.26687
\(377\) −0.244465 −0.0125906
\(378\) 0 0
\(379\) −2.46042 −0.126383 −0.0631917 0.998001i \(-0.520128\pi\)
−0.0631917 + 0.998001i \(0.520128\pi\)
\(380\) −38.5261 −1.97635
\(381\) 0 0
\(382\) 5.21715 0.266933
\(383\) −19.1179 −0.976880 −0.488440 0.872598i \(-0.662434\pi\)
−0.488440 + 0.872598i \(0.662434\pi\)
\(384\) 0 0
\(385\) 2.93626 0.149646
\(386\) −59.2209 −3.01427
\(387\) 0 0
\(388\) 40.8599 2.07435
\(389\) 5.27106 0.267253 0.133627 0.991032i \(-0.457338\pi\)
0.133627 + 0.991032i \(0.457338\pi\)
\(390\) 0 0
\(391\) 31.1735 1.57651
\(392\) 13.5535 0.684556
\(393\) 0 0
\(394\) 14.2968 0.720261
\(395\) −11.3129 −0.569213
\(396\) 0 0
\(397\) 16.9255 0.849467 0.424733 0.905319i \(-0.360368\pi\)
0.424733 + 0.905319i \(0.360368\pi\)
\(398\) −10.5439 −0.528516
\(399\) 0 0
\(400\) 0.502057 0.0251029
\(401\) 38.0397 1.89961 0.949805 0.312843i \(-0.101281\pi\)
0.949805 + 0.312843i \(0.101281\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −24.4175 −1.21482
\(405\) 0 0
\(406\) 0.476607 0.0236536
\(407\) −6.18434 −0.306546
\(408\) 0 0
\(409\) −0.498684 −0.0246583 −0.0123292 0.999924i \(-0.503925\pi\)
−0.0123292 + 0.999924i \(0.503925\pi\)
\(410\) −42.5129 −2.09956
\(411\) 0 0
\(412\) 18.5808 0.915411
\(413\) −15.2238 −0.749114
\(414\) 0 0
\(415\) 6.67176 0.327504
\(416\) 9.82289 0.481607
\(417\) 0 0
\(418\) 7.85186 0.384047
\(419\) −13.5100 −0.660007 −0.330003 0.943980i \(-0.607050\pi\)
−0.330003 + 0.943980i \(0.607050\pi\)
\(420\) 0 0
\(421\) −30.9151 −1.50671 −0.753355 0.657614i \(-0.771566\pi\)
−0.753355 + 0.657614i \(0.771566\pi\)
\(422\) 42.9587 2.09120
\(423\) 0 0
\(424\) −17.5280 −0.851237
\(425\) −5.44033 −0.263895
\(426\) 0 0
\(427\) 12.5594 0.607793
\(428\) −6.06475 −0.293151
\(429\) 0 0
\(430\) 1.32885 0.0640826
\(431\) 12.0548 0.580659 0.290330 0.956927i \(-0.406235\pi\)
0.290330 + 0.956927i \(0.406235\pi\)
\(432\) 0 0
\(433\) 32.3919 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 39.1158 1.87331
\(437\) 33.0156 1.57935
\(438\) 0 0
\(439\) 12.3682 0.590300 0.295150 0.955451i \(-0.404630\pi\)
0.295150 + 0.955451i \(0.404630\pi\)
\(440\) −5.60303 −0.267114
\(441\) 0 0
\(442\) 19.1592 0.911312
\(443\) 4.72341 0.224416 0.112208 0.993685i \(-0.464208\pi\)
0.112208 + 0.993685i \(0.464208\pi\)
\(444\) 0 0
\(445\) −5.50807 −0.261108
\(446\) 14.3412 0.679074
\(447\) 0 0
\(448\) −20.4454 −0.965953
\(449\) −15.9842 −0.754341 −0.377170 0.926144i \(-0.623103\pi\)
−0.377170 + 0.926144i \(0.623103\pi\)
\(450\) 0 0
\(451\) 5.40997 0.254746
\(452\) −36.7528 −1.72871
\(453\) 0 0
\(454\) −30.1081 −1.41305
\(455\) 7.58813 0.355737
\(456\) 0 0
\(457\) −4.55775 −0.213203 −0.106601 0.994302i \(-0.533997\pi\)
−0.106601 + 0.994302i \(0.533997\pi\)
\(458\) 35.2542 1.64732
\(459\) 0 0
\(460\) −59.1301 −2.75695
\(461\) −16.9910 −0.791349 −0.395675 0.918391i \(-0.629489\pi\)
−0.395675 + 0.918391i \(0.629489\pi\)
\(462\) 0 0
\(463\) −27.4279 −1.27468 −0.637340 0.770582i \(-0.719965\pi\)
−0.637340 + 0.770582i \(0.719965\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) 22.9105 1.06017 0.530086 0.847944i \(-0.322160\pi\)
0.530086 + 0.847944i \(0.322160\pi\)
\(468\) 0 0
\(469\) 7.73159 0.357012
\(470\) −46.3327 −2.13717
\(471\) 0 0
\(472\) 29.0503 1.33715
\(473\) −0.169102 −0.00777531
\(474\) 0 0
\(475\) −5.76182 −0.264370
\(476\) −23.3227 −1.06899
\(477\) 0 0
\(478\) 54.0936 2.47418
\(479\) −9.04705 −0.413370 −0.206685 0.978407i \(-0.566268\pi\)
−0.206685 + 0.978407i \(0.566268\pi\)
\(480\) 0 0
\(481\) −15.9821 −0.728720
\(482\) 57.0238 2.59736
\(483\) 0 0
\(484\) −34.7820 −1.58100
\(485\) 30.7057 1.39428
\(486\) 0 0
\(487\) 23.6227 1.07045 0.535223 0.844711i \(-0.320228\pi\)
0.535223 + 0.844711i \(0.320228\pi\)
\(488\) −23.9661 −1.08490
\(489\) 0 0
\(490\) 25.5631 1.15482
\(491\) 9.22692 0.416405 0.208202 0.978086i \(-0.433239\pi\)
0.208202 + 0.978086i \(0.433239\pi\)
\(492\) 0 0
\(493\) 0.564655 0.0254308
\(494\) 20.2914 0.912955
\(495\) 0 0
\(496\) 0 0
\(497\) 5.45442 0.244664
\(498\) 0 0
\(499\) −28.4139 −1.27198 −0.635992 0.771696i \(-0.719409\pi\)
−0.635992 + 0.771696i \(0.719409\pi\)
\(500\) −31.2136 −1.39592
\(501\) 0 0
\(502\) 53.5211 2.38876
\(503\) −18.2781 −0.814979 −0.407489 0.913210i \(-0.633596\pi\)
−0.407489 + 0.913210i \(0.633596\pi\)
\(504\) 0 0
\(505\) −18.3495 −0.816541
\(506\) 12.0511 0.535736
\(507\) 0 0
\(508\) 4.27897 0.189849
\(509\) 10.3864 0.460367 0.230184 0.973147i \(-0.426067\pi\)
0.230184 + 0.973147i \(0.426067\pi\)
\(510\) 0 0
\(511\) −4.31233 −0.190766
\(512\) 4.56446 0.201722
\(513\) 0 0
\(514\) 35.4116 1.56194
\(515\) 13.9633 0.615295
\(516\) 0 0
\(517\) 5.89605 0.259308
\(518\) 31.1585 1.36903
\(519\) 0 0
\(520\) −14.4798 −0.634981
\(521\) −9.25044 −0.405269 −0.202635 0.979254i \(-0.564950\pi\)
−0.202635 + 0.979254i \(0.564950\pi\)
\(522\) 0 0
\(523\) 6.57516 0.287512 0.143756 0.989613i \(-0.454082\pi\)
0.143756 + 0.989613i \(0.454082\pi\)
\(524\) 26.6651 1.16487
\(525\) 0 0
\(526\) 15.7047 0.684759
\(527\) 0 0
\(528\) 0 0
\(529\) 27.6725 1.20315
\(530\) −33.0594 −1.43601
\(531\) 0 0
\(532\) −24.7009 −1.07092
\(533\) 13.9809 0.605579
\(534\) 0 0
\(535\) −4.55759 −0.197042
\(536\) −14.7536 −0.637257
\(537\) 0 0
\(538\) −24.2744 −1.04654
\(539\) −3.25302 −0.140118
\(540\) 0 0
\(541\) −2.20328 −0.0947262 −0.0473631 0.998878i \(-0.515082\pi\)
−0.0473631 + 0.998878i \(0.515082\pi\)
\(542\) −3.63929 −0.156321
\(543\) 0 0
\(544\) −22.6885 −0.972760
\(545\) 29.3951 1.25915
\(546\) 0 0
\(547\) −4.86344 −0.207946 −0.103973 0.994580i \(-0.533156\pi\)
−0.103973 + 0.994580i \(0.533156\pi\)
\(548\) −54.7799 −2.34008
\(549\) 0 0
\(550\) −2.10313 −0.0896777
\(551\) 0.598022 0.0254766
\(552\) 0 0
\(553\) −7.25322 −0.308438
\(554\) 27.9242 1.18639
\(555\) 0 0
\(556\) −24.4025 −1.03490
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) 1.61744 0.0683494
\(561\) 0 0
\(562\) −49.5489 −2.09010
\(563\) 11.1924 0.471704 0.235852 0.971789i \(-0.424212\pi\)
0.235852 + 0.971789i \(0.424212\pi\)
\(564\) 0 0
\(565\) −27.6193 −1.16195
\(566\) 1.58944 0.0668091
\(567\) 0 0
\(568\) −10.4082 −0.436720
\(569\) −46.9220 −1.96707 −0.983536 0.180713i \(-0.942160\pi\)
−0.983536 + 0.180713i \(0.942160\pi\)
\(570\) 0 0
\(571\) 20.4597 0.856210 0.428105 0.903729i \(-0.359181\pi\)
0.428105 + 0.903729i \(0.359181\pi\)
\(572\) 4.62461 0.193365
\(573\) 0 0
\(574\) −27.2570 −1.13769
\(575\) −8.84326 −0.368789
\(576\) 0 0
\(577\) 3.64835 0.151883 0.0759413 0.997112i \(-0.475804\pi\)
0.0759413 + 0.997112i \(0.475804\pi\)
\(578\) −5.02520 −0.209021
\(579\) 0 0
\(580\) −1.07104 −0.0444726
\(581\) 4.27758 0.177464
\(582\) 0 0
\(583\) 4.20696 0.174235
\(584\) 8.22887 0.340513
\(585\) 0 0
\(586\) 20.7952 0.859040
\(587\) −22.8726 −0.944053 −0.472027 0.881584i \(-0.656477\pi\)
−0.472027 + 0.881584i \(0.656477\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 54.7914 2.25573
\(591\) 0 0
\(592\) −3.40665 −0.140012
\(593\) 19.4598 0.799117 0.399558 0.916708i \(-0.369163\pi\)
0.399558 + 0.916708i \(0.369163\pi\)
\(594\) 0 0
\(595\) −17.5267 −0.718525
\(596\) 21.1514 0.866394
\(597\) 0 0
\(598\) 31.1434 1.27355
\(599\) −35.1718 −1.43708 −0.718541 0.695484i \(-0.755190\pi\)
−0.718541 + 0.695484i \(0.755190\pi\)
\(600\) 0 0
\(601\) −5.88806 −0.240179 −0.120089 0.992763i \(-0.538318\pi\)
−0.120089 + 0.992763i \(0.538318\pi\)
\(602\) 0.851984 0.0347243
\(603\) 0 0
\(604\) 18.3680 0.747382
\(605\) −26.1383 −1.06267
\(606\) 0 0
\(607\) 38.8848 1.57829 0.789143 0.614209i \(-0.210525\pi\)
0.789143 + 0.614209i \(0.210525\pi\)
\(608\) −24.0292 −0.974513
\(609\) 0 0
\(610\) −45.2022 −1.83018
\(611\) 15.2371 0.616425
\(612\) 0 0
\(613\) 45.6024 1.84186 0.920931 0.389725i \(-0.127430\pi\)
0.920931 + 0.389725i \(0.127430\pi\)
\(614\) 72.3009 2.91783
\(615\) 0 0
\(616\) −3.59236 −0.144740
\(617\) 6.62648 0.266772 0.133386 0.991064i \(-0.457415\pi\)
0.133386 + 0.991064i \(0.457415\pi\)
\(618\) 0 0
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −40.8754 −1.63895
\(623\) −3.53148 −0.141486
\(624\) 0 0
\(625\) −29.6682 −1.18673
\(626\) −50.0011 −1.99845
\(627\) 0 0
\(628\) 26.5791 1.06062
\(629\) 36.9147 1.47189
\(630\) 0 0
\(631\) −11.1447 −0.443664 −0.221832 0.975085i \(-0.571204\pi\)
−0.221832 + 0.975085i \(0.571204\pi\)
\(632\) 13.8407 0.550554
\(633\) 0 0
\(634\) 2.34455 0.0931141
\(635\) 3.21560 0.127607
\(636\) 0 0
\(637\) −8.40673 −0.333087
\(638\) 0.218285 0.00864199
\(639\) 0 0
\(640\) 47.6956 1.88533
\(641\) 17.5533 0.693314 0.346657 0.937992i \(-0.387317\pi\)
0.346657 + 0.937992i \(0.387317\pi\)
\(642\) 0 0
\(643\) 2.19605 0.0866038 0.0433019 0.999062i \(-0.486212\pi\)
0.0433019 + 0.999062i \(0.486212\pi\)
\(644\) −37.9110 −1.49390
\(645\) 0 0
\(646\) −46.8682 −1.84401
\(647\) −32.4446 −1.27553 −0.637764 0.770232i \(-0.720140\pi\)
−0.637764 + 0.770232i \(0.720140\pi\)
\(648\) 0 0
\(649\) −6.97247 −0.273693
\(650\) −5.43508 −0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) −16.4900 −0.645302 −0.322651 0.946518i \(-0.604574\pi\)
−0.322651 + 0.946518i \(0.604574\pi\)
\(654\) 0 0
\(655\) 20.0385 0.782970
\(656\) 2.98009 0.116353
\(657\) 0 0
\(658\) −29.7060 −1.15806
\(659\) 19.7414 0.769015 0.384508 0.923122i \(-0.374371\pi\)
0.384508 + 0.923122i \(0.374371\pi\)
\(660\) 0 0
\(661\) 11.7808 0.458221 0.229110 0.973400i \(-0.426418\pi\)
0.229110 + 0.973400i \(0.426418\pi\)
\(662\) 61.5866 2.39363
\(663\) 0 0
\(664\) −8.16255 −0.316768
\(665\) −18.5624 −0.719820
\(666\) 0 0
\(667\) 0.917847 0.0355392
\(668\) −81.0298 −3.13514
\(669\) 0 0
\(670\) −27.8265 −1.07503
\(671\) 5.75219 0.222061
\(672\) 0 0
\(673\) −50.3821 −1.94209 −0.971044 0.238901i \(-0.923213\pi\)
−0.971044 + 0.238901i \(0.923213\pi\)
\(674\) 73.7060 2.83905
\(675\) 0 0
\(676\) −31.2695 −1.20267
\(677\) −3.97995 −0.152962 −0.0764810 0.997071i \(-0.524368\pi\)
−0.0764810 + 0.997071i \(0.524368\pi\)
\(678\) 0 0
\(679\) 19.6869 0.755513
\(680\) 33.4448 1.28255
\(681\) 0 0
\(682\) 0 0
\(683\) −5.23244 −0.200214 −0.100107 0.994977i \(-0.531918\pi\)
−0.100107 + 0.994977i \(0.531918\pi\)
\(684\) 0 0
\(685\) −41.1665 −1.57289
\(686\) 42.2643 1.61366
\(687\) 0 0
\(688\) −0.0931499 −0.00355130
\(689\) 10.8720 0.414189
\(690\) 0 0
\(691\) 9.19553 0.349815 0.174907 0.984585i \(-0.444037\pi\)
0.174907 + 0.984585i \(0.444037\pi\)
\(692\) −29.8344 −1.13413
\(693\) 0 0
\(694\) −7.20251 −0.273404
\(695\) −18.3382 −0.695609
\(696\) 0 0
\(697\) −32.2924 −1.22316
\(698\) 50.8266 1.92382
\(699\) 0 0
\(700\) 6.61615 0.250067
\(701\) 40.5543 1.53172 0.765858 0.643010i \(-0.222315\pi\)
0.765858 + 0.643010i \(0.222315\pi\)
\(702\) 0 0
\(703\) 39.0961 1.47454
\(704\) −9.36393 −0.352916
\(705\) 0 0
\(706\) −11.3816 −0.428353
\(707\) −11.7647 −0.442457
\(708\) 0 0
\(709\) 37.2861 1.40031 0.700154 0.713992i \(-0.253115\pi\)
0.700154 + 0.713992i \(0.253115\pi\)
\(710\) −19.6308 −0.736731
\(711\) 0 0
\(712\) 6.73883 0.252548
\(713\) 0 0
\(714\) 0 0
\(715\) 3.47535 0.129971
\(716\) −37.5374 −1.40284
\(717\) 0 0
\(718\) −0.832694 −0.0310759
\(719\) −18.5799 −0.692912 −0.346456 0.938066i \(-0.612615\pi\)
−0.346456 + 0.938066i \(0.612615\pi\)
\(720\) 0 0
\(721\) 8.95250 0.333409
\(722\) −5.79486 −0.215662
\(723\) 0 0
\(724\) 49.6742 1.84613
\(725\) −0.160181 −0.00594897
\(726\) 0 0
\(727\) 16.3772 0.607396 0.303698 0.952768i \(-0.401779\pi\)
0.303698 + 0.952768i \(0.401779\pi\)
\(728\) −9.28367 −0.344076
\(729\) 0 0
\(730\) 15.5203 0.574434
\(731\) 1.00938 0.0373332
\(732\) 0 0
\(733\) −1.15134 −0.0425256 −0.0212628 0.999774i \(-0.506769\pi\)
−0.0212628 + 0.999774i \(0.506769\pi\)
\(734\) −67.8111 −2.50295
\(735\) 0 0
\(736\) −36.8801 −1.35942
\(737\) 3.54105 0.130436
\(738\) 0 0
\(739\) 20.7158 0.762043 0.381022 0.924566i \(-0.375572\pi\)
0.381022 + 0.924566i \(0.375572\pi\)
\(740\) −70.0201 −2.57399
\(741\) 0 0
\(742\) −21.1959 −0.778126
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) −40.9087 −1.49778
\(747\) 0 0
\(748\) −10.6817 −0.390563
\(749\) −2.92208 −0.106771
\(750\) 0 0
\(751\) −43.1459 −1.57441 −0.787207 0.616688i \(-0.788474\pi\)
−0.787207 + 0.616688i \(0.788474\pi\)
\(752\) 3.24784 0.118437
\(753\) 0 0
\(754\) 0.564110 0.0205437
\(755\) 13.8033 0.502354
\(756\) 0 0
\(757\) 27.3386 0.993637 0.496819 0.867854i \(-0.334501\pi\)
0.496819 + 0.867854i \(0.334501\pi\)
\(758\) 5.67749 0.206216
\(759\) 0 0
\(760\) 35.4212 1.28486
\(761\) 17.1920 0.623208 0.311604 0.950212i \(-0.399134\pi\)
0.311604 + 0.950212i \(0.399134\pi\)
\(762\) 0 0
\(763\) 18.8466 0.682291
\(764\) −7.51686 −0.271951
\(765\) 0 0
\(766\) 44.1151 1.59394
\(767\) −18.0188 −0.650622
\(768\) 0 0
\(769\) 14.0567 0.506899 0.253450 0.967349i \(-0.418435\pi\)
0.253450 + 0.967349i \(0.418435\pi\)
\(770\) −6.77550 −0.244172
\(771\) 0 0
\(772\) 85.3254 3.07093
\(773\) −22.2368 −0.799803 −0.399902 0.916558i \(-0.630956\pi\)
−0.399902 + 0.916558i \(0.630956\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −37.5668 −1.34857
\(777\) 0 0
\(778\) −12.1631 −0.436069
\(779\) −34.2007 −1.22537
\(780\) 0 0
\(781\) 2.49811 0.0893895
\(782\) −71.9336 −2.57234
\(783\) 0 0
\(784\) −1.79193 −0.0639975
\(785\) 19.9739 0.712898
\(786\) 0 0
\(787\) −32.0338 −1.14188 −0.570941 0.820991i \(-0.693422\pi\)
−0.570941 + 0.820991i \(0.693422\pi\)
\(788\) −20.5988 −0.733800
\(789\) 0 0
\(790\) 26.1048 0.928767
\(791\) −17.7080 −0.629625
\(792\) 0 0
\(793\) 14.8653 0.527881
\(794\) −39.0560 −1.38605
\(795\) 0 0
\(796\) 15.1916 0.538451
\(797\) 26.0493 0.922712 0.461356 0.887215i \(-0.347363\pi\)
0.461356 + 0.887215i \(0.347363\pi\)
\(798\) 0 0
\(799\) −35.1939 −1.24507
\(800\) 6.43625 0.227556
\(801\) 0 0
\(802\) −87.7775 −3.09953
\(803\) −1.97504 −0.0696976
\(804\) 0 0
\(805\) −28.4897 −1.00413
\(806\) 0 0
\(807\) 0 0
\(808\) 22.4496 0.789775
\(809\) −8.72941 −0.306910 −0.153455 0.988156i \(-0.549040\pi\)
−0.153455 + 0.988156i \(0.549040\pi\)
\(810\) 0 0
\(811\) −50.0784 −1.75849 −0.879245 0.476369i \(-0.841953\pi\)
−0.879245 + 0.476369i \(0.841953\pi\)
\(812\) −0.686695 −0.0240983
\(813\) 0 0
\(814\) 14.2705 0.500182
\(815\) −42.6372 −1.49352
\(816\) 0 0
\(817\) 1.06903 0.0374005
\(818\) 1.15073 0.0402342
\(819\) 0 0
\(820\) 61.2525 2.13903
\(821\) −50.7831 −1.77234 −0.886171 0.463359i \(-0.846644\pi\)
−0.886171 + 0.463359i \(0.846644\pi\)
\(822\) 0 0
\(823\) 6.32920 0.220622 0.110311 0.993897i \(-0.464815\pi\)
0.110311 + 0.993897i \(0.464815\pi\)
\(824\) −17.0833 −0.595126
\(825\) 0 0
\(826\) 35.1293 1.22231
\(827\) 3.69745 0.128573 0.0642865 0.997931i \(-0.479523\pi\)
0.0642865 + 0.997931i \(0.479523\pi\)
\(828\) 0 0
\(829\) −26.0416 −0.904461 −0.452230 0.891901i \(-0.649372\pi\)
−0.452230 + 0.891901i \(0.649372\pi\)
\(830\) −15.3953 −0.534377
\(831\) 0 0
\(832\) −24.1990 −0.838951
\(833\) 19.4175 0.672776
\(834\) 0 0
\(835\) −60.8930 −2.10729
\(836\) −11.3130 −0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) −7.49300 −0.258687 −0.129343 0.991600i \(-0.541287\pi\)
−0.129343 + 0.991600i \(0.541287\pi\)
\(840\) 0 0
\(841\) −28.9834 −0.999427
\(842\) 71.3374 2.45845
\(843\) 0 0
\(844\) −61.8948 −2.13051
\(845\) −23.4987 −0.808380
\(846\) 0 0
\(847\) −16.7584 −0.575827
\(848\) 2.31741 0.0795801
\(849\) 0 0
\(850\) 12.5537 0.430588
\(851\) 60.0049 2.05694
\(852\) 0 0
\(853\) −43.5869 −1.49239 −0.746194 0.665728i \(-0.768121\pi\)
−0.746194 + 0.665728i \(0.768121\pi\)
\(854\) −28.9812 −0.991717
\(855\) 0 0
\(856\) 5.57597 0.190583
\(857\) −39.2228 −1.33982 −0.669912 0.742440i \(-0.733668\pi\)
−0.669912 + 0.742440i \(0.733668\pi\)
\(858\) 0 0
\(859\) 18.2013 0.621020 0.310510 0.950570i \(-0.399500\pi\)
0.310510 + 0.950570i \(0.399500\pi\)
\(860\) −1.91460 −0.0652872
\(861\) 0 0
\(862\) −27.8168 −0.947443
\(863\) 44.9477 1.53004 0.765018 0.644009i \(-0.222730\pi\)
0.765018 + 0.644009i \(0.222730\pi\)
\(864\) 0 0
\(865\) −22.4202 −0.762309
\(866\) −74.7451 −2.53994
\(867\) 0 0
\(868\) 0 0
\(869\) −3.32196 −0.112690
\(870\) 0 0
\(871\) 9.15108 0.310072
\(872\) −35.9633 −1.21787
\(873\) 0 0
\(874\) −76.1844 −2.57698
\(875\) −15.0392 −0.508417
\(876\) 0 0
\(877\) −42.6511 −1.44022 −0.720112 0.693858i \(-0.755910\pi\)
−0.720112 + 0.693858i \(0.755910\pi\)
\(878\) −28.5399 −0.963173
\(879\) 0 0
\(880\) 0.740785 0.0249718
\(881\) −8.91652 −0.300405 −0.150203 0.988655i \(-0.547993\pi\)
−0.150203 + 0.988655i \(0.547993\pi\)
\(882\) 0 0
\(883\) −47.0683 −1.58398 −0.791988 0.610537i \(-0.790954\pi\)
−0.791988 + 0.610537i \(0.790954\pi\)
\(884\) −27.6046 −0.928443
\(885\) 0 0
\(886\) −10.8994 −0.366172
\(887\) −3.15657 −0.105987 −0.0529936 0.998595i \(-0.516876\pi\)
−0.0529936 + 0.998595i \(0.516876\pi\)
\(888\) 0 0
\(889\) 2.06167 0.0691462
\(890\) 12.7100 0.426041
\(891\) 0 0
\(892\) −20.6627 −0.691839
\(893\) −37.2736 −1.24731
\(894\) 0 0
\(895\) −28.2089 −0.942920
\(896\) 30.5798 1.02160
\(897\) 0 0
\(898\) 36.8840 1.23083
\(899\) 0 0
\(900\) 0 0
\(901\) −25.1116 −0.836589
\(902\) −12.4836 −0.415660
\(903\) 0 0
\(904\) 33.7908 1.12386
\(905\) 37.3296 1.24088
\(906\) 0 0
\(907\) 26.9632 0.895297 0.447649 0.894210i \(-0.352262\pi\)
0.447649 + 0.894210i \(0.352262\pi\)
\(908\) 43.3797 1.43961
\(909\) 0 0
\(910\) −17.5098 −0.580444
\(911\) 5.07802 0.168242 0.0841212 0.996456i \(-0.473192\pi\)
0.0841212 + 0.996456i \(0.473192\pi\)
\(912\) 0 0
\(913\) 1.95912 0.0648374
\(914\) 10.5171 0.347876
\(915\) 0 0
\(916\) −50.7942 −1.67829
\(917\) 12.8476 0.424266
\(918\) 0 0
\(919\) −49.2770 −1.62550 −0.812749 0.582615i \(-0.802030\pi\)
−0.812749 + 0.582615i \(0.802030\pi\)
\(920\) 54.3646 1.79235
\(921\) 0 0
\(922\) 39.2072 1.29122
\(923\) 6.45583 0.212496
\(924\) 0 0
\(925\) −10.4719 −0.344315
\(926\) 63.2905 2.07986
\(927\) 0 0
\(928\) −0.668022 −0.0219289
\(929\) −39.9606 −1.31107 −0.655533 0.755167i \(-0.727556\pi\)
−0.655533 + 0.755167i \(0.727556\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) −43.4245 −1.42242
\(933\) 0 0
\(934\) −52.8666 −1.72985
\(935\) −8.02720 −0.262517
\(936\) 0 0
\(937\) 45.0893 1.47300 0.736502 0.676436i \(-0.236476\pi\)
0.736502 + 0.676436i \(0.236476\pi\)
\(938\) −17.8409 −0.582525
\(939\) 0 0
\(940\) 66.7560 2.17734
\(941\) 50.1923 1.63622 0.818112 0.575060i \(-0.195021\pi\)
0.818112 + 0.575060i \(0.195021\pi\)
\(942\) 0 0
\(943\) −52.4914 −1.70936
\(944\) −3.84079 −0.125007
\(945\) 0 0
\(946\) 0.390207 0.0126867
\(947\) 30.3259 0.985461 0.492730 0.870182i \(-0.335999\pi\)
0.492730 + 0.870182i \(0.335999\pi\)
\(948\) 0 0
\(949\) −5.10405 −0.165685
\(950\) 13.2955 0.431365
\(951\) 0 0
\(952\) 21.4430 0.694972
\(953\) −35.4775 −1.14923 −0.574614 0.818425i \(-0.694848\pi\)
−0.574614 + 0.818425i \(0.694848\pi\)
\(954\) 0 0
\(955\) −5.64884 −0.182792
\(956\) −77.9379 −2.52069
\(957\) 0 0
\(958\) 20.8763 0.674483
\(959\) −26.3938 −0.852299
\(960\) 0 0
\(961\) 0 0
\(962\) 36.8791 1.18903
\(963\) 0 0
\(964\) −82.1598 −2.64619
\(965\) 64.1211 2.06413
\(966\) 0 0
\(967\) 35.4443 1.13981 0.569906 0.821710i \(-0.306979\pi\)
0.569906 + 0.821710i \(0.306979\pi\)
\(968\) 31.9788 1.02784
\(969\) 0 0
\(970\) −70.8543 −2.27499
\(971\) 40.0972 1.28678 0.643391 0.765538i \(-0.277527\pi\)
0.643391 + 0.765538i \(0.277527\pi\)
\(972\) 0 0
\(973\) −11.7575 −0.376928
\(974\) −54.5099 −1.74661
\(975\) 0 0
\(976\) 3.16860 0.101424
\(977\) 38.6708 1.23719 0.618595 0.785710i \(-0.287702\pi\)
0.618595 + 0.785710i \(0.287702\pi\)
\(978\) 0 0
\(979\) −1.61741 −0.0516926
\(980\) −36.8312 −1.17653
\(981\) 0 0
\(982\) −21.2914 −0.679434
\(983\) −21.5796 −0.688282 −0.344141 0.938918i \(-0.611830\pi\)
−0.344141 + 0.938918i \(0.611830\pi\)
\(984\) 0 0
\(985\) −15.4797 −0.493225
\(986\) −1.30296 −0.0414946
\(987\) 0 0
\(988\) −29.2359 −0.930116
\(989\) 1.64075 0.0521727
\(990\) 0 0
\(991\) −46.8764 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −12.5862 −0.399211
\(995\) 11.4163 0.361921
\(996\) 0 0
\(997\) 44.5389 1.41056 0.705281 0.708928i \(-0.250821\pi\)
0.705281 + 0.708928i \(0.250821\pi\)
\(998\) 65.5659 2.07545
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.be.1.1 8
3.2 odd 2 961.2.a.j.1.8 8
31.22 odd 30 279.2.y.c.19.2 16
31.24 odd 30 279.2.y.c.235.2 16
31.30 odd 2 8649.2.a.bf.1.1 8
93.2 odd 10 961.2.d.q.531.4 16
93.5 odd 6 961.2.c.i.521.8 16
93.8 odd 10 961.2.d.n.374.1 16
93.11 even 30 961.2.g.k.338.1 16
93.14 odd 30 961.2.g.j.816.1 16
93.17 even 30 961.2.g.k.816.1 16
93.20 odd 30 961.2.g.j.338.1 16
93.23 even 10 961.2.d.o.374.1 16
93.26 even 6 961.2.c.j.521.8 16
93.29 even 10 961.2.d.p.531.4 16
93.35 odd 10 961.2.d.n.388.1 16
93.38 odd 30 961.2.g.l.235.1 16
93.41 odd 30 961.2.g.m.844.2 16
93.44 even 30 961.2.g.t.448.2 16
93.47 odd 10 961.2.d.q.628.4 16
93.50 odd 30 961.2.g.n.547.2 16
93.53 even 30 31.2.g.a.19.1 yes 16
93.56 odd 6 961.2.c.i.439.8 16
93.59 odd 30 961.2.g.m.846.2 16
93.65 even 30 961.2.g.s.846.2 16
93.68 even 6 961.2.c.j.439.8 16
93.71 odd 30 961.2.g.l.732.1 16
93.74 even 30 961.2.g.t.547.2 16
93.77 even 10 961.2.d.p.628.4 16
93.80 odd 30 961.2.g.n.448.2 16
93.83 even 30 961.2.g.s.844.2 16
93.86 even 30 31.2.g.a.18.1 16
93.89 even 10 961.2.d.o.388.1 16
93.92 even 2 961.2.a.i.1.8 8
372.179 odd 30 496.2.bg.c.49.2 16
372.239 odd 30 496.2.bg.c.81.2 16
465.53 odd 60 775.2.ck.a.174.1 32
465.179 even 30 775.2.bl.a.576.2 16
465.239 even 30 775.2.bl.a.701.2 16
465.272 odd 60 775.2.ck.a.49.1 32
465.332 odd 60 775.2.ck.a.174.4 32
465.458 odd 60 775.2.ck.a.49.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 93.86 even 30
31.2.g.a.19.1 yes 16 93.53 even 30
279.2.y.c.19.2 16 31.22 odd 30
279.2.y.c.235.2 16 31.24 odd 30
496.2.bg.c.49.2 16 372.179 odd 30
496.2.bg.c.81.2 16 372.239 odd 30
775.2.bl.a.576.2 16 465.179 even 30
775.2.bl.a.701.2 16 465.239 even 30
775.2.ck.a.49.1 32 465.272 odd 60
775.2.ck.a.49.4 32 465.458 odd 60
775.2.ck.a.174.1 32 465.53 odd 60
775.2.ck.a.174.4 32 465.332 odd 60
961.2.a.i.1.8 8 93.92 even 2
961.2.a.j.1.8 8 3.2 odd 2
961.2.c.i.439.8 16 93.56 odd 6
961.2.c.i.521.8 16 93.5 odd 6
961.2.c.j.439.8 16 93.68 even 6
961.2.c.j.521.8 16 93.26 even 6
961.2.d.n.374.1 16 93.8 odd 10
961.2.d.n.388.1 16 93.35 odd 10
961.2.d.o.374.1 16 93.23 even 10
961.2.d.o.388.1 16 93.89 even 10
961.2.d.p.531.4 16 93.29 even 10
961.2.d.p.628.4 16 93.77 even 10
961.2.d.q.531.4 16 93.2 odd 10
961.2.d.q.628.4 16 93.47 odd 10
961.2.g.j.338.1 16 93.20 odd 30
961.2.g.j.816.1 16 93.14 odd 30
961.2.g.k.338.1 16 93.11 even 30
961.2.g.k.816.1 16 93.17 even 30
961.2.g.l.235.1 16 93.38 odd 30
961.2.g.l.732.1 16 93.71 odd 30
961.2.g.m.844.2 16 93.41 odd 30
961.2.g.m.846.2 16 93.59 odd 30
961.2.g.n.448.2 16 93.80 odd 30
961.2.g.n.547.2 16 93.50 odd 30
961.2.g.s.844.2 16 93.83 even 30
961.2.g.s.846.2 16 93.65 even 30
961.2.g.t.448.2 16 93.44 even 30
961.2.g.t.547.2 16 93.74 even 30
8649.2.a.be.1.1 8 1.1 even 1 trivial
8649.2.a.bf.1.1 8 31.30 odd 2