Properties

Label 961.2.g
Level $961$
Weight $2$
Character orbit 961.g
Rep. character $\chi_{961}(235,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $504$
Newform subspaces $23$
Sturm bound $165$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 23 \)
Sturm bound: \(165\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(961, [\chi])\).

Total New Old
Modular forms 792 728 64
Cusp forms 536 504 32
Eisenstein series 256 224 32

Trace form

\( 504 q + 6 q^{2} + 12 q^{3} - 86 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 23 q^{8} + 45 q^{9} + 5 q^{10} + 7 q^{11} - 5 q^{12} + 7 q^{13} + 9 q^{14} - 14 q^{15} - 38 q^{16} + 6 q^{17} + 3 q^{18} - 16 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(961, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
961.2.g.a 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.a.a \(-6\) \(-6\) \(-4\) \(-7\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\zeta_{15}^{6})q^{2}+(-2+2\zeta_{15}^{4}+\cdots)q^{3}+\cdots\)
961.2.g.b 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.d.a \(-6\) \(-1\) \(6\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\zeta_{15}^{6})q^{2}-\zeta_{15}^{7}q^{3}+(1-\zeta_{15}^{2}+\cdots)q^{4}+\cdots\)
961.2.g.c 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.d.a \(-6\) \(1\) \(6\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\zeta_{15}^{6})q^{2}+\zeta_{15}^{7}q^{3}+(1-\zeta_{15}^{2}+\cdots)q^{4}+\cdots\)
961.2.g.d 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.a.a \(-6\) \(6\) \(-4\) \(-7\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\zeta_{15}^{6})q^{2}+(2-2\zeta_{15}^{4}+2\zeta_{15}^{5}+\cdots)q^{3}+\cdots\)
961.2.g.e 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.a.a \(4\) \(-4\) \(-4\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1+\zeta_{15}^{3}+\zeta_{15}^{6})q^{2}+(-2+2\zeta_{15}^{4}+\cdots)q^{3}+\cdots\)
961.2.g.f 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.d.a \(4\) \(-1\) \(6\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1+\zeta_{15}^{3}+\zeta_{15}^{6})q^{2}-\zeta_{15}^{7}q^{3}+\cdots\)
961.2.g.g 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.d.a \(4\) \(1\) \(6\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1+\zeta_{15}^{3}+\zeta_{15}^{6})q^{2}+\zeta_{15}^{7}q^{3}+\cdots\)
961.2.g.h 961.g 31.g $8$ $7.674$ \(\Q(\zeta_{15})\) None 31.2.a.a \(4\) \(4\) \(-4\) \(3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1+\zeta_{15}^{3}+\zeta_{15}^{6})q^{2}+(2-2\zeta_{15}^{4}+\cdots)q^{3}+\cdots\)
961.2.g.i 961.g 31.g $16$ $7.674$ 16.0.\(\cdots\).2 None 961.2.a.h \(-16\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-2\beta _{4}+\beta _{6}+\beta _{12}-2\beta _{13})q^{2}+\cdots\)
961.2.g.j 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(-6\) \(-3\) \(-3\) \(-13\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)
961.2.g.k 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(-6\) \(3\) \(-3\) \(-13\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)
961.2.g.l 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(-6\) \(12\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-1-\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+\beta _{6}+\cdots)q^{2}+\cdots\)
961.2.g.m 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(-3\) \(-3\) \(-3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{2}-\beta _{3}-\beta _{9}-\beta _{10}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\)
961.2.g.n 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(-3\) \(-3\) \(12\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{2}-\beta _{3}-\beta _{9}-\beta _{10}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\)
961.2.g.o 961.g 31.g $16$ $7.674$ 16.0.\(\cdots\).2 None 31.2.c.a \(4\) \(-2\) \(-8\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\beta _{3}+\beta _{15})q^{2}+(\beta _{2}-\beta _{5}+\beta _{10}+\cdots)q^{3}+\cdots\)
961.2.g.p 961.g 31.g $16$ $7.674$ 16.0.\(\cdots\).2 None 961.2.a.h \(4\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\beta _{4}-\beta _{6}-\beta _{12}-\beta _{13})q^{2}+(\beta _{5}+\cdots)q^{3}+\cdots\)
961.2.g.q 961.g 31.g $16$ $7.674$ 16.0.\(\cdots\).2 None 961.2.a.b \(4\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1-\beta _{4}+\beta _{6}+\beta _{12}-\beta _{13})q^{2}+(-2\beta _{1}+\cdots)q^{3}+\cdots\)
961.2.g.r 961.g 31.g $16$ $7.674$ 16.0.\(\cdots\).2 None 31.2.c.a \(4\) \(2\) \(-8\) \(2\) $\mathrm{SU}(2)[C_{15}]$ \(q+(1-\beta _{3}-\beta _{4}+\beta _{6}+\beta _{12}-\beta _{13}+\cdots)q^{2}+\cdots\)
961.2.g.s 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(3\) \(-3\) \(-3\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{2}-\beta _{3}-\beta _{9}-\beta _{10}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\)
961.2.g.t 961.g 31.g $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(3\) \(-3\) \(12\) $\mathrm{SU}(2)[C_{15}]$ \(q+(\beta _{2}-\beta _{3}-\beta _{9}-\beta _{10}+\beta _{12}+\beta _{13}+\cdots)q^{2}+\cdots\)
961.2.g.u 961.g 31.g $24$ $7.674$ \(\Q(\sqrt{-31}) \) 961.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{15}]$
961.2.g.v 961.g 31.g $96$ $7.674$ None 961.2.a.k \(0\) \(0\) \(-32\) \(8\) $\mathrm{SU}(2)[C_{15}]$
961.2.g.w 961.g 31.g $128$ $7.674$ None 961.2.a.l \(16\) \(0\) \(64\) \(-16\) $\mathrm{SU}(2)[C_{15}]$

Decomposition of \(S_{2}^{\mathrm{old}}(961, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(961, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)