Properties

Label 5733.2
Level 5733
Weight 2
Dimension 885021
Nonzero newspaces 168
Sturm bound 4741632

Downloads

Learn more

Defining parameters

Level: N N = 5733=327213 5733 = 3^{2} \cdot 7^{2} \cdot 13
Weight: k k = 2 2
Nonzero newspaces: 168 168
Sturm bound: 47416324741632

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(5733))M_{2}(\Gamma_1(5733)).

Total New Old
Modular forms 1196928 894623 302305
Cusp forms 1173889 885021 288868
Eisenstein series 23039 9602 13437

Decomposition of S2new(Γ1(5733))S_{2}^{\mathrm{new}}(\Gamma_1(5733))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
5733.2.a χ5733(1,)\chi_{5733}(1, \cdot) 5733.2.a.a 1 1
5733.2.a.b 1
5733.2.a.c 1
5733.2.a.d 1
5733.2.a.e 1
5733.2.a.f 1
5733.2.a.g 1
5733.2.a.h 1
5733.2.a.i 1
5733.2.a.j 1
5733.2.a.k 1
5733.2.a.l 1
5733.2.a.m 1
5733.2.a.n 2
5733.2.a.o 2
5733.2.a.p 2
5733.2.a.q 2
5733.2.a.r 2
5733.2.a.s 2
5733.2.a.t 2
5733.2.a.u 2
5733.2.a.v 2
5733.2.a.w 2
5733.2.a.x 3
5733.2.a.y 3
5733.2.a.z 3
5733.2.a.ba 3
5733.2.a.bb 3
5733.2.a.bc 3
5733.2.a.bd 3
5733.2.a.be 3
5733.2.a.bf 4
5733.2.a.bg 4
5733.2.a.bh 4
5733.2.a.bi 4
5733.2.a.bj 4
5733.2.a.bk 4
5733.2.a.bl 5
5733.2.a.bm 5
5733.2.a.bn 5
5733.2.a.bo 5
5733.2.a.bp 5
5733.2.a.bq 5
5733.2.a.br 6
5733.2.a.bs 6
5733.2.a.bt 6
5733.2.a.bu 6
5733.2.a.bv 6
5733.2.a.bw 10
5733.2.a.bx 10
5733.2.a.by 10
5733.2.a.bz 10
5733.2.a.ca 12
5733.2.a.cb 12
5733.2.c χ5733(883,)\chi_{5733}(883, \cdot) n/a 234 1
5733.2.e χ5733(4850,)\chi_{5733}(4850, \cdot) n/a 160 1
5733.2.g χ5733(5732,)\chi_{5733}(5732, \cdot) n/a 184 1
5733.2.i χ5733(295,)\chi_{5733}(295, \cdot) n/a 1128 2
5733.2.j χ5733(1990,)\chi_{5733}(1990, \cdot) n/a 400 2
5733.2.k χ5733(3019,)\chi_{5733}(3019, \cdot) n/a 1104 2
5733.2.l χ5733(373,)\chi_{5733}(373, \cdot) n/a 1104 2
5733.2.m χ5733(1912,)\chi_{5733}(1912, \cdot) n/a 984 2
5733.2.n χ5733(3448,)\chi_{5733}(3448, \cdot) n/a 458 2
5733.2.o χ5733(2206,)\chi_{5733}(2206, \cdot) n/a 468 2
5733.2.p χ5733(2713,)\chi_{5733}(2713, \cdot) n/a 1104 2
5733.2.q χ5733(79,)\chi_{5733}(79, \cdot) n/a 960 2
5733.2.r χ5733(2419,)\chi_{5733}(2419, \cdot) n/a 960 2
5733.2.s χ5733(802,)\chi_{5733}(802, \cdot) n/a 458 2
5733.2.t χ5733(2941,)\chi_{5733}(2941, \cdot) n/a 1128 2
5733.2.u χ5733(2284,)\chi_{5733}(2284, \cdot) n/a 1104 2
5733.2.w χ5733(3284,)\chi_{5733}(3284, \cdot) n/a 380 2
5733.2.y χ5733(1126,)\chi_{5733}(1126, \cdot) n/a 456 2
5733.2.z χ5733(2272,)\chi_{5733}(2272, \cdot) n/a 1104 2
5733.2.bb χ5733(146,)\chi_{5733}(146, \cdot) n/a 1104 2
5733.2.be χ5733(950,)\chi_{5733}(950, \cdot) n/a 960 2
5733.2.bg χ5733(1979,)\chi_{5733}(1979, \cdot) n/a 372 2
5733.2.bh χ5733(589,)\chi_{5733}(589, \cdot) n/a 1128 2
5733.2.bk χ5733(3301,)\chi_{5733}(3301, \cdot) n/a 1104 2
5733.2.bm χ5733(3007,)\chi_{5733}(3007, \cdot) n/a 458 2
5733.2.bn χ5733(1244,)\chi_{5733}(1244, \cdot) n/a 1104 2
5733.2.bq χ5733(881,)\chi_{5733}(881, \cdot) n/a 376 2
5733.2.bs χ5733(803,)\chi_{5733}(803, \cdot) n/a 1104 2
5733.2.bt χ5733(5225,)\chi_{5733}(5225, \cdot) n/a 1104 2
5733.2.cc χ5733(4196,)\chi_{5733}(4196, \cdot) n/a 1104 2
5733.2.ce χ5733(1910,)\chi_{5733}(1910, \cdot) n/a 1104 2
5733.2.cf χ5733(1538,)\chi_{5733}(1538, \cdot) n/a 372 2
5733.2.ch χ5733(4703,)\chi_{5733}(4703, \cdot) n/a 1104 2
5733.2.ci χ5733(1403,)\chi_{5733}(1403, \cdot) n/a 376 2
5733.2.cm χ5733(1109,)\chi_{5733}(1109, \cdot) n/a 1104 2
5733.2.cq χ5733(961,)\chi_{5733}(961, \cdot) n/a 1104 2
5733.2.ct χ5733(1765,)\chi_{5733}(1765, \cdot) n/a 470 2
5733.2.cv χ5733(1843,)\chi_{5733}(1843, \cdot) n/a 1104 2
5733.2.cw χ5733(5066,)\chi_{5733}(5066, \cdot) n/a 372 2
5733.2.cz χ5733(1550,)\chi_{5733}(1550, \cdot) n/a 1104 2
5733.2.db χ5733(1028,)\chi_{5733}(1028, \cdot) n/a 960 2
5733.2.dd χ5733(68,)\chi_{5733}(68, \cdot) n/a 1104 2
5733.2.de χ5733(2057,)\chi_{5733}(2057, \cdot) n/a 1104 2
5733.2.df χ5733(521,)\chi_{5733}(521, \cdot) n/a 320 2
5733.2.dj χ5733(1096,)\chi_{5733}(1096, \cdot) n/a 1104 2
5733.2.dk χ5733(2500,)\chi_{5733}(2500, \cdot) n/a 1128 2
5733.2.dl χ5733(2872,)\chi_{5733}(2872, \cdot) n/a 460 2
5733.2.do χ5733(361,)\chi_{5733}(361, \cdot) n/a 458 2
5733.2.dr χ5733(2578,)\chi_{5733}(2578, \cdot) n/a 1104 2
5733.2.dt χ5733(2794,)\chi_{5733}(2794, \cdot) n/a 1128 2
5733.2.du χ5733(4343,)\chi_{5733}(4343, \cdot) n/a 960 2
5733.2.dx χ5733(1322,)\chi_{5733}(1322, \cdot) n/a 376 2
5733.2.dz χ5733(815,)\chi_{5733}(815, \cdot) n/a 1104 2
5733.2.ea χ5733(374,)\chi_{5733}(374, \cdot) n/a 1104 2
5733.2.eg χ5733(1832,)\chi_{5733}(1832, \cdot) n/a 1104 2
5733.2.ei χ5733(4625,)\chi_{5733}(4625, \cdot) n/a 372 2
5733.2.ej χ5733(1616,)\chi_{5733}(1616, \cdot) n/a 1104 2
5733.2.em χ5733(820,)\chi_{5733}(820, \cdot) n/a 1680 6
5733.2.en χ5733(1892,)\chi_{5733}(1892, \cdot) n/a 2208 4
5733.2.eq χ5733(619,)\chi_{5733}(619, \cdot) n/a 2208 4
5733.2.er χ5733(1861,)\chi_{5733}(1861, \cdot) n/a 2208 4
5733.2.eu χ5733(1783,)\chi_{5733}(1783, \cdot) n/a 916 4
5733.2.ew χ5733(3362,)\chi_{5733}(3362, \cdot) n/a 2208 4
5733.2.ex χ5733(1814,)\chi_{5733}(1814, \cdot) n/a 2256 4
5733.2.fa χ5733(2186,)\chi_{5733}(2186, \cdot) n/a 744 4
5733.2.fb χ5733(1354,)\chi_{5733}(1354, \cdot) n/a 2208 4
5733.2.fe χ5733(422,)\chi_{5733}(422, \cdot) n/a 744 4
5733.2.ff χ5733(704,)\chi_{5733}(704, \cdot) n/a 2208 4
5733.2.fi χ5733(785,)\chi_{5733}(785, \cdot) n/a 2256 4
5733.2.fl χ5733(31,)\chi_{5733}(31, \cdot) n/a 2208 4
5733.2.fm χ5733(97,)\chi_{5733}(97, \cdot) n/a 2208 4
5733.2.fn χ5733(1567,)\chi_{5733}(1567, \cdot) n/a 920 4
5733.2.fo χ5733(460,)\chi_{5733}(460, \cdot) n/a 920 4
5733.2.ft χ5733(1060,)\chi_{5733}(1060, \cdot) n/a 2208 4
5733.2.fu χ5733(1636,)\chi_{5733}(1636, \cdot) n/a 2208 4
5733.2.fx χ5733(197,)\chi_{5733}(197, \cdot) n/a 768 4
5733.2.fy χ5733(1292,)\chi_{5733}(1292, \cdot) n/a 2208 4
5733.2.fz χ5733(50,)\chi_{5733}(50, \cdot) n/a 2256 4
5733.2.ga χ5733(863,)\chi_{5733}(863, \cdot) n/a 752 4
5733.2.gf χ5733(275,)\chi_{5733}(275, \cdot) n/a 2208 4
5733.2.gg χ5733(128,)\chi_{5733}(128, \cdot) n/a 2208 4
5733.2.gi χ5733(19,)\chi_{5733}(19, \cdot) n/a 916 4
5733.2.gj χ5733(1489,)\chi_{5733}(1489, \cdot) n/a 2208 4
5733.2.gm χ5733(538,)\chi_{5733}(538, \cdot) n/a 2208 4
5733.2.go χ5733(818,)\chi_{5733}(818, \cdot) n/a 1584 6
5733.2.gq χ5733(755,)\chi_{5733}(755, \cdot) n/a 1344 6
5733.2.gs χ5733(64,)\chi_{5733}(64, \cdot) n/a 1956 6
5733.2.gu χ5733(445,)\chi_{5733}(445, \cdot) n/a 9360 12
5733.2.gv χ5733(22,)\chi_{5733}(22, \cdot) n/a 9360 12
5733.2.gw χ5733(289,)\chi_{5733}(289, \cdot) n/a 3900 12
5733.2.gx χ5733(625,)\chi_{5733}(625, \cdot) n/a 8064 12
5733.2.gy χ5733(898,)\chi_{5733}(898, \cdot) n/a 8064 12
5733.2.gz χ5733(16,)\chi_{5733}(16, \cdot) n/a 9360 12
5733.2.ha χ5733(568,)\chi_{5733}(568, \cdot) n/a 3888 12
5733.2.hb χ5733(100,)\chi_{5733}(100, \cdot) n/a 3900 12
5733.2.hc χ5733(274,)\chi_{5733}(274, \cdot) n/a 8064 12
5733.2.hd χ5733(718,)\chi_{5733}(718, \cdot) n/a 9360 12
5733.2.he χ5733(529,)\chi_{5733}(529, \cdot) n/a 9360 12
5733.2.hf χ5733(235,)\chi_{5733}(235, \cdot) n/a 3360 12
5733.2.hg χ5733(211,)\chi_{5733}(211, \cdot) n/a 9360 12
5733.2.hh χ5733(307,)\chi_{5733}(307, \cdot) n/a 3912 12
5733.2.hj χ5733(8,)\chi_{5733}(8, \cdot) n/a 3168 12
5733.2.hn χ5733(335,)\chi_{5733}(335, \cdot) n/a 9360 12
5733.2.ho χ5733(17,)\chi_{5733}(17, \cdot) n/a 3144 12
5733.2.hq χ5733(38,)\chi_{5733}(38, \cdot) n/a 9360 12
5733.2.hw χ5733(173,)\chi_{5733}(173, \cdot) n/a 9360 12
5733.2.hx χ5733(614,)\chi_{5733}(614, \cdot) n/a 9360 12
5733.2.hz χ5733(503,)\chi_{5733}(503, \cdot) n/a 3120 12
5733.2.ic χ5733(248,)\chi_{5733}(248, \cdot) n/a 8064 12
5733.2.id χ5733(337,)\chi_{5733}(337, \cdot) n/a 9360 12
5733.2.if χ5733(88,)\chi_{5733}(88, \cdot) n/a 9360 12
5733.2.ii χ5733(1180,)\chi_{5733}(1180, \cdot) n/a 3900 12
5733.2.il χ5733(298,)\chi_{5733}(298, \cdot) n/a 3888 12
5733.2.im χ5733(43,)\chi_{5733}(43, \cdot) n/a 9360 12
5733.2.in χ5733(277,)\chi_{5733}(277, \cdot) n/a 9360 12
5733.2.ir χ5733(404,)\chi_{5733}(404, \cdot) n/a 2688 12
5733.2.is χ5733(419,)\chi_{5733}(419, \cdot) n/a 9360 12
5733.2.it χ5733(542,)\chi_{5733}(542, \cdot) n/a 9360 12
5733.2.iv χ5733(209,)\chi_{5733}(209, \cdot) n/a 8064 12
5733.2.ix χ5733(698,)\chi_{5733}(698, \cdot) n/a 9360 12
5733.2.ja χ5733(152,)\chi_{5733}(152, \cdot) n/a 3144 12
5733.2.jb χ5733(4,)\chi_{5733}(4, \cdot) n/a 9360 12
5733.2.jd χ5733(127,)\chi_{5733}(127, \cdot) n/a 3888 12
5733.2.jg χ5733(142,)\chi_{5733}(142, \cdot) n/a 9360 12
5733.2.jk χ5733(257,)\chi_{5733}(257, \cdot) n/a 9360 12
5733.2.jo χ5733(467,)\chi_{5733}(467, \cdot) n/a 3120 12
5733.2.jp χ5733(524,)\chi_{5733}(524, \cdot) n/a 9360 12
5733.2.jr χ5733(647,)\chi_{5733}(647, \cdot) n/a 3144 12
5733.2.js χ5733(272,)\chi_{5733}(272, \cdot) n/a 9360 12
5733.2.ju χ5733(101,)\chi_{5733}(101, \cdot) n/a 9360 12
5733.2.kd χ5733(311,)\chi_{5733}(311, \cdot) n/a 9360 12
5733.2.ke χ5733(563,)\chi_{5733}(563, \cdot) n/a 9360 12
5733.2.kg χ5733(62,)\chi_{5733}(62, \cdot) n/a 3120 12
5733.2.kj χ5733(185,)\chi_{5733}(185, \cdot) n/a 9360 12
5733.2.kk χ5733(478,)\chi_{5733}(478, \cdot) n/a 3900 12
5733.2.km χ5733(25,)\chi_{5733}(25, \cdot) n/a 9360 12
5733.2.kp χ5733(673,)\chi_{5733}(673, \cdot) n/a 9360 12
5733.2.kq χ5733(269,)\chi_{5733}(269, \cdot) n/a 3144 12
5733.2.ks χ5733(131,)\chi_{5733}(131, \cdot) n/a 8064 12
5733.2.kv χ5733(230,)\chi_{5733}(230, \cdot) n/a 9360 12
5733.2.kx χ5733(394,)\chi_{5733}(394, \cdot) n/a 9360 12
5733.2.ky χ5733(34,)\chi_{5733}(34, \cdot) n/a 18720 24
5733.2.lb χ5733(115,)\chi_{5733}(115, \cdot) n/a 18720 24
5733.2.lc χ5733(262,)\chi_{5733}(262, \cdot) n/a 7800 24
5733.2.le χ5733(2,)\chi_{5733}(2, \cdot) n/a 18720 24
5733.2.lf χ5733(137,)\chi_{5733}(137, \cdot) n/a 18720 24
5733.2.lk χ5733(44,)\chi_{5733}(44, \cdot) n/a 6240 24
5733.2.ll χ5733(722,)\chi_{5733}(722, \cdot) n/a 18720 24
5733.2.lm χ5733(317,)\chi_{5733}(317, \cdot) n/a 18720 24
5733.2.ln χ5733(71,)\chi_{5733}(71, \cdot) n/a 6240 24
5733.2.lq χ5733(409,)\chi_{5733}(409, \cdot) n/a 18720 24
5733.2.lr χ5733(241,)\chi_{5733}(241, \cdot) n/a 18720 24
5733.2.lw χ5733(73,)\chi_{5733}(73, \cdot) n/a 7776 24
5733.2.lx χ5733(370,)\chi_{5733}(370, \cdot) n/a 7776 24
5733.2.ly χ5733(76,)\chi_{5733}(76, \cdot) n/a 18720 24
5733.2.lz χ5733(187,)\chi_{5733}(187, \cdot) n/a 18720 24
5733.2.mc χ5733(239,)\chi_{5733}(239, \cdot) n/a 18720 24
5733.2.mf χ5733(11,)\chi_{5733}(11, \cdot) n/a 18720 24
5733.2.mg χ5733(431,)\chi_{5733}(431, \cdot) n/a 6288 24
5733.2.mj χ5733(124,)\chi_{5733}(124, \cdot) n/a 18720 24
5733.2.mk χ5733(305,)\chi_{5733}(305, \cdot) n/a 6288 24
5733.2.mn χ5733(176,)\chi_{5733}(176, \cdot) n/a 18720 24
5733.2.mo χ5733(86,)\chi_{5733}(86, \cdot) n/a 18720 24
5733.2.mq χ5733(136,)\chi_{5733}(136, \cdot) n/a 7800 24
5733.2.mt χ5733(202,)\chi_{5733}(202, \cdot) n/a 18720 24
5733.2.mu χ5733(229,)\chi_{5733}(229, \cdot) n/a 18720 24
5733.2.mx χ5733(158,)\chi_{5733}(158, \cdot) n/a 18720 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(5733))S_{2}^{\mathrm{old}}(\Gamma_1(5733)) into lower level spaces

S2old(Γ1(5733)) S_{2}^{\mathrm{old}}(\Gamma_1(5733)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))18^{\oplus 18}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))12^{\oplus 12}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))6^{\oplus 6}\oplusS2new(Γ1(13))S_{2}^{\mathrm{new}}(\Gamma_1(13))9^{\oplus 9}\oplusS2new(Γ1(21))S_{2}^{\mathrm{new}}(\Gamma_1(21))8^{\oplus 8}\oplusS2new(Γ1(39))S_{2}^{\mathrm{new}}(\Gamma_1(39))6^{\oplus 6}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))6^{\oplus 6}\oplusS2new(Γ1(63))S_{2}^{\mathrm{new}}(\Gamma_1(63))4^{\oplus 4}\oplusS2new(Γ1(91))S_{2}^{\mathrm{new}}(\Gamma_1(91))6^{\oplus 6}\oplusS2new(Γ1(117))S_{2}^{\mathrm{new}}(\Gamma_1(117))3^{\oplus 3}\oplusS2new(Γ1(147))S_{2}^{\mathrm{new}}(\Gamma_1(147))4^{\oplus 4}\oplusS2new(Γ1(273))S_{2}^{\mathrm{new}}(\Gamma_1(273))4^{\oplus 4}\oplusS2new(Γ1(441))S_{2}^{\mathrm{new}}(\Gamma_1(441))2^{\oplus 2}\oplusS2new(Γ1(637))S_{2}^{\mathrm{new}}(\Gamma_1(637))3^{\oplus 3}\oplusS2new(Γ1(819))S_{2}^{\mathrm{new}}(\Gamma_1(819))2^{\oplus 2}\oplusS2new(Γ1(1911))S_{2}^{\mathrm{new}}(\Gamma_1(1911))2^{\oplus 2}