# Properties

 Label 5733.2.a.l Level $5733$ Weight $2$ Character orbit 5733.a Self dual yes Analytic conductor $45.778$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5733,2,Mod(1,5733)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5733, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5733.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5733 = 3^{2} \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5733.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$45.7782354788$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 2 q^{2} + 2 q^{4} - 3 q^{5}+O(q^{10})$$ q + 2 * q^2 + 2 * q^4 - 3 * q^5 $$q + 2 q^{2} + 2 q^{4} - 3 q^{5} - 6 q^{10} + 6 q^{11} + q^{13} - 4 q^{16} + 4 q^{17} - 5 q^{19} - 6 q^{20} + 12 q^{22} - 3 q^{23} + 4 q^{25} + 2 q^{26} + 5 q^{29} + 3 q^{31} - 8 q^{32} + 8 q^{34} - 4 q^{37} - 10 q^{38} - 6 q^{41} - q^{43} + 12 q^{44} - 6 q^{46} + 7 q^{47} + 8 q^{50} + 2 q^{52} + 9 q^{53} - 18 q^{55} + 10 q^{58} + 8 q^{59} + 10 q^{61} + 6 q^{62} - 8 q^{64} - 3 q^{65} - 6 q^{67} + 8 q^{68} + 8 q^{71} + 13 q^{73} - 8 q^{74} - 10 q^{76} + 3 q^{79} + 12 q^{80} - 12 q^{82} + 15 q^{83} - 12 q^{85} - 2 q^{86} + 3 q^{89} - 6 q^{92} + 14 q^{94} + 15 q^{95} - 7 q^{97}+O(q^{100})$$ q + 2 * q^2 + 2 * q^4 - 3 * q^5 - 6 * q^10 + 6 * q^11 + q^13 - 4 * q^16 + 4 * q^17 - 5 * q^19 - 6 * q^20 + 12 * q^22 - 3 * q^23 + 4 * q^25 + 2 * q^26 + 5 * q^29 + 3 * q^31 - 8 * q^32 + 8 * q^34 - 4 * q^37 - 10 * q^38 - 6 * q^41 - q^43 + 12 * q^44 - 6 * q^46 + 7 * q^47 + 8 * q^50 + 2 * q^52 + 9 * q^53 - 18 * q^55 + 10 * q^58 + 8 * q^59 + 10 * q^61 + 6 * q^62 - 8 * q^64 - 3 * q^65 - 6 * q^67 + 8 * q^68 + 8 * q^71 + 13 * q^73 - 8 * q^74 - 10 * q^76 + 3 * q^79 + 12 * q^80 - 12 * q^82 + 15 * q^83 - 12 * q^85 - 2 * q^86 + 3 * q^89 - 6 * q^92 + 14 * q^94 + 15 * q^95 - 7 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
2.00000 0 2.00000 −3.00000 0 0 0 0 −6.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.l 1
3.b odd 2 1 637.2.a.a 1
7.b odd 2 1 819.2.a.f 1
21.c even 2 1 91.2.a.a 1
21.g even 6 2 637.2.e.e 2
21.h odd 6 2 637.2.e.d 2
39.d odd 2 1 8281.2.a.l 1
84.h odd 2 1 1456.2.a.g 1
105.g even 2 1 2275.2.a.h 1
168.e odd 2 1 5824.2.a.t 1
168.i even 2 1 5824.2.a.s 1
273.g even 2 1 1183.2.a.b 1
273.o odd 4 2 1183.2.c.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.a 1 21.c even 2 1
637.2.a.a 1 3.b odd 2 1
637.2.e.d 2 21.h odd 6 2
637.2.e.e 2 21.g even 6 2
819.2.a.f 1 7.b odd 2 1
1183.2.a.b 1 273.g even 2 1
1183.2.c.b 2 273.o odd 4 2
1456.2.a.g 1 84.h odd 2 1
2275.2.a.h 1 105.g even 2 1
5733.2.a.l 1 1.a even 1 1 trivial
5824.2.a.s 1 168.i even 2 1
5824.2.a.t 1 168.e odd 2 1
8281.2.a.l 1 39.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5733))$$:

 $$T_{2} - 2$$ T2 - 2 $$T_{5} + 3$$ T5 + 3 $$T_{11} - 6$$ T11 - 6 $$T_{17} - 4$$ T17 - 4 $$T_{19} + 5$$ T19 + 5 $$T_{31} - 3$$ T31 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 2$$
$3$ $$T$$
$5$ $$T + 3$$
$7$ $$T$$
$11$ $$T - 6$$
$13$ $$T - 1$$
$17$ $$T - 4$$
$19$ $$T + 5$$
$23$ $$T + 3$$
$29$ $$T - 5$$
$31$ $$T - 3$$
$37$ $$T + 4$$
$41$ $$T + 6$$
$43$ $$T + 1$$
$47$ $$T - 7$$
$53$ $$T - 9$$
$59$ $$T - 8$$
$61$ $$T - 10$$
$67$ $$T + 6$$
$71$ $$T - 8$$
$73$ $$T - 13$$
$79$ $$T - 3$$
$83$ $$T - 15$$
$89$ $$T - 3$$
$97$ $$T + 7$$