Properties

Label 49.2
Level 49
Weight 2
Dimension 69
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 392
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 49 = 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(392\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(49))\).

Total New Old
Modular forms 128 118 10
Cusp forms 69 69 0
Eisenstein series 59 49 10

Trace form

\( 69 q - 18 q^{2} - 17 q^{3} - 14 q^{4} - 15 q^{5} - 9 q^{6} - 14 q^{7} - 24 q^{8} - 8 q^{9} - 3 q^{10} - 9 q^{11} + 7 q^{12} - 7 q^{13} - 15 q^{15} + 10 q^{16} - 3 q^{17} + 18 q^{18} - q^{19} + 21 q^{20}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
49.2.a \(\chi_{49}(1, \cdot)\) 49.2.a.a 1 1
49.2.c \(\chi_{49}(18, \cdot)\) 49.2.c.a 2 2
49.2.e \(\chi_{49}(8, \cdot)\) 49.2.e.a 6 6
49.2.e.b 12
49.2.g \(\chi_{49}(2, \cdot)\) 49.2.g.a 48 12