Properties

Label 441.2
Level 441
Weight 2
Dimension 5142
Nonzero newspaces 20
Newform subspaces 81
Sturm bound 28224
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 81 \)
Sturm bound: \(28224\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(441))\).

Total New Old
Modular forms 7536 5579 1957
Cusp forms 6577 5142 1435
Eisenstein series 959 437 522

Trace form

\( 5142q - 45q^{2} - 60q^{3} - 37q^{4} - 39q^{5} - 60q^{6} - 50q^{7} - 63q^{8} - 60q^{9} + O(q^{10}) \) \( 5142q - 45q^{2} - 60q^{3} - 37q^{4} - 39q^{5} - 60q^{6} - 50q^{7} - 63q^{8} - 60q^{9} - 105q^{10} - 27q^{11} - 84q^{12} - 31q^{13} - 60q^{14} - 132q^{15} - 69q^{16} - 87q^{17} - 108q^{18} - 157q^{19} - 135q^{20} - 90q^{21} - 117q^{22} - 75q^{23} - 132q^{24} - 45q^{25} - 111q^{26} - 96q^{27} - 156q^{28} - 81q^{29} - 144q^{30} - 43q^{31} - 141q^{32} - 108q^{33} - 87q^{34} - 87q^{35} - 228q^{36} - 189q^{37} - 213q^{38} - 132q^{39} - 285q^{40} - 225q^{41} - 138q^{42} - 143q^{43} - 321q^{44} - 156q^{45} - 363q^{46} - 141q^{47} - 36q^{48} - 150q^{49} - 246q^{50} - 60q^{51} - 233q^{52} - 21q^{53} - 198q^{55} - 102q^{56} - 12q^{57} - 75q^{58} + 87q^{59} + 144q^{60} - 68q^{61} + 207q^{62} + 12q^{63} - 169q^{64} + 81q^{65} + 24q^{66} - 39q^{67} + 177q^{68} - 12q^{69} - 87q^{70} - 93q^{71} + 48q^{72} - 217q^{73} - 87q^{74} - 84q^{75} - 139q^{76} - 99q^{77} - 180q^{78} - 135q^{79} - 198q^{80} - 228q^{81} - 330q^{82} - 279q^{83} - 216q^{84} - 249q^{85} - 462q^{86} - 240q^{87} - 450q^{88} - 411q^{89} - 384q^{90} - 311q^{91} - 528q^{92} - 288q^{93} - 432q^{94} - 459q^{95} - 336q^{96} - 280q^{97} - 480q^{98} - 384q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(441))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
441.2.a \(\chi_{441}(1, \cdot)\) 441.2.a.a 1 1
441.2.a.b 1
441.2.a.c 1
441.2.a.d 1
441.2.a.e 1
441.2.a.f 1
441.2.a.g 2
441.2.a.h 2
441.2.a.i 2
441.2.a.j 2
441.2.c \(\chi_{441}(440, \cdot)\) 441.2.c.a 4 1
441.2.c.b 8
441.2.e \(\chi_{441}(226, \cdot)\) 441.2.e.a 2 2
441.2.e.b 2
441.2.e.c 2
441.2.e.d 2
441.2.e.e 2
441.2.e.f 4
441.2.e.g 4
441.2.e.h 4
441.2.e.i 4
441.2.e.j 4
441.2.f \(\chi_{441}(148, \cdot)\) 441.2.f.a 2 2
441.2.f.b 2
441.2.f.c 6
441.2.f.d 6
441.2.f.e 10
441.2.f.f 10
441.2.f.g 12
441.2.f.h 24
441.2.g \(\chi_{441}(67, \cdot)\) 441.2.g.a 2 2
441.2.g.b 6
441.2.g.c 6
441.2.g.d 6
441.2.g.e 6
441.2.g.f 10
441.2.g.g 12
441.2.g.h 24
441.2.h \(\chi_{441}(214, \cdot)\) 441.2.h.a 2 2
441.2.h.b 6
441.2.h.c 6
441.2.h.d 6
441.2.h.e 6
441.2.h.f 10
441.2.h.g 12
441.2.h.h 24
441.2.i \(\chi_{441}(68, \cdot)\) 441.2.i.a 2 2
441.2.i.b 10
441.2.i.c 12
441.2.i.d 48
441.2.o \(\chi_{441}(146, \cdot)\) 441.2.o.a 2 2
441.2.o.b 2
441.2.o.c 10
441.2.o.d 10
441.2.o.e 48
441.2.p \(\chi_{441}(80, \cdot)\) 441.2.p.a 4 2
441.2.p.b 8
441.2.p.c 16
441.2.s \(\chi_{441}(362, \cdot)\) 441.2.s.a 2 2
441.2.s.b 10
441.2.s.c 12
441.2.s.d 48
441.2.u \(\chi_{441}(64, \cdot)\) 441.2.u.a 6 6
441.2.u.b 12
441.2.u.c 24
441.2.u.d 36
441.2.u.e 60
441.2.w \(\chi_{441}(62, \cdot)\) 441.2.w.a 120 6
441.2.y \(\chi_{441}(25, \cdot)\) 441.2.y.a 648 12
441.2.z \(\chi_{441}(4, \cdot)\) 441.2.z.a 648 12
441.2.ba \(\chi_{441}(22, \cdot)\) 441.2.ba.a 648 12
441.2.bb \(\chi_{441}(37, \cdot)\) 441.2.bb.a 12 12
441.2.bb.b 24
441.2.bb.c 48
441.2.bb.d 48
441.2.bb.e 60
441.2.bb.f 72
441.2.bd \(\chi_{441}(47, \cdot)\) 441.2.bd.a 648 12
441.2.bg \(\chi_{441}(17, \cdot)\) 441.2.bg.a 216 12
441.2.bh \(\chi_{441}(20, \cdot)\) 441.2.bh.a 648 12
441.2.bn \(\chi_{441}(5, \cdot)\) 441.2.bn.a 648 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(441))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(441)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(147))\)\(^{\oplus 2}\)