Properties

Label 5733.2.a.s
Level $5733$
Weight $2$
Character orbit 5733.a
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( 3 - \beta ) q^{5} -2 \beta q^{8} +O(q^{10})\) \( q + \beta q^{2} + ( 3 - \beta ) q^{5} -2 \beta q^{8} + ( -2 + 3 \beta ) q^{10} -3 \beta q^{11} + q^{13} -4 q^{16} + \beta q^{17} + ( 3 + 3 \beta ) q^{19} -6 q^{22} + ( 3 + 2 \beta ) q^{23} + ( 6 - 6 \beta ) q^{25} + \beta q^{26} + ( -3 + 2 \beta ) q^{29} + ( 1 - 3 \beta ) q^{31} + 2 q^{34} + ( -2 + 3 \beta ) q^{37} + ( 6 + 3 \beta ) q^{38} + ( 4 - 6 \beta ) q^{40} + ( 6 + 2 \beta ) q^{41} -5 q^{43} + ( 4 + 3 \beta ) q^{46} + ( 3 - \beta ) q^{47} + ( -12 + 6 \beta ) q^{50} + ( 3 - 2 \beta ) q^{53} + ( 6 - 9 \beta ) q^{55} + ( 4 - 3 \beta ) q^{58} + ( 6 - 4 \beta ) q^{59} -6 q^{61} + ( -6 + \beta ) q^{62} + 8 q^{64} + ( 3 - \beta ) q^{65} + ( -6 - 6 \beta ) q^{67} + ( 6 + 5 \beta ) q^{71} + ( 5 + 3 \beta ) q^{73} + ( 6 - 2 \beta ) q^{74} + ( 7 + 6 \beta ) q^{79} + ( -12 + 4 \beta ) q^{80} + ( 4 + 6 \beta ) q^{82} + ( 9 + 3 \beta ) q^{83} + ( -2 + 3 \beta ) q^{85} -5 \beta q^{86} + 12 q^{88} + ( 3 - \beta ) q^{89} + ( -2 + 3 \beta ) q^{94} + ( 3 + 6 \beta ) q^{95} + ( 1 - 9 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 6q^{5} + O(q^{10}) \) \( 2q + 6q^{5} - 4q^{10} + 2q^{13} - 8q^{16} + 6q^{19} - 12q^{22} + 6q^{23} + 12q^{25} - 6q^{29} + 2q^{31} + 4q^{34} - 4q^{37} + 12q^{38} + 8q^{40} + 12q^{41} - 10q^{43} + 8q^{46} + 6q^{47} - 24q^{50} + 6q^{53} + 12q^{55} + 8q^{58} + 12q^{59} - 12q^{61} - 12q^{62} + 16q^{64} + 6q^{65} - 12q^{67} + 12q^{71} + 10q^{73} + 12q^{74} + 14q^{79} - 24q^{80} + 8q^{82} + 18q^{83} - 4q^{85} + 24q^{88} + 6q^{89} - 4q^{94} + 6q^{95} + 2q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.41421 0 0 4.41421 0 0 2.82843 0 −6.24264
1.2 1.41421 0 0 1.58579 0 0 −2.82843 0 2.24264
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.s 2
3.b odd 2 1 637.2.a.g 2
7.b odd 2 1 819.2.a.h 2
21.c even 2 1 91.2.a.c 2
21.g even 6 2 637.2.e.f 4
21.h odd 6 2 637.2.e.g 4
39.d odd 2 1 8281.2.a.v 2
84.h odd 2 1 1456.2.a.q 2
105.g even 2 1 2275.2.a.j 2
168.e odd 2 1 5824.2.a.bk 2
168.i even 2 1 5824.2.a.bl 2
273.g even 2 1 1183.2.a.d 2
273.o odd 4 2 1183.2.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.c 2 21.c even 2 1
637.2.a.g 2 3.b odd 2 1
637.2.e.f 4 21.g even 6 2
637.2.e.g 4 21.h odd 6 2
819.2.a.h 2 7.b odd 2 1
1183.2.a.d 2 273.g even 2 1
1183.2.c.d 4 273.o odd 4 2
1456.2.a.q 2 84.h odd 2 1
2275.2.a.j 2 105.g even 2 1
5733.2.a.s 2 1.a even 1 1 trivial
5824.2.a.bk 2 168.e odd 2 1
5824.2.a.bl 2 168.i even 2 1
8281.2.a.v 2 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5733))\):

\( T_{2}^{2} - 2 \)
\( T_{5}^{2} - 6 T_{5} + 7 \)
\( T_{11}^{2} - 18 \)
\( T_{17}^{2} - 2 \)
\( T_{19}^{2} - 6 T_{19} - 9 \)
\( T_{31}^{2} - 2 T_{31} - 17 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 7 - 6 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( -18 + T^{2} \)
$13$ \( ( -1 + T )^{2} \)
$17$ \( -2 + T^{2} \)
$19$ \( -9 - 6 T + T^{2} \)
$23$ \( 1 - 6 T + T^{2} \)
$29$ \( 1 + 6 T + T^{2} \)
$31$ \( -17 - 2 T + T^{2} \)
$37$ \( -14 + 4 T + T^{2} \)
$41$ \( 28 - 12 T + T^{2} \)
$43$ \( ( 5 + T )^{2} \)
$47$ \( 7 - 6 T + T^{2} \)
$53$ \( 1 - 6 T + T^{2} \)
$59$ \( 4 - 12 T + T^{2} \)
$61$ \( ( 6 + T )^{2} \)
$67$ \( -36 + 12 T + T^{2} \)
$71$ \( -14 - 12 T + T^{2} \)
$73$ \( 7 - 10 T + T^{2} \)
$79$ \( -23 - 14 T + T^{2} \)
$83$ \( 63 - 18 T + T^{2} \)
$89$ \( 7 - 6 T + T^{2} \)
$97$ \( -161 - 2 T + T^{2} \)
show more
show less