Properties

Label 21.2
Level 21
Weight 2
Dimension 5
Nonzero newspaces 3
Newform subspaces 3
Sturm bound 64
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 21 = 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 3 \)
Sturm bound: \(64\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(21))\).

Total New Old
Modular forms 28 17 11
Cusp forms 5 5 0
Eisenstein series 23 12 11

Trace form

\( 5 q - 3 q^{2} - 3 q^{3} - 5 q^{4} + 3 q^{6} - 5 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} + 6 q^{11} + 3 q^{12} + 3 q^{14} - 6 q^{15} - q^{16} - 6 q^{17} - 3 q^{18} - 6 q^{19} - 6 q^{20} - 3 q^{21} - 12 q^{22}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
21.2.a \(\chi_{21}(1, \cdot)\) 21.2.a.a 1 1
21.2.c \(\chi_{21}(20, \cdot)\) None 0 1
21.2.e \(\chi_{21}(4, \cdot)\) 21.2.e.a 2 2
21.2.g \(\chi_{21}(5, \cdot)\) 21.2.g.a 2 2