Defining parameters
Level: | \( N \) | \(=\) | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5733.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 54 \) | ||
Sturm bound: | \(1568\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(11\), \(17\), \(19\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5733))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 205 | 611 |
Cusp forms | 753 | 205 | 548 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(18\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(22\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(24\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(31\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(29\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(30\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(33\) |
Plus space | \(+\) | \(95\) | ||
Minus space | \(-\) | \(110\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5733))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5733))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5733)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(819))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\)\(^{\oplus 2}\)