# Properties

 Label 5733.2.a.x Level $5733$ Weight $2$ Character orbit 5733.a Self dual yes Analytic conductor $45.778$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5733,2,Mod(1,5733)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5733, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5733.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5733 = 3^{2} \cdot 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5733.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$45.7782354788$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.316.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 4x + 2$$ x^3 - x^2 - 4*x + 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + ( - \beta_1 + 1) q^{5} + ( - \beta_{2} - 1) q^{8}+O(q^{10})$$ q - b1 * q^2 + (b2 + 1) * q^4 + (-b1 + 1) * q^5 + (-b2 - 1) * q^8 $$q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + ( - \beta_1 + 1) q^{5} + ( - \beta_{2} - 1) q^{8} + (\beta_{2} - \beta_1 + 3) q^{10} + ( - \beta_{2} + \beta_1 - 1) q^{11} - q^{13} + ( - \beta_{2} + 2 \beta_1 - 1) q^{16} + (\beta_{2} + \beta_1 + 1) q^{17} + (\beta_1 + 1) q^{19} - 2 \beta_1 q^{20} + (2 \beta_1 - 2) q^{22} + (\beta_{2} + 2 \beta_1 - 4) q^{23} + (\beta_{2} - 2 \beta_1 - 1) q^{25} + \beta_1 q^{26} + ( - \beta_{2} - 8) q^{29} + ( - 2 \beta_{2} + \beta_1 + 1) q^{31} + (\beta_{2} + 2 \beta_1 - 3) q^{32} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{34} + (\beta_{2} + 3 \beta_1 - 1) q^{37} + ( - \beta_{2} - \beta_1 - 3) q^{38} + 2 \beta_1 q^{40} + ( - 2 \beta_{2} + 2 \beta_1) q^{41} + ( - 3 \beta_{2} - 2 \beta_1 + 4) q^{43} - 4 q^{44} + ( - 3 \beta_{2} + 3 \beta_1 - 7) q^{46} + ( - 4 \beta_{2} + \beta_1 - 3) q^{47} + (\beta_{2} + 5) q^{50} + ( - \beta_{2} - 1) q^{52} + (3 \beta_{2} - 2 \beta_1 - 2) q^{53} + ( - \beta_{2} + 3 \beta_1 - 3) q^{55} + (\beta_{2} + 9 \beta_1 + 1) q^{58} + (4 \beta_{2} + 2 \beta_1 - 2) q^{59} + 2 q^{61} + (\beta_{2} + \beta_1 - 1) q^{62} + ( - \beta_{2} - 2 \beta_1 - 5) q^{64} + (\beta_1 - 1) q^{65} + (4 \beta_{2} - 6 \beta_1 - 2) q^{67} + (2 \beta_{2} + 4 \beta_1 + 6) q^{68} + (\beta_{2} - 3 \beta_1 + 3) q^{71} + (4 \beta_{2} + \beta_1 + 3) q^{73} + ( - 4 \beta_{2} - 10) q^{74} + (2 \beta_{2} + 2 \beta_1 + 2) q^{76} + ( - \beta_{2} + 4 \beta_1 - 6) q^{79} + ( - 2 \beta_{2} + 4 \beta_1 - 6) q^{80} + (2 \beta_1 - 4) q^{82} + (4 \beta_{2} - 9 \beta_1 - 1) q^{83} + ( - \beta_{2} - \beta_1 - 3) q^{85} + (5 \beta_{2} - \beta_1 + 9) q^{86} + 4 q^{88} + ( - 2 \beta_{2} + 5 \beta_1 - 1) q^{89} + ( - 2 \beta_{2} + 6 \beta_1 + 2) q^{92} + (3 \beta_{2} + 7 \beta_1 + 1) q^{94} + ( - \beta_{2} - 2) q^{95} + (\beta_1 + 3) q^{97}+O(q^{100})$$ q - b1 * q^2 + (b2 + 1) * q^4 + (-b1 + 1) * q^5 + (-b2 - 1) * q^8 + (b2 - b1 + 3) * q^10 + (-b2 + b1 - 1) * q^11 - q^13 + (-b2 + 2*b1 - 1) * q^16 + (b2 + b1 + 1) * q^17 + (b1 + 1) * q^19 - 2*b1 * q^20 + (2*b1 - 2) * q^22 + (b2 + 2*b1 - 4) * q^23 + (b2 - 2*b1 - 1) * q^25 + b1 * q^26 + (-b2 - 8) * q^29 + (-2*b2 + b1 + 1) * q^31 + (b2 + 2*b1 - 3) * q^32 + (-2*b2 - 2*b1 - 4) * q^34 + (b2 + 3*b1 - 1) * q^37 + (-b2 - b1 - 3) * q^38 + 2*b1 * q^40 + (-2*b2 + 2*b1) * q^41 + (-3*b2 - 2*b1 + 4) * q^43 - 4 * q^44 + (-3*b2 + 3*b1 - 7) * q^46 + (-4*b2 + b1 - 3) * q^47 + (b2 + 5) * q^50 + (-b2 - 1) * q^52 + (3*b2 - 2*b1 - 2) * q^53 + (-b2 + 3*b1 - 3) * q^55 + (b2 + 9*b1 + 1) * q^58 + (4*b2 + 2*b1 - 2) * q^59 + 2 * q^61 + (b2 + b1 - 1) * q^62 + (-b2 - 2*b1 - 5) * q^64 + (b1 - 1) * q^65 + (4*b2 - 6*b1 - 2) * q^67 + (2*b2 + 4*b1 + 6) * q^68 + (b2 - 3*b1 + 3) * q^71 + (4*b2 + b1 + 3) * q^73 + (-4*b2 - 10) * q^74 + (2*b2 + 2*b1 + 2) * q^76 + (-b2 + 4*b1 - 6) * q^79 + (-2*b2 + 4*b1 - 6) * q^80 + (2*b1 - 4) * q^82 + (4*b2 - 9*b1 - 1) * q^83 + (-b2 - b1 - 3) * q^85 + (5*b2 - b1 + 9) * q^86 + 4 * q^88 + (-2*b2 + 5*b1 - 1) * q^89 + (-2*b2 + 6*b1 + 2) * q^92 + (3*b2 + 7*b1 + 1) * q^94 + (-b2 - 2) * q^95 + (b1 + 3) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{2} + 3 q^{4} + 2 q^{5} - 3 q^{8}+O(q^{10})$$ 3 * q - q^2 + 3 * q^4 + 2 * q^5 - 3 * q^8 $$3 q - q^{2} + 3 q^{4} + 2 q^{5} - 3 q^{8} + 8 q^{10} - 2 q^{11} - 3 q^{13} - q^{16} + 4 q^{17} + 4 q^{19} - 2 q^{20} - 4 q^{22} - 10 q^{23} - 5 q^{25} + q^{26} - 24 q^{29} + 4 q^{31} - 7 q^{32} - 14 q^{34} - 10 q^{38} + 2 q^{40} + 2 q^{41} + 10 q^{43} - 12 q^{44} - 18 q^{46} - 8 q^{47} + 15 q^{50} - 3 q^{52} - 8 q^{53} - 6 q^{55} + 12 q^{58} - 4 q^{59} + 6 q^{61} - 2 q^{62} - 17 q^{64} - 2 q^{65} - 12 q^{67} + 22 q^{68} + 6 q^{71} + 10 q^{73} - 30 q^{74} + 8 q^{76} - 14 q^{79} - 14 q^{80} - 10 q^{82} - 12 q^{83} - 10 q^{85} + 26 q^{86} + 12 q^{88} + 2 q^{89} + 12 q^{92} + 10 q^{94} - 6 q^{95} + 10 q^{97}+O(q^{100})$$ 3 * q - q^2 + 3 * q^4 + 2 * q^5 - 3 * q^8 + 8 * q^10 - 2 * q^11 - 3 * q^13 - q^16 + 4 * q^17 + 4 * q^19 - 2 * q^20 - 4 * q^22 - 10 * q^23 - 5 * q^25 + q^26 - 24 * q^29 + 4 * q^31 - 7 * q^32 - 14 * q^34 - 10 * q^38 + 2 * q^40 + 2 * q^41 + 10 * q^43 - 12 * q^44 - 18 * q^46 - 8 * q^47 + 15 * q^50 - 3 * q^52 - 8 * q^53 - 6 * q^55 + 12 * q^58 - 4 * q^59 + 6 * q^61 - 2 * q^62 - 17 * q^64 - 2 * q^65 - 12 * q^67 + 22 * q^68 + 6 * q^71 + 10 * q^73 - 30 * q^74 + 8 * q^76 - 14 * q^79 - 14 * q^80 - 10 * q^82 - 12 * q^83 - 10 * q^85 + 26 * q^86 + 12 * q^88 + 2 * q^89 + 12 * q^92 + 10 * q^94 - 6 * q^95 + 10 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4x + 2$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ v^2 - 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ b2 + 3

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.34292 0.470683 −1.81361
−2.34292 0 3.48929 −1.34292 0 0 −3.48929 0 3.14637
1.2 −0.470683 0 −1.77846 0.529317 0 0 1.77846 0 −0.249141
1.3 1.81361 0 1.28917 2.81361 0 0 −1.28917 0 5.10278
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$7$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.x 3
3.b odd 2 1 637.2.a.j 3
7.b odd 2 1 819.2.a.i 3
21.c even 2 1 91.2.a.d 3
21.g even 6 2 637.2.e.j 6
21.h odd 6 2 637.2.e.i 6
39.d odd 2 1 8281.2.a.bg 3
84.h odd 2 1 1456.2.a.t 3
105.g even 2 1 2275.2.a.m 3
168.e odd 2 1 5824.2.a.bs 3
168.i even 2 1 5824.2.a.by 3
273.g even 2 1 1183.2.a.i 3
273.o odd 4 2 1183.2.c.f 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 21.c even 2 1
637.2.a.j 3 3.b odd 2 1
637.2.e.i 6 21.h odd 6 2
637.2.e.j 6 21.g even 6 2
819.2.a.i 3 7.b odd 2 1
1183.2.a.i 3 273.g even 2 1
1183.2.c.f 6 273.o odd 4 2
1456.2.a.t 3 84.h odd 2 1
2275.2.a.m 3 105.g even 2 1
5733.2.a.x 3 1.a even 1 1 trivial
5824.2.a.bs 3 168.e odd 2 1
5824.2.a.by 3 168.i even 2 1
8281.2.a.bg 3 39.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5733))$$:

 $$T_{2}^{3} + T_{2}^{2} - 4T_{2} - 2$$ T2^3 + T2^2 - 4*T2 - 2 $$T_{5}^{3} - 2T_{5}^{2} - 3T_{5} + 2$$ T5^3 - 2*T5^2 - 3*T5 + 2 $$T_{11}^{3} + 2T_{11}^{2} - 6T_{11} - 8$$ T11^3 + 2*T11^2 - 6*T11 - 8 $$T_{17}^{3} - 4T_{17}^{2} - 10T_{17} - 4$$ T17^3 - 4*T17^2 - 10*T17 - 4 $$T_{19}^{3} - 4T_{19}^{2} + T_{19} + 4$$ T19^3 - 4*T19^2 + T19 + 4 $$T_{31}^{3} - 4T_{31}^{2} - 19T_{31} - 16$$ T31^3 - 4*T31^2 - 19*T31 - 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} + T^{2} - 4T - 2$$
$3$ $$T^{3}$$
$5$ $$T^{3} - 2 T^{2} - 3 T + 2$$
$7$ $$T^{3}$$
$11$ $$T^{3} + 2 T^{2} - 6 T - 8$$
$13$ $$(T + 1)^{3}$$
$17$ $$T^{3} - 4 T^{2} - 10 T - 4$$
$19$ $$T^{3} - 4T^{2} + T + 4$$
$23$ $$T^{3} + 10 T^{2} + T - 136$$
$29$ $$T^{3} + 24 T^{2} + 185 T + 454$$
$31$ $$T^{3} - 4 T^{2} - 19 T - 16$$
$37$ $$T^{3} - 58T - 124$$
$41$ $$T^{3} - 2 T^{2} - 28 T - 8$$
$43$ $$T^{3} - 10 T^{2} - 71 T + 628$$
$47$ $$T^{3} + 8 T^{2} - 79 T - 544$$
$53$ $$T^{3} + 8 T^{2} - 35 T + 22$$
$59$ $$T^{3} + 4 T^{2} - 156 T - 688$$
$61$ $$(T - 2)^{3}$$
$67$ $$T^{3} + 12 T^{2} - 124 T - 976$$
$71$ $$T^{3} - 6 T^{2} - 22 T - 16$$
$73$ $$T^{3} - 10 T^{2} - 99 T + 274$$
$79$ $$T^{3} + 14 T^{2} + 5 T - 16$$
$83$ $$T^{3} + 12 T^{2} - 271 T - 3268$$
$89$ $$T^{3} - 2 T^{2} - 95 T + 422$$
$97$ $$T^{3} - 10 T^{2} + 29 T - 22$$