# Properties

 Label 819.2 Level 819 Weight 2 Dimension 17640 Nonzero newspaces 84 Newform subspaces 212 Sturm bound 96768 Trace bound 9

## Defining parameters

 Level: $$N$$ = $$819 = 3^{2} \cdot 7 \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$84$$ Newform subspaces: $$212$$ Sturm bound: $$96768$$ Trace bound: $$9$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(819))$$.

Total New Old
Modular forms 25344 18632 6712
Cusp forms 23041 17640 5401
Eisenstein series 2303 992 1311

## Trace form

 $$17640 q - 54 q^{2} - 72 q^{3} - 46 q^{4} - 48 q^{5} - 72 q^{6} - 62 q^{7} - 108 q^{8} - 72 q^{9} + O(q^{10})$$ $$17640 q - 54 q^{2} - 72 q^{3} - 46 q^{4} - 48 q^{5} - 72 q^{6} - 62 q^{7} - 108 q^{8} - 72 q^{9} - 102 q^{10} - 24 q^{11} - 96 q^{12} - 32 q^{13} - 162 q^{14} - 216 q^{15} - 38 q^{16} - 78 q^{17} - 120 q^{18} - 144 q^{19} - 78 q^{20} - 132 q^{21} - 120 q^{22} - 60 q^{23} - 192 q^{24} - 12 q^{25} - 36 q^{26} - 204 q^{27} - 186 q^{28} - 186 q^{29} - 252 q^{30} - 112 q^{31} - 306 q^{32} - 192 q^{33} - 192 q^{34} - 216 q^{35} - 504 q^{36} - 266 q^{37} - 432 q^{38} - 216 q^{39} - 480 q^{40} - 294 q^{41} - 300 q^{42} - 184 q^{43} - 432 q^{44} - 288 q^{45} - 288 q^{46} - 168 q^{47} - 192 q^{48} - 94 q^{49} - 264 q^{50} - 120 q^{51} + 22 q^{52} + 36 q^{53} - 12 q^{54} + 12 q^{55} + 102 q^{56} - 96 q^{57} + 150 q^{58} + 204 q^{59} + 12 q^{60} + 86 q^{61} + 264 q^{62} + 24 q^{63} - 328 q^{64} - 126 q^{65} - 324 q^{66} - 128 q^{67} - 210 q^{68} - 168 q^{69} - 288 q^{70} - 420 q^{71} - 276 q^{72} - 504 q^{73} - 594 q^{74} - 336 q^{75} - 636 q^{76} - 396 q^{77} - 708 q^{78} - 432 q^{79} - 1050 q^{80} - 432 q^{81} - 798 q^{82} - 636 q^{83} - 552 q^{84} - 642 q^{85} - 840 q^{86} - 444 q^{87} - 888 q^{88} - 576 q^{89} - 708 q^{90} - 462 q^{91} - 1104 q^{92} - 444 q^{93} - 612 q^{94} - 420 q^{95} - 120 q^{96} - 280 q^{97} - 330 q^{98} - 240 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(819))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list available newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
819.2.a $$\chi_{819}(1, \cdot)$$ 819.2.a.a 1 1
819.2.a.b 1
819.2.a.c 1
819.2.a.d 1
819.2.a.e 1
819.2.a.f 1
819.2.a.g 2
819.2.a.h 2
819.2.a.i 3
819.2.a.j 3
819.2.a.k 4
819.2.a.l 4
819.2.a.m 6
819.2.c $$\chi_{819}(64, \cdot)$$ 819.2.c.a 2 1
819.2.c.b 6
819.2.c.c 6
819.2.c.d 8
819.2.c.e 12
819.2.e $$\chi_{819}(755, \cdot)$$ 819.2.e.a 32 1
819.2.g $$\chi_{819}(818, \cdot)$$ 819.2.g.a 8 1
819.2.g.b 8
819.2.g.c 12
819.2.g.d 12
819.2.i $$\chi_{819}(211, \cdot)$$ 819.2.i.a 84 2
819.2.i.b 84
819.2.j $$\chi_{819}(235, \cdot)$$ 819.2.j.a 2 2
819.2.j.b 2
819.2.j.c 4
819.2.j.d 6
819.2.j.e 6
819.2.j.f 8
819.2.j.g 10
819.2.j.h 10
819.2.j.i 12
819.2.j.j 20
819.2.k $$\chi_{819}(529, \cdot)$$ 819.2.k.a 216 2
819.2.l $$\chi_{819}(373, \cdot)$$ 819.2.l.a 216 2
819.2.m $$\chi_{819}(274, \cdot)$$ 819.2.m.a 2 2
819.2.m.b 6
819.2.m.c 30
819.2.m.d 34
819.2.m.e 36
819.2.m.f 36
819.2.n $$\chi_{819}(100, \cdot)$$ 819.2.n.a 2 2
819.2.n.b 2
819.2.n.c 2
819.2.n.d 12
819.2.n.e 16
819.2.n.f 20
819.2.n.g 36
819.2.o $$\chi_{819}(568, \cdot)$$ 819.2.o.a 4 2
819.2.o.b 4
819.2.o.c 4
819.2.o.d 6
819.2.o.e 6
819.2.o.f 6
819.2.o.g 6
819.2.o.h 8
819.2.o.i 12
819.2.o.j 16
819.2.p $$\chi_{819}(16, \cdot)$$ 819.2.p.a 216 2
819.2.q $$\chi_{819}(79, \cdot)$$ 819.2.q.a 96 2
819.2.q.b 96
819.2.r $$\chi_{819}(625, \cdot)$$ 819.2.r.a 96 2
819.2.r.b 96
819.2.s $$\chi_{819}(289, \cdot)$$ 819.2.s.a 2 2
819.2.s.b 2
819.2.s.c 2
819.2.s.d 12
819.2.s.e 16
819.2.s.f 20
819.2.s.g 36
819.2.t $$\chi_{819}(22, \cdot)$$ 819.2.t.a 84 2
819.2.t.b 84
819.2.u $$\chi_{819}(445, \cdot)$$ 819.2.u.a 216 2
819.2.w $$\chi_{819}(8, \cdot)$$ 819.2.w.a 28 2
819.2.w.b 28
819.2.y $$\chi_{819}(307, \cdot)$$ 819.2.y.a 4 2
819.2.y.b 4
819.2.y.c 4
819.2.y.d 4
819.2.y.e 8
819.2.y.f 12
819.2.y.g 12
819.2.y.h 12
819.2.y.i 32
819.2.z $$\chi_{819}(394, \cdot)$$ 819.2.z.a 2 2
819.2.z.b 214
819.2.bb $$\chi_{819}(146, \cdot)$$ 819.2.bb.a 2 2
819.2.bb.b 2
819.2.bb.c 212
819.2.be $$\chi_{819}(131, \cdot)$$ 819.2.be.a 192 2
819.2.bg $$\chi_{819}(269, \cdot)$$ 819.2.bg.a 8 2
819.2.bg.b 68
819.2.bh $$\chi_{819}(589, \cdot)$$ 819.2.bh.a 168 2
819.2.bk $$\chi_{819}(25, \cdot)$$ 819.2.bk.a 216 2
819.2.bm $$\chi_{819}(478, \cdot)$$ 819.2.bm.a 2 2
819.2.bm.b 2
819.2.bm.c 2
819.2.bm.d 4
819.2.bm.e 12
819.2.bm.f 12
819.2.bm.g 20
819.2.bm.h 36
819.2.bn $$\chi_{819}(185, \cdot)$$ 819.2.bn.a 216 2
819.2.bq $$\chi_{819}(62, \cdot)$$ 819.2.bq.a 72 2
819.2.bs $$\chi_{819}(563, \cdot)$$ 819.2.bs.a 216 2
819.2.bt $$\chi_{819}(311, \cdot)$$ 819.2.bt.a 216 2
819.2.cc $$\chi_{819}(101, \cdot)$$ 819.2.cc.a 216 2
819.2.ce $$\chi_{819}(272, \cdot)$$ 819.2.ce.a 216 2
819.2.cf $$\chi_{819}(647, \cdot)$$ 819.2.cf.a 76 2
819.2.ch $$\chi_{819}(524, \cdot)$$ 819.2.ch.a 216 2
819.2.ci $$\chi_{819}(467, \cdot)$$ 819.2.ci.a 72 2
819.2.cm $$\chi_{819}(257, \cdot)$$ 819.2.cm.a 216 2
819.2.cq $$\chi_{819}(142, \cdot)$$ 819.2.cq.a 216 2
819.2.ct $$\chi_{819}(127, \cdot)$$ 819.2.ct.a 12 2
819.2.ct.b 16
819.2.ct.c 16
819.2.ct.d 24
819.2.cv $$\chi_{819}(4, \cdot)$$ 819.2.cv.a 2 2
819.2.cv.b 214
819.2.cw $$\chi_{819}(152, \cdot)$$ 819.2.cw.a 8 2
819.2.cw.b 68
819.2.cz $$\chi_{819}(698, \cdot)$$ 819.2.cz.a 216 2
819.2.db $$\chi_{819}(209, \cdot)$$ 819.2.db.a 192 2
819.2.dd $$\chi_{819}(68, \cdot)$$ 819.2.dd.a 216 2
819.2.de $$\chi_{819}(419, \cdot)$$ 819.2.de.a 2 2
819.2.de.b 2
819.2.de.c 212
819.2.df $$\chi_{819}(404, \cdot)$$ 819.2.df.a 64 2
819.2.dj $$\chi_{819}(277, \cdot)$$ 819.2.dj.a 2 2
819.2.dj.b 214
819.2.dk $$\chi_{819}(43, \cdot)$$ 819.2.dk.a 168 2
819.2.dl $$\chi_{819}(298, \cdot)$$ 819.2.dl.a 2 2
819.2.dl.b 2
819.2.dl.c 2
819.2.dl.d 2
819.2.dl.e 16
819.2.dl.f 16
819.2.dl.g 16
819.2.dl.h 32
819.2.do $$\chi_{819}(361, \cdot)$$ 819.2.do.a 2 2
819.2.do.b 2
819.2.do.c 2
819.2.do.d 4
819.2.do.e 12
819.2.do.f 12
819.2.do.g 20
819.2.do.h 36
819.2.dr $$\chi_{819}(88, \cdot)$$ 819.2.dr.a 2 2
819.2.dr.b 214
819.2.dt $$\chi_{819}(337, \cdot)$$ 819.2.dt.a 168 2
819.2.du $$\chi_{819}(248, \cdot)$$ 819.2.du.a 192 2
819.2.dx $$\chi_{819}(503, \cdot)$$ 819.2.dx.a 72 2
819.2.dz $$\chi_{819}(614, \cdot)$$ 819.2.dz.a 216 2
819.2.ea $$\chi_{819}(173, \cdot)$$ 819.2.ea.a 216 2
819.2.eg $$\chi_{819}(38, \cdot)$$ 819.2.eg.a 216 2
819.2.ei $$\chi_{819}(17, \cdot)$$ 819.2.ei.a 76 2
819.2.ej $$\chi_{819}(335, \cdot)$$ 819.2.ej.a 216 2
819.2.em $$\chi_{819}(158, \cdot)$$ 819.2.em.a 432 4
819.2.ep $$\chi_{819}(229, \cdot)$$ 819.2.ep.a 432 4
819.2.eq $$\chi_{819}(202, \cdot)$$ 819.2.eq.a 432 4
819.2.et $$\chi_{819}(136, \cdot)$$ 819.2.et.a 4 4
819.2.et.b 28
819.2.et.c 36
819.2.et.d 40
819.2.et.e 72
819.2.ev $$\chi_{819}(86, \cdot)$$ 819.2.ev.a 432 4
819.2.ew $$\chi_{819}(176, \cdot)$$ 819.2.ew.a 336 4
819.2.ez $$\chi_{819}(305, \cdot)$$ 819.2.ez.a 152 4
819.2.fa $$\chi_{819}(124, \cdot)$$ 819.2.fa.a 432 4
819.2.fd $$\chi_{819}(422, \cdot)$$ 819.2.fd.a 152 4
819.2.fe $$\chi_{819}(11, \cdot)$$ 819.2.fe.a 432 4
819.2.fh $$\chi_{819}(239, \cdot)$$ 819.2.fh.a 336 4
819.2.fk $$\chi_{819}(31, \cdot)$$ 819.2.fk.a 432 4
819.2.fl $$\chi_{819}(76, \cdot)$$ 819.2.fl.a 432 4
819.2.fm $$\chi_{819}(370, \cdot)$$ 819.2.fm.a 4 4
819.2.fm.b 4
819.2.fm.c 4
819.2.fm.d 4
819.2.fm.e 32
819.2.fm.f 32
819.2.fm.g 32
819.2.fm.h 64
819.2.fn $$\chi_{819}(73, \cdot)$$ 819.2.fn.a 4 4
819.2.fn.b 4
819.2.fn.c 8
819.2.fn.d 8
819.2.fn.e 32
819.2.fn.f 36
819.2.fn.g 36
819.2.fn.h 48
819.2.fs $$\chi_{819}(241, \cdot)$$ 819.2.fs.a 432 4
819.2.ft $$\chi_{819}(409, \cdot)$$ 819.2.ft.a 432 4
819.2.fw $$\chi_{819}(71, \cdot)$$ 819.2.fw.a 56 4
819.2.fw.b 56
819.2.fx $$\chi_{819}(317, \cdot)$$ 819.2.fx.a 432 4
819.2.fy $$\chi_{819}(50, \cdot)$$ 819.2.fy.a 336 4
819.2.fz $$\chi_{819}(44, \cdot)$$ 819.2.fz.a 144 4
819.2.ge $$\chi_{819}(137, \cdot)$$ 819.2.ge.a 432 4
819.2.gf $$\chi_{819}(2, \cdot)$$ 819.2.gf.a 432 4
819.2.gh $$\chi_{819}(19, \cdot)$$ 819.2.gh.a 4 4
819.2.gh.b 28
819.2.gh.c 36
819.2.gh.d 40
819.2.gh.e 72
819.2.gi $$\chi_{819}(115, \cdot)$$ 819.2.gi.a 432 4
819.2.gl $$\chi_{819}(34, \cdot)$$ 819.2.gl.a 4 4
819.2.gl.b 4
819.2.gl.c 4
819.2.gl.d 4
819.2.gl.e 416

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(819))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(819)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(1))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(7))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(9))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(21))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(39))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(63))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(91))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(117))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(273))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(819))$$$$^{\oplus 1}$$