Properties

Label 91.2
Level 91
Weight 2
Dimension 261
Nonzero newspaces 15
Newform subspaces 26
Sturm bound 1344
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 91 = 7 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 26 \)
Sturm bound: \(1344\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(91))\).

Total New Old
Modular forms 408 373 35
Cusp forms 265 261 4
Eisenstein series 143 112 31

Trace form

\( 261 q - 27 q^{2} - 28 q^{3} - 31 q^{4} - 30 q^{5} - 36 q^{6} - 29 q^{7} - 57 q^{8} - 21 q^{9} - 12 q^{10} - 24 q^{11} - 13 q^{13} - 51 q^{14} - 60 q^{15} - 15 q^{16} - 24 q^{17} + 3 q^{18} - 4 q^{19} - 8 q^{21}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(91))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
91.2.a \(\chi_{91}(1, \cdot)\) 91.2.a.a 1 1
91.2.a.b 1
91.2.a.c 2
91.2.a.d 3
91.2.c \(\chi_{91}(64, \cdot)\) 91.2.c.a 6 1
91.2.e \(\chi_{91}(53, \cdot)\) 91.2.e.a 2 2
91.2.e.b 4
91.2.e.c 10
91.2.f \(\chi_{91}(22, \cdot)\) 91.2.f.a 4 2
91.2.f.b 4
91.2.f.c 8
91.2.g \(\chi_{91}(9, \cdot)\) 91.2.g.a 2 2
91.2.g.b 12
91.2.h \(\chi_{91}(16, \cdot)\) 91.2.h.a 2 2
91.2.h.b 12
91.2.i \(\chi_{91}(34, \cdot)\) 91.2.i.a 12 2
91.2.k \(\chi_{91}(4, \cdot)\) 91.2.k.a 2 2
91.2.k.b 12
91.2.q \(\chi_{91}(36, \cdot)\) 91.2.q.a 12 2
91.2.r \(\chi_{91}(25, \cdot)\) 91.2.r.a 16 2
91.2.u \(\chi_{91}(30, \cdot)\) 91.2.u.a 2 2
91.2.u.b 12
91.2.w \(\chi_{91}(19, \cdot)\) 91.2.w.a 28 4
91.2.ba \(\chi_{91}(45, \cdot)\) 91.2.ba.a 28 4
91.2.bb \(\chi_{91}(5, \cdot)\) 91.2.bb.a 32 4
91.2.bc \(\chi_{91}(6, \cdot)\) 91.2.bc.a 32 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(91))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(91)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)