Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(5,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([5, 15]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.ba (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −2.51634 | + | 0.443699i | −1.35749 | + | 1.07574i | 4.25573 | − | 1.54896i | −0.181827 | + | 1.03119i | 2.93860 | − | 3.30926i | 2.00134 | − | 1.73050i | −5.59594 | + | 3.23082i | 0.685547 | − | 2.92062i | − | 2.67551i | |
5.2 | −2.44999 | + | 0.431999i | 1.58275 | − | 0.703494i | 3.93642 | − | 1.43274i | 0.403704 | − | 2.28952i | −3.57380 | + | 2.40730i | −0.412545 | − | 2.61339i | −4.71627 | + | 2.72294i | 2.01019 | − | 2.22691i | 5.78368i | ||
5.3 | −2.31815 | + | 0.408753i | −0.111866 | − | 1.72843i | 3.32736 | − | 1.21106i | −0.175778 | + | 0.996886i | 0.965825 | + | 3.96105i | 1.63463 | + | 2.08038i | −3.14120 | + | 1.81358i | −2.97497 | + | 0.386707i | − | 2.38278i | |
5.4 | −2.27453 | + | 0.401061i | 1.22609 | + | 1.22340i | 3.13325 | − | 1.14041i | −0.595188 | + | 3.37548i | −3.27944 | − | 2.29092i | −2.64569 | + | 0.0174348i | −2.66893 | + | 1.54091i | 0.00659757 | + | 2.99999i | − | 7.91633i | |
5.5 | −1.98316 | + | 0.349685i | −1.71808 | − | 0.219557i | 1.93127 | − | 0.702926i | 0.521105 | − | 2.95533i | 3.48401 | − | 0.165370i | −1.49002 | + | 2.18628i | −0.0963007 | + | 0.0555993i | 2.90359 | + | 0.754431i | 6.04313i | ||
5.6 | −1.27749 | + | 0.225257i | 1.73184 | − | 0.0269248i | −0.298135 | + | 0.108512i | 0.194492 | − | 1.10302i | −2.20635 | + | 0.424505i | 0.0727513 | + | 2.64475i | 2.60324 | − | 1.50298i | 2.99855 | − | 0.0932590i | 1.45291i | ||
5.7 | −1.25823 | + | 0.221860i | 0.0538771 | + | 1.73121i | −0.345469 | + | 0.125740i | 0.640361 | − | 3.63167i | −0.451876 | − | 2.16631i | −1.30830 | − | 2.29964i | 2.61972 | − | 1.51249i | −2.99419 | + | 0.186545i | 4.71154i | ||
5.8 | −1.21351 | + | 0.213974i | −1.60161 | − | 0.659440i | −0.452565 | + | 0.164720i | −0.378134 | + | 2.14451i | 2.08467 | + | 0.457534i | −0.671624 | − | 2.55909i | 2.64823 | − | 1.52896i | 2.13028 | + | 2.11232i | − | 2.68329i | |
5.9 | −1.19961 | + | 0.211524i | −0.0787989 | + | 1.73026i | −0.485062 | + | 0.176548i | −0.243175 | + | 1.37911i | −0.271462 | − | 2.09230i | 2.41247 | + | 1.08628i | 2.65438 | − | 1.53251i | −2.98758 | − | 0.272685i | − | 1.70584i | |
5.10 | −0.408566 | + | 0.0720413i | 1.12900 | − | 1.31353i | −1.71765 | + | 0.625173i | 0.0312679 | − | 0.177329i | −0.366645 | + | 0.617997i | 1.82229 | − | 1.91814i | 1.37531 | − | 0.794036i | −0.450699 | − | 2.96595i | 0.0747032i | ||
5.11 | 0.220121 | − | 0.0388132i | −0.104309 | − | 1.72891i | −1.83244 | + | 0.666953i | 0.595276 | − | 3.37598i | −0.0900651 | − | 0.376520i | −2.47857 | + | 0.925586i | −0.764613 | + | 0.441450i | −2.97824 | + | 0.360682i | − | 0.766227i | |
5.12 | 0.284285 | − | 0.0501271i | 1.43787 | + | 0.965670i | −1.80108 | + | 0.655540i | −0.499509 | + | 2.83286i | 0.457172 | + | 0.202449i | 0.989753 | − | 2.45365i | −0.979151 | + | 0.565313i | 1.13496 | + | 2.77702i | 0.830377i | ||
5.13 | 0.357086 | − | 0.0629638i | −1.26279 | − | 1.18548i | −1.75584 | + | 0.639073i | −0.363271 | + | 2.06021i | −0.525567 | − | 0.343807i | 1.11830 | + | 2.39779i | −1.21478 | + | 0.701352i | 0.189288 | + | 2.99402i | 0.758545i | ||
5.14 | 0.491776 | − | 0.0867134i | −1.45806 | + | 0.934910i | −1.64506 | + | 0.598753i | 9.76251e−5 | 0 | 0.000553660i | −0.635971 | + | 0.586200i | −2.32328 | − | 1.26584i | −1.62200 | + | 0.936464i | 1.25189 | − | 2.72631i | 0 | 0.000280742i | |
5.15 | 0.826512 | − | 0.145736i | 0.181944 | + | 1.72247i | −1.21750 | + | 0.443135i | −0.133334 | + | 0.756174i | 0.401405 | + | 1.39712i | −1.31947 | + | 2.29325i | −2.39534 | + | 1.38295i | −2.93379 | + | 0.626786i | 0.644419i | ||
5.16 | 1.10969 | − | 0.195669i | 1.47374 | + | 0.909998i | −0.686257 | + | 0.249777i | 0.705645 | − | 4.00191i | 1.81345 | + | 0.721453i | 2.51373 | + | 0.825312i | −2.66435 | + | 1.53826i | 1.34381 | + | 2.68220i | − | 4.57896i | |
5.17 | 1.72891 | − | 0.304854i | 1.65859 | − | 0.499066i | 1.01682 | − | 0.370091i | −0.0612092 | + | 0.347134i | 2.71542 | − | 1.36847i | −2.64149 | + | 0.150064i | −1.39560 | + | 0.805749i | 2.50187 | − | 1.65549i | 0.618825i | ||
5.18 | 1.77439 | − | 0.312873i | 0.626754 | − | 1.61468i | 1.17119 | − | 0.426279i | −0.155940 | + | 0.884381i | 0.606919 | − | 3.06116i | 2.64257 | − | 0.129722i | −1.17597 | + | 0.678945i | −2.21436 | − | 2.02401i | 1.61803i | ||
5.19 | 1.77697 | − | 0.313327i | −1.53787 | − | 0.796838i | 1.18006 | − | 0.429505i | 0.415679 | − | 2.35743i | −2.98242 | − | 0.934099i | 0.444023 | − | 2.60823i | −1.16293 | + | 0.671420i | 1.73010 | + | 2.45087i | − | 4.31932i | |
5.20 | 1.95754 | − | 0.345166i | −1.39494 | + | 1.02672i | 1.83342 | − | 0.667310i | −0.649669 | + | 3.68445i | −2.37625 | + | 2.49133i | 2.58740 | − | 0.552593i | −0.0842052 | + | 0.0486159i | 0.891690 | − | 2.86442i | 7.43669i | ||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.ba | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.2.ba.a | ✓ | 132 |
3.b | odd | 2 | 1 | 567.2.ba.a | 132 | ||
7.d | odd | 6 | 1 | 189.2.bd.a | yes | 132 | |
21.g | even | 6 | 1 | 567.2.bd.a | 132 | ||
27.e | even | 9 | 1 | 567.2.bd.a | 132 | ||
27.f | odd | 18 | 1 | 189.2.bd.a | yes | 132 | |
189.x | odd | 18 | 1 | 567.2.ba.a | 132 | ||
189.ba | even | 18 | 1 | inner | 189.2.ba.a | ✓ | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.ba.a | ✓ | 132 | 1.a | even | 1 | 1 | trivial |
189.2.ba.a | ✓ | 132 | 189.ba | even | 18 | 1 | inner |
189.2.bd.a | yes | 132 | 7.d | odd | 6 | 1 | |
189.2.bd.a | yes | 132 | 27.f | odd | 18 | 1 | |
567.2.ba.a | 132 | 3.b | odd | 2 | 1 | ||
567.2.ba.a | 132 | 189.x | odd | 18 | 1 | ||
567.2.bd.a | 132 | 21.g | even | 6 | 1 | ||
567.2.bd.a | 132 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(189, [\chi])\).