Properties

Label 189.2.ba.a.5.11
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.11
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.220121 - 0.0388132i) q^{2} +(-0.104309 - 1.72891i) q^{3} +(-1.83244 + 0.666953i) q^{4} +(0.595276 - 3.37598i) q^{5} +(-0.0900651 - 0.376520i) q^{6} +(-2.47857 + 0.925586i) q^{7} +(-0.764613 + 0.441450i) q^{8} +(-2.97824 + 0.360682i) q^{9} +O(q^{10})\) \(q+(0.220121 - 0.0388132i) q^{2} +(-0.104309 - 1.72891i) q^{3} +(-1.83244 + 0.666953i) q^{4} +(0.595276 - 3.37598i) q^{5} +(-0.0900651 - 0.376520i) q^{6} +(-2.47857 + 0.925586i) q^{7} +(-0.764613 + 0.441450i) q^{8} +(-2.97824 + 0.360682i) q^{9} -0.766227i q^{10} +(-0.563881 + 0.0994274i) q^{11} +(1.34424 + 3.09855i) q^{12} +(0.663083 - 0.790231i) q^{13} +(-0.509659 + 0.299942i) q^{14} +(-5.89884 - 0.677031i) q^{15} +(2.83646 - 2.38007i) q^{16} +3.70384 q^{17} +(-0.641573 + 0.194989i) q^{18} -8.40493i q^{19} +(1.16081 + 6.58329i) q^{20} +(1.85879 + 4.18866i) q^{21} +(-0.120263 + 0.0437721i) q^{22} +(2.38732 - 2.84510i) q^{23} +(0.842981 + 1.27590i) q^{24} +(-6.34441 - 2.30918i) q^{25} +(0.115287 - 0.199683i) q^{26} +(0.934243 + 5.11148i) q^{27} +(3.92450 - 3.34917i) q^{28} +(2.81038 + 3.34928i) q^{29} +(-1.32474 + 0.0799245i) q^{30} +(0.645801 + 1.77433i) q^{31} +(1.66702 - 1.98668i) q^{32} +(0.230719 + 0.964526i) q^{33} +(0.815291 - 0.143758i) q^{34} +(1.64933 + 8.91856i) q^{35} +(5.21688 - 2.64727i) q^{36} +(2.08746 + 3.61558i) q^{37} +(-0.326222 - 1.85010i) q^{38} +(-1.43540 - 1.06398i) q^{39} +(1.03517 + 2.84410i) q^{40} +(0.371534 + 0.311754i) q^{41} +(0.571734 + 0.849866i) q^{42} +(-5.66998 - 2.06370i) q^{43} +(0.966963 - 0.558277i) q^{44} +(-0.555221 + 10.2692i) q^{45} +(0.415071 - 0.718925i) q^{46} +(-5.96744 - 2.17197i) q^{47} +(-4.41080 - 4.65572i) q^{48} +(5.28658 - 4.58825i) q^{49} +(-1.48616 - 0.262050i) q^{50} +(-0.386344 - 6.40359i) q^{51} +(-0.688011 + 1.89029i) q^{52} +(10.8697 - 6.27561i) q^{53} +(0.404039 + 1.08888i) q^{54} +1.96284i q^{55} +(1.48654 - 1.80188i) q^{56} +(-14.5313 + 0.876711i) q^{57} +(0.748619 + 0.628166i) q^{58} +(6.04312 + 5.07078i) q^{59} +(11.2608 - 2.69363i) q^{60} +(-1.51419 + 4.16020i) q^{61} +(0.211022 + 0.365500i) q^{62} +(7.04792 - 3.65059i) q^{63} +(-3.41290 + 5.91132i) q^{64} +(-2.27308 - 2.70896i) q^{65} +(0.0882223 + 0.203357i) q^{66} +(-1.67428 + 9.49530i) q^{67} +(-6.78705 + 2.47029i) q^{68} +(-5.16793 - 3.83069i) q^{69} +(0.709209 + 1.89915i) q^{70} +(-0.452673 - 0.261351i) q^{71} +(2.11798 - 1.59052i) q^{72} +(-6.85309 - 3.95663i) q^{73} +(0.599825 + 0.714844i) q^{74} +(-3.33057 + 11.2098i) q^{75} +(5.60569 + 15.4015i) q^{76} +(1.30559 - 0.768357i) q^{77} +(-0.357258 - 0.178491i) q^{78} +(-1.65313 - 9.37537i) q^{79} +(-6.34660 - 10.9926i) q^{80} +(8.73982 - 2.14839i) q^{81} +(0.0938826 + 0.0542032i) q^{82} +(-12.7845 + 10.7275i) q^{83} +(-6.19976 - 6.43574i) q^{84} +(2.20481 - 12.5041i) q^{85} +(-1.32818 - 0.234194i) q^{86} +(5.49744 - 5.20824i) q^{87} +(0.387258 - 0.324948i) q^{88} +11.8925 q^{89} +(0.276364 + 2.28201i) q^{90} +(-0.912067 + 2.57238i) q^{91} +(-2.47707 + 6.80570i) q^{92} +(3.00028 - 1.30161i) q^{93} +(-1.39786 - 0.246480i) q^{94} +(-28.3748 - 5.00325i) q^{95} +(-3.60866 - 2.67489i) q^{96} +(3.46606 - 9.52293i) q^{97} +(0.985601 - 1.21516i) q^{98} +(1.64351 - 0.499500i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.220121 0.0388132i 0.155649 0.0274451i −0.0952807 0.995450i \(-0.530375\pi\)
0.250930 + 0.968005i \(0.419264\pi\)
\(3\) −0.104309 1.72891i −0.0602229 0.998185i
\(4\) −1.83244 + 0.666953i −0.916219 + 0.333477i
\(5\) 0.595276 3.37598i 0.266215 1.50978i −0.499336 0.866408i \(-0.666423\pi\)
0.765552 0.643375i \(-0.222466\pi\)
\(6\) −0.0900651 0.376520i −0.0367689 0.153714i
\(7\) −2.47857 + 0.925586i −0.936810 + 0.349839i
\(8\) −0.764613 + 0.441450i −0.270332 + 0.156076i
\(9\) −2.97824 + 0.360682i −0.992746 + 0.120227i
\(10\) 0.766227i 0.242302i
\(11\) −0.563881 + 0.0994274i −0.170016 + 0.0299785i −0.258008 0.966143i \(-0.583066\pi\)
0.0879918 + 0.996121i \(0.471955\pi\)
\(12\) 1.34424 + 3.09855i 0.388049 + 0.894473i
\(13\) 0.663083 0.790231i 0.183906 0.219171i −0.666213 0.745762i \(-0.732086\pi\)
0.850119 + 0.526591i \(0.176530\pi\)
\(14\) −0.509659 + 0.299942i −0.136212 + 0.0801628i
\(15\) −5.89884 0.677031i −1.52307 0.174809i
\(16\) 2.83646 2.38007i 0.709116 0.595019i
\(17\) 3.70384 0.898312 0.449156 0.893453i \(-0.351725\pi\)
0.449156 + 0.893453i \(0.351725\pi\)
\(18\) −0.641573 + 0.194989i −0.151220 + 0.0459593i
\(19\) 8.40493i 1.92822i −0.265498 0.964111i \(-0.585536\pi\)
0.265498 0.964111i \(-0.414464\pi\)
\(20\) 1.16081 + 6.58329i 0.259565 + 1.47207i
\(21\) 1.85879 + 4.18866i 0.405621 + 0.914041i
\(22\) −0.120263 + 0.0437721i −0.0256401 + 0.00933224i
\(23\) 2.38732 2.84510i 0.497791 0.593244i −0.457390 0.889266i \(-0.651216\pi\)
0.955181 + 0.296022i \(0.0956602\pi\)
\(24\) 0.842981 + 1.27590i 0.172073 + 0.260442i
\(25\) −6.34441 2.30918i −1.26888 0.461835i
\(26\) 0.115287 0.199683i 0.0226096 0.0391610i
\(27\) 0.934243 + 5.11148i 0.179795 + 0.983704i
\(28\) 3.92450 3.34917i 0.741660 0.632933i
\(29\) 2.81038 + 3.34928i 0.521874 + 0.621945i 0.961023 0.276469i \(-0.0891643\pi\)
−0.439149 + 0.898414i \(0.644720\pi\)
\(30\) −1.32474 + 0.0799245i −0.241863 + 0.0145922i
\(31\) 0.645801 + 1.77433i 0.115989 + 0.318678i 0.984080 0.177728i \(-0.0568748\pi\)
−0.868090 + 0.496406i \(0.834653\pi\)
\(32\) 1.66702 1.98668i 0.294690 0.351198i
\(33\) 0.230719 + 0.964526i 0.0401630 + 0.167902i
\(34\) 0.815291 0.143758i 0.139821 0.0246543i
\(35\) 1.64933 + 8.91856i 0.278787 + 1.50751i
\(36\) 5.21688 2.64727i 0.869480 0.441212i
\(37\) 2.08746 + 3.61558i 0.343176 + 0.594398i 0.985021 0.172437i \(-0.0551640\pi\)
−0.641845 + 0.766835i \(0.721831\pi\)
\(38\) −0.326222 1.85010i −0.0529203 0.300126i
\(39\) −1.43540 1.06398i −0.229848 0.170373i
\(40\) 1.03517 + 2.84410i 0.163674 + 0.449692i
\(41\) 0.371534 + 0.311754i 0.0580239 + 0.0486879i 0.671338 0.741151i \(-0.265720\pi\)
−0.613315 + 0.789839i \(0.710164\pi\)
\(42\) 0.571734 + 0.849866i 0.0882204 + 0.131137i
\(43\) −5.66998 2.06370i −0.864664 0.314712i −0.128660 0.991689i \(-0.541067\pi\)
−0.736004 + 0.676977i \(0.763290\pi\)
\(44\) 0.966963 0.558277i 0.145775 0.0841634i
\(45\) −0.555221 + 10.2692i −0.0827674 + 1.53084i
\(46\) 0.415071 0.718925i 0.0611989 0.106000i
\(47\) −5.96744 2.17197i −0.870441 0.316815i −0.132095 0.991237i \(-0.542170\pi\)
−0.738346 + 0.674422i \(0.764393\pi\)
\(48\) −4.41080 4.65572i −0.636644 0.671995i
\(49\) 5.28658 4.58825i 0.755226 0.655465i
\(50\) −1.48616 0.262050i −0.210175 0.0370595i
\(51\) −0.386344 6.40359i −0.0540990 0.896682i
\(52\) −0.688011 + 1.89029i −0.0954100 + 0.262137i
\(53\) 10.8697 6.27561i 1.49306 0.862021i 0.493096 0.869975i \(-0.335865\pi\)
0.999968 + 0.00795364i \(0.00253175\pi\)
\(54\) 0.404039 + 1.08888i 0.0549828 + 0.148178i
\(55\) 1.96284i 0.264669i
\(56\) 1.48654 1.80188i 0.198648 0.240786i
\(57\) −14.5313 + 0.876711i −1.92472 + 0.116123i
\(58\) 0.748619 + 0.628166i 0.0982985 + 0.0824822i
\(59\) 6.04312 + 5.07078i 0.786747 + 0.660159i 0.944938 0.327249i \(-0.106122\pi\)
−0.158191 + 0.987409i \(0.550566\pi\)
\(60\) 11.2608 2.69363i 1.45377 0.347747i
\(61\) −1.51419 + 4.16020i −0.193872 + 0.532659i −0.998097 0.0616663i \(-0.980359\pi\)
0.804225 + 0.594325i \(0.202581\pi\)
\(62\) 0.211022 + 0.365500i 0.0267998 + 0.0464186i
\(63\) 7.04792 3.65059i 0.887955 0.459931i
\(64\) −3.41290 + 5.91132i −0.426613 + 0.738915i
\(65\) −2.27308 2.70896i −0.281941 0.336005i
\(66\) 0.0882223 + 0.203357i 0.0108594 + 0.0250316i
\(67\) −1.67428 + 9.49530i −0.204546 + 1.16004i 0.693607 + 0.720353i \(0.256020\pi\)
−0.898153 + 0.439683i \(0.855091\pi\)
\(68\) −6.78705 + 2.47029i −0.823051 + 0.299566i
\(69\) −5.16793 3.83069i −0.622146 0.461160i
\(70\) 0.709209 + 1.89915i 0.0847667 + 0.226991i
\(71\) −0.452673 0.261351i −0.0537224 0.0310167i 0.472898 0.881117i \(-0.343208\pi\)
−0.526621 + 0.850100i \(0.676541\pi\)
\(72\) 2.11798 1.59052i 0.249606 0.187445i
\(73\) −6.85309 3.95663i −0.802094 0.463089i 0.0421090 0.999113i \(-0.486592\pi\)
−0.844203 + 0.536024i \(0.819926\pi\)
\(74\) 0.599825 + 0.714844i 0.0697282 + 0.0830989i
\(75\) −3.33057 + 11.2098i −0.384581 + 1.29439i
\(76\) 5.60569 + 15.4015i 0.643017 + 1.76668i
\(77\) 1.30559 0.768357i 0.148785 0.0875625i
\(78\) −0.357258 0.178491i −0.0404515 0.0202102i
\(79\) −1.65313 9.37537i −0.185992 1.05481i −0.924675 0.380758i \(-0.875663\pi\)
0.738683 0.674053i \(-0.235448\pi\)
\(80\) −6.34660 10.9926i −0.709571 1.22901i
\(81\) 8.73982 2.14839i 0.971091 0.238710i
\(82\) 0.0938826 + 0.0542032i 0.0103676 + 0.00598574i
\(83\) −12.7845 + 10.7275i −1.40328 + 1.17749i −0.443660 + 0.896195i \(0.646320\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(84\) −6.19976 6.43574i −0.676449 0.702197i
\(85\) 2.20481 12.5041i 0.239145 1.35626i
\(86\) −1.32818 0.234194i −0.143221 0.0252538i
\(87\) 5.49744 5.20824i 0.589388 0.558382i
\(88\) 0.387258 0.324948i 0.0412819 0.0346396i
\(89\) 11.8925 1.26060 0.630302 0.776350i \(-0.282931\pi\)
0.630302 + 0.776350i \(0.282931\pi\)
\(90\) 0.276364 + 2.28201i 0.0291313 + 0.240545i
\(91\) −0.912067 + 2.57238i −0.0956106 + 0.269659i
\(92\) −2.47707 + 6.80570i −0.258253 + 0.709543i
\(93\) 3.00028 1.30161i 0.311115 0.134971i
\(94\) −1.39786 0.246480i −0.144178 0.0254225i
\(95\) −28.3748 5.00325i −2.91120 0.513323i
\(96\) −3.60866 2.67489i −0.368308 0.273005i
\(97\) 3.46606 9.52293i 0.351926 0.966907i −0.629826 0.776737i \(-0.716874\pi\)
0.981751 0.190171i \(-0.0609042\pi\)
\(98\) 0.985601 1.21516i 0.0995608 0.122750i
\(99\) 1.64351 0.499500i 0.165179 0.0502016i
\(100\) 13.1658 1.31658
\(101\) 12.0960 10.1498i 1.20360 1.00994i 0.204077 0.978955i \(-0.434581\pi\)
0.999520 0.0309832i \(-0.00986382\pi\)
\(102\) −0.333586 1.39457i −0.0330300 0.138083i
\(103\) −4.08844 0.720902i −0.402846 0.0710326i −0.0314457 0.999505i \(-0.510011\pi\)
−0.371400 + 0.928473i \(0.621122\pi\)
\(104\) −0.158154 + 0.896938i −0.0155083 + 0.0879520i
\(105\) 15.2473 3.78182i 1.48799 0.369068i
\(106\) 2.14906 1.80328i 0.208736 0.175150i
\(107\) −2.22494 1.28457i −0.215093 0.124184i 0.388583 0.921414i \(-0.372965\pi\)
−0.603676 + 0.797230i \(0.706298\pi\)
\(108\) −5.12106 8.74337i −0.492774 0.841331i
\(109\) 0.237244 + 0.410919i 0.0227239 + 0.0393589i 0.877164 0.480191i \(-0.159433\pi\)
−0.854440 + 0.519550i \(0.826099\pi\)
\(110\) 0.0761840 + 0.432061i 0.00726386 + 0.0411954i
\(111\) 6.03326 3.98616i 0.572652 0.378349i
\(112\) −4.82740 + 8.52456i −0.456146 + 0.805495i
\(113\) −5.70443 15.6728i −0.536628 1.47437i −0.851047 0.525089i \(-0.824032\pi\)
0.314420 0.949284i \(-0.398190\pi\)
\(114\) −3.16462 + 0.756991i −0.296394 + 0.0708987i
\(115\) −8.18387 9.75316i −0.763150 0.909487i
\(116\) −7.38366 4.26296i −0.685555 0.395806i
\(117\) −1.68980 + 2.59266i −0.156222 + 0.239691i
\(118\) 1.52703 + 0.881631i 0.140574 + 0.0811607i
\(119\) −9.18021 + 3.42822i −0.841548 + 0.314264i
\(120\) 4.80921 2.08638i 0.439019 0.190459i
\(121\) −10.0285 + 3.65009i −0.911686 + 0.331826i
\(122\) −0.171834 + 0.974517i −0.0155571 + 0.0882286i
\(123\) 0.500240 0.674867i 0.0451051 0.0608507i
\(124\) −2.36678 2.82062i −0.212543 0.253299i
\(125\) −3.00225 + 5.20005i −0.268530 + 0.465107i
\(126\) 1.40970 1.07712i 0.125586 0.0959578i
\(127\) 2.88122 + 4.99042i 0.255667 + 0.442828i 0.965076 0.261969i \(-0.0843717\pi\)
−0.709410 + 0.704796i \(0.751038\pi\)
\(128\) −2.29582 + 6.30771i −0.202924 + 0.557528i
\(129\) −2.97652 + 10.0181i −0.262068 + 0.882047i
\(130\) −0.605497 0.508072i −0.0531056 0.0445609i
\(131\) 11.3834 + 9.55180i 0.994572 + 0.834545i 0.986223 0.165420i \(-0.0528980\pi\)
0.00834879 + 0.999965i \(0.497342\pi\)
\(132\) −1.06607 1.61356i −0.0927896 0.140442i
\(133\) 7.77948 + 20.8322i 0.674567 + 1.80638i
\(134\) 2.15510i 0.186172i
\(135\) 17.8124 0.111244i 1.53304 0.00957439i
\(136\) −2.83200 + 1.63506i −0.242842 + 0.140205i
\(137\) −1.73524 + 4.76754i −0.148252 + 0.407319i −0.991484 0.130232i \(-0.958428\pi\)
0.843232 + 0.537550i \(0.180650\pi\)
\(138\) −1.28625 0.642629i −0.109493 0.0547042i
\(139\) 9.50632 + 1.67622i 0.806315 + 0.142175i 0.561588 0.827417i \(-0.310191\pi\)
0.244727 + 0.969592i \(0.421302\pi\)
\(140\) −8.97055 15.2427i −0.758150 1.28824i
\(141\) −3.13268 + 10.5437i −0.263819 + 0.887941i
\(142\) −0.109787 0.0399591i −0.00921309 0.00335329i
\(143\) −0.295329 + 0.511525i −0.0246966 + 0.0427758i
\(144\) −7.58921 + 8.11149i −0.632434 + 0.675958i
\(145\) 12.9800 7.49403i 1.07793 0.622345i
\(146\) −1.66208 0.604947i −0.137555 0.0500658i
\(147\) −8.48410 8.66141i −0.699757 0.714381i
\(148\) −6.23656 5.23310i −0.512642 0.430158i
\(149\) 3.91052 + 10.7441i 0.320363 + 0.880189i 0.990446 + 0.137903i \(0.0440362\pi\)
−0.670083 + 0.742286i \(0.733742\pi\)
\(150\) −0.298041 + 2.59677i −0.0243349 + 0.212025i
\(151\) 3.17852 + 18.0263i 0.258664 + 1.46696i 0.786489 + 0.617604i \(0.211897\pi\)
−0.527825 + 0.849353i \(0.676992\pi\)
\(152\) 3.71035 + 6.42652i 0.300949 + 0.521259i
\(153\) −11.0309 + 1.33591i −0.891796 + 0.108002i
\(154\) 0.257564 0.219805i 0.0207551 0.0177124i
\(155\) 6.37451 1.12400i 0.512013 0.0902817i
\(156\) 3.33991 + 0.992332i 0.267407 + 0.0794501i
\(157\) −2.48225 + 2.95823i −0.198105 + 0.236093i −0.855947 0.517063i \(-0.827025\pi\)
0.657842 + 0.753156i \(0.271470\pi\)
\(158\) −0.727776 1.99955i −0.0578988 0.159076i
\(159\) −11.9838 18.1381i −0.950373 1.43844i
\(160\) −5.71464 6.81044i −0.451782 0.538412i
\(161\) −3.28375 + 9.26143i −0.258796 + 0.729903i
\(162\) 1.84043 0.812126i 0.144598 0.0638067i
\(163\) −2.90913 + 5.03875i −0.227860 + 0.394666i −0.957174 0.289514i \(-0.906506\pi\)
0.729313 + 0.684180i \(0.239840\pi\)
\(164\) −0.888739 0.323475i −0.0693989 0.0252591i
\(165\) 3.39356 0.204742i 0.264188 0.0159391i
\(166\) −2.39777 + 2.85755i −0.186103 + 0.221789i
\(167\) 15.0821 5.48942i 1.16709 0.424784i 0.315462 0.948938i \(-0.397841\pi\)
0.851623 + 0.524154i \(0.175618\pi\)
\(168\) −3.27034 2.38215i −0.252312 0.183786i
\(169\) 2.07264 + 11.7545i 0.159434 + 0.904194i
\(170\) 2.83798i 0.217663i
\(171\) 3.03150 + 25.0319i 0.231825 + 1.91424i
\(172\) 11.7663 0.897171
\(173\) 6.80689 5.71166i 0.517519 0.434250i −0.346247 0.938143i \(-0.612544\pi\)
0.863766 + 0.503894i \(0.168100\pi\)
\(174\) 1.00795 1.35982i 0.0764127 0.103087i
\(175\) 17.8624 0.148850i 1.35027 0.0112520i
\(176\) −1.36278 + 1.62410i −0.102724 + 0.122421i
\(177\) 8.13656 10.9769i 0.611581 0.825076i
\(178\) 2.61779 0.461587i 0.196212 0.0345974i
\(179\) 18.2842i 1.36663i −0.730125 0.683313i \(-0.760538\pi\)
0.730125 0.683313i \(-0.239462\pi\)
\(180\) −5.83165 19.1879i −0.434665 1.43018i
\(181\) 1.41108 0.814685i 0.104884 0.0605551i −0.446640 0.894714i \(-0.647380\pi\)
0.551525 + 0.834159i \(0.314046\pi\)
\(182\) −0.100923 + 0.601634i −0.00748088 + 0.0445961i
\(183\) 7.35054 + 2.18394i 0.543368 + 0.161442i
\(184\) −0.569409 + 3.22928i −0.0419774 + 0.238066i
\(185\) 13.4487 4.89494i 0.988771 0.359883i
\(186\) 0.609904 0.402962i 0.0447204 0.0295466i
\(187\) −2.08852 + 0.368263i −0.152728 + 0.0269300i
\(188\) 12.3836 0.903165
\(189\) −7.04669 11.8044i −0.512572 0.858645i
\(190\) −6.44009 −0.467213
\(191\) 5.58893 0.985480i 0.404401 0.0713068i 0.0322519 0.999480i \(-0.489732\pi\)
0.372149 + 0.928173i \(0.378621\pi\)
\(192\) 10.5761 + 5.28399i 0.763266 + 0.381339i
\(193\) −6.66273 + 2.42504i −0.479594 + 0.174558i −0.570494 0.821302i \(-0.693248\pi\)
0.0908994 + 0.995860i \(0.471026\pi\)
\(194\) 0.393337 2.23072i 0.0282399 0.160157i
\(195\) −4.44643 + 4.21252i −0.318416 + 0.301665i
\(196\) −6.62719 + 11.9336i −0.473370 + 0.852399i
\(197\) −3.44056 + 1.98641i −0.245130 + 0.141526i −0.617532 0.786546i \(-0.711867\pi\)
0.372402 + 0.928071i \(0.378534\pi\)
\(198\) 0.342383 0.173740i 0.0243321 0.0123472i
\(199\) 19.0362i 1.34944i −0.738075 0.674719i \(-0.764265\pi\)
0.738075 0.674719i \(-0.235735\pi\)
\(200\) 5.87040 1.03511i 0.415100 0.0731933i
\(201\) 16.5911 + 1.90422i 1.17025 + 0.134314i
\(202\) 2.26864 2.70366i 0.159621 0.190229i
\(203\) −10.0658 5.70016i −0.706477 0.400073i
\(204\) 4.97885 + 11.4765i 0.348589 + 0.803517i
\(205\) 1.27364 1.06871i 0.0889550 0.0746421i
\(206\) −0.927931 −0.0646520
\(207\) −6.08384 + 9.33444i −0.422856 + 0.648789i
\(208\) 3.81965i 0.264845i
\(209\) 0.835680 + 4.73938i 0.0578052 + 0.327830i
\(210\) 3.20947 1.42426i 0.221474 0.0982829i
\(211\) 2.90837 1.05856i 0.200221 0.0728743i −0.239963 0.970782i \(-0.577135\pi\)
0.440184 + 0.897908i \(0.354913\pi\)
\(212\) −15.7325 + 18.7492i −1.08051 + 1.28770i
\(213\) −0.404634 + 0.809892i −0.0277250 + 0.0554929i
\(214\) −0.539615 0.196404i −0.0368873 0.0134259i
\(215\) −10.3422 + 17.9133i −0.705334 + 1.22167i
\(216\) −2.97079 3.49588i −0.202137 0.237865i
\(217\) −3.24295 3.80004i −0.220146 0.257963i
\(218\) 0.0681715 + 0.0812437i 0.00461716 + 0.00550252i
\(219\) −6.12581 + 12.2611i −0.413944 + 0.828527i
\(220\) −1.30912 3.59678i −0.0882608 0.242495i
\(221\) 2.45595 2.92689i 0.165205 0.196884i
\(222\) 1.17333 1.11161i 0.0787488 0.0746061i
\(223\) 15.3831 2.71245i 1.03013 0.181639i 0.367059 0.930198i \(-0.380365\pi\)
0.663069 + 0.748558i \(0.269254\pi\)
\(224\) −2.29298 + 6.46708i −0.153206 + 0.432100i
\(225\) 19.7280 + 4.58896i 1.31520 + 0.305931i
\(226\) −1.86398 3.22850i −0.123990 0.214757i
\(227\) 1.12879 + 6.40170i 0.0749206 + 0.424896i 0.999080 + 0.0428884i \(0.0136560\pi\)
−0.924159 + 0.382007i \(0.875233\pi\)
\(228\) 26.0431 11.2982i 1.72474 0.748244i
\(229\) 2.66740 + 7.32862i 0.176267 + 0.484289i 0.996092 0.0883255i \(-0.0281516\pi\)
−0.819825 + 0.572614i \(0.805929\pi\)
\(230\) −2.17999 1.82923i −0.143744 0.120616i
\(231\) −1.46460 2.17709i −0.0963638 0.143242i
\(232\) −3.62739 1.32026i −0.238150 0.0866794i
\(233\) −16.2549 + 9.38477i −1.06489 + 0.614817i −0.926782 0.375600i \(-0.877437\pi\)
−0.138112 + 0.990417i \(0.544103\pi\)
\(234\) −0.271330 + 0.636284i −0.0177374 + 0.0415952i
\(235\) −10.8848 + 18.8530i −0.710046 + 1.22984i
\(236\) −14.4556 5.26142i −0.940981 0.342489i
\(237\) −16.0367 + 3.83604i −1.04170 + 0.249178i
\(238\) −1.88769 + 1.11094i −0.122361 + 0.0720113i
\(239\) 19.0385 + 3.35699i 1.23150 + 0.217146i 0.751268 0.659998i \(-0.229443\pi\)
0.480228 + 0.877144i \(0.340554\pi\)
\(240\) −18.3432 + 12.1193i −1.18405 + 0.782298i
\(241\) −7.14845 + 19.6402i −0.460472 + 1.26514i 0.464660 + 0.885489i \(0.346177\pi\)
−0.925131 + 0.379647i \(0.876046\pi\)
\(242\) −2.06582 + 1.19270i −0.132796 + 0.0766697i
\(243\) −4.62602 14.8862i −0.296759 0.954952i
\(244\) 8.63320i 0.552684i
\(245\) −12.3429 20.5787i −0.788557 1.31472i
\(246\) 0.0839194 0.167968i 0.00535051 0.0107093i
\(247\) −6.64184 5.57316i −0.422610 0.354612i
\(248\) −1.27706 1.07158i −0.0810936 0.0680456i
\(249\) 19.8803 + 20.9842i 1.25986 + 1.32982i
\(250\) −0.459027 + 1.26117i −0.0290314 + 0.0797632i
\(251\) −8.90271 15.4199i −0.561934 0.973298i −0.997328 0.0730578i \(-0.976724\pi\)
0.435394 0.900240i \(-0.356609\pi\)
\(252\) −10.4801 + 11.3901i −0.660185 + 0.717510i
\(253\) −1.06328 + 1.84166i −0.0668481 + 0.115784i
\(254\) 0.827910 + 0.986665i 0.0519477 + 0.0619089i
\(255\) −21.8484 2.50761i −1.36820 0.157033i
\(256\) 2.11004 11.9666i 0.131878 0.747915i
\(257\) 17.9820 6.54491i 1.12169 0.408260i 0.286419 0.958105i \(-0.407535\pi\)
0.835267 + 0.549844i \(0.185313\pi\)
\(258\) −0.266358 + 2.32073i −0.0165827 + 0.144482i
\(259\) −8.52043 7.02934i −0.529434 0.436782i
\(260\) 5.97204 + 3.44796i 0.370370 + 0.213833i
\(261\) −9.57800 8.96130i −0.592863 0.554691i
\(262\) 2.87646 + 1.66072i 0.177708 + 0.102600i
\(263\) −4.87984 5.81557i −0.300904 0.358604i 0.594313 0.804234i \(-0.297424\pi\)
−0.895217 + 0.445630i \(0.852980\pi\)
\(264\) −0.602200 0.635639i −0.0370629 0.0391209i
\(265\) −14.7159 40.4315i −0.903988 2.48369i
\(266\) 2.52099 + 4.28365i 0.154572 + 0.262647i
\(267\) −1.24050 20.5610i −0.0759172 1.25832i
\(268\) −3.26491 18.5162i −0.199436 1.13106i
\(269\) 12.7935 + 22.1590i 0.780034 + 1.35106i 0.931921 + 0.362660i \(0.118131\pi\)
−0.151888 + 0.988398i \(0.548535\pi\)
\(270\) 3.91655 0.715842i 0.238354 0.0435648i
\(271\) −10.6282 6.13617i −0.645615 0.372746i 0.141159 0.989987i \(-0.454917\pi\)
−0.786774 + 0.617241i \(0.788250\pi\)
\(272\) 10.5058 8.81541i 0.637007 0.534513i
\(273\) 4.54254 + 1.30856i 0.274927 + 0.0791974i
\(274\) −0.196919 + 1.11679i −0.0118963 + 0.0674675i
\(275\) 3.80708 + 0.671292i 0.229576 + 0.0404804i
\(276\) 12.0248 + 3.57273i 0.723808 + 0.215053i
\(277\) 12.3425 10.3566i 0.741591 0.622269i −0.191673 0.981459i \(-0.561391\pi\)
0.933264 + 0.359190i \(0.116947\pi\)
\(278\) 2.15760 0.129404
\(279\) −2.56332 5.05144i −0.153462 0.302422i
\(280\) −5.19819 6.09115i −0.310651 0.364016i
\(281\) 3.58019 9.83649i 0.213576 0.586796i −0.785927 0.618319i \(-0.787814\pi\)
0.999503 + 0.0315239i \(0.0100360\pi\)
\(282\) −0.280332 + 2.44248i −0.0166935 + 0.145448i
\(283\) −3.79010 0.668296i −0.225298 0.0397261i 0.0598595 0.998207i \(-0.480935\pi\)
−0.285157 + 0.958481i \(0.592046\pi\)
\(284\) 1.00381 + 0.176998i 0.0595649 + 0.0105029i
\(285\) −5.69040 + 49.5794i −0.337070 + 2.93683i
\(286\) −0.0451541 + 0.124060i −0.00267002 + 0.00733581i
\(287\) −1.20943 0.428817i −0.0713903 0.0253123i
\(288\) −4.24822 + 6.51806i −0.250329 + 0.384080i
\(289\) −3.28159 −0.193035
\(290\) 2.56631 2.15339i 0.150699 0.126451i
\(291\) −16.8258 4.99917i −0.986346 0.293057i
\(292\) 15.1968 + 2.67960i 0.889323 + 0.156812i
\(293\) −1.89493 + 10.7467i −0.110703 + 0.627828i 0.878085 + 0.478504i \(0.158821\pi\)
−0.988788 + 0.149324i \(0.952290\pi\)
\(294\) −2.20370 1.57726i −0.128523 0.0919877i
\(295\) 20.7162 17.3829i 1.20614 1.01207i
\(296\) −3.19219 1.84301i −0.185542 0.107123i
\(297\) −1.03502 2.78937i −0.0600581 0.161856i
\(298\) 1.27780 + 2.21321i 0.0740209 + 0.128208i
\(299\) −0.665294 3.77307i −0.0384749 0.218202i
\(300\) −1.37332 22.7625i −0.0792886 1.31419i
\(301\) 15.9636 0.133027i 0.920124 0.00766756i
\(302\) 1.39932 + 3.84459i 0.0805216 + 0.221231i
\(303\) −18.8097 19.8542i −1.08059 1.14059i
\(304\) −20.0044 23.8403i −1.14733 1.36733i
\(305\) 13.1434 + 7.58833i 0.752588 + 0.434507i
\(306\) −2.37628 + 0.722206i −0.135843 + 0.0412858i
\(307\) −18.4024 10.6246i −1.05028 0.606378i −0.127551 0.991832i \(-0.540712\pi\)
−0.922727 + 0.385454i \(0.874045\pi\)
\(308\) −1.87995 + 2.27873i −0.107120 + 0.129843i
\(309\) −0.819911 + 7.14373i −0.0466431 + 0.406393i
\(310\) 1.35954 0.494831i 0.0772165 0.0281045i
\(311\) −3.47779 + 19.7235i −0.197207 + 1.11842i 0.712032 + 0.702147i \(0.247775\pi\)
−0.909240 + 0.416273i \(0.863336\pi\)
\(312\) 1.56722 + 0.179875i 0.0887264 + 0.0101834i
\(313\) −13.8341 16.4868i −0.781949 0.931890i 0.217071 0.976156i \(-0.430350\pi\)
−0.999020 + 0.0442656i \(0.985905\pi\)
\(314\) −0.431577 + 0.747513i −0.0243553 + 0.0421846i
\(315\) −8.12885 25.9667i −0.458009 1.46306i
\(316\) 9.28219 + 16.0772i 0.522164 + 0.904414i
\(317\) 3.18437 8.74899i 0.178852 0.491392i −0.817578 0.575818i \(-0.804684\pi\)
0.996430 + 0.0844263i \(0.0269058\pi\)
\(318\) −3.34187 3.52743i −0.187403 0.197809i
\(319\) −1.91773 1.60917i −0.107372 0.0900959i
\(320\) 17.9249 + 15.0407i 1.00203 + 0.840803i
\(321\) −1.98882 + 3.98071i −0.111005 + 0.222182i
\(322\) −0.363355 + 2.16609i −0.0202490 + 0.120711i
\(323\) 31.1305i 1.73215i
\(324\) −14.5823 + 9.76585i −0.810128 + 0.542547i
\(325\) −6.03165 + 3.48237i −0.334576 + 0.193167i
\(326\) −0.444789 + 1.22205i −0.0246346 + 0.0676829i
\(327\) 0.685695 0.453036i 0.0379190 0.0250530i
\(328\) −0.421704 0.0743578i −0.0232847 0.00410572i
\(329\) 16.8011 0.140006i 0.926272 0.00771879i
\(330\) 0.739046 0.176783i 0.0406832 0.00973158i
\(331\) 13.1635 + 4.79114i 0.723534 + 0.263345i 0.677425 0.735592i \(-0.263096\pi\)
0.0461086 + 0.998936i \(0.485318\pi\)
\(332\) 16.2721 28.1841i 0.893047 1.54680i
\(333\) −7.52102 10.0152i −0.412149 0.548827i
\(334\) 3.10681 1.79372i 0.169997 0.0981480i
\(335\) 31.0593 + 11.3047i 1.69695 + 0.617639i
\(336\) 15.2417 + 7.45693i 0.831504 + 0.406809i
\(337\) −7.66325 6.43023i −0.417444 0.350277i 0.409746 0.912200i \(-0.365617\pi\)
−0.827190 + 0.561923i \(0.810062\pi\)
\(338\) 0.912462 + 2.50697i 0.0496314 + 0.136361i
\(339\) −26.5018 + 11.4973i −1.43938 + 0.624445i
\(340\) 4.29946 + 24.3834i 0.233171 + 1.32238i
\(341\) −0.540572 0.936297i −0.0292736 0.0507033i
\(342\) 1.63887 + 5.39238i 0.0886197 + 0.291586i
\(343\) −8.85632 + 16.2655i −0.478196 + 0.878253i
\(344\) 5.24636 0.925075i 0.282865 0.0498767i
\(345\) −16.0087 + 15.1665i −0.861877 + 0.816537i
\(346\) 1.27665 1.52145i 0.0686332 0.0817938i
\(347\) 3.40057 + 9.34298i 0.182552 + 0.501558i 0.996888 0.0788368i \(-0.0251206\pi\)
−0.814336 + 0.580394i \(0.802898\pi\)
\(348\) −6.60007 + 13.2103i −0.353801 + 0.708148i
\(349\) 14.2950 + 17.0361i 0.765192 + 0.911920i 0.998164 0.0605633i \(-0.0192897\pi\)
−0.232973 + 0.972483i \(0.574845\pi\)
\(350\) 3.92610 0.726061i 0.209859 0.0388096i
\(351\) 4.65873 + 2.65106i 0.248664 + 0.141503i
\(352\) −0.742470 + 1.28600i −0.0395738 + 0.0685438i
\(353\) −0.983396 0.357927i −0.0523409 0.0190505i 0.315717 0.948853i \(-0.397755\pi\)
−0.368058 + 0.929803i \(0.619977\pi\)
\(354\) 1.36497 2.73205i 0.0725476 0.145207i
\(355\) −1.15178 + 1.37264i −0.0611302 + 0.0728521i
\(356\) −21.7923 + 7.93175i −1.15499 + 0.420382i
\(357\) 6.88465 + 15.5141i 0.364375 + 0.821095i
\(358\) −0.709670 4.02474i −0.0375072 0.212714i
\(359\) 0.361634i 0.0190863i 0.999954 + 0.00954315i \(0.00303772\pi\)
−0.999954 + 0.00954315i \(0.996962\pi\)
\(360\) −4.10879 8.09705i −0.216552 0.426752i
\(361\) −51.6428 −2.71804
\(362\) 0.278987 0.234098i 0.0146632 0.0123039i
\(363\) 7.35674 + 16.9577i 0.386129 + 0.890047i
\(364\) −0.0443495 5.32203i −0.00232454 0.278950i
\(365\) −17.4370 + 20.7806i −0.912694 + 1.08771i
\(366\) 1.70277 + 0.195433i 0.0890054 + 0.0102155i
\(367\) 31.0458 5.47421i 1.62058 0.285751i 0.711595 0.702590i \(-0.247973\pi\)
0.908981 + 0.416838i \(0.136862\pi\)
\(368\) 13.7520i 0.716873i
\(369\) −1.21896 0.794473i −0.0634566 0.0413586i
\(370\) 2.77036 1.59947i 0.144024 0.0831523i
\(371\) −21.1326 + 25.6153i −1.09715 + 1.32988i
\(372\) −4.62972 + 4.38616i −0.240040 + 0.227412i
\(373\) −2.78601 + 15.8002i −0.144254 + 0.818106i 0.823709 + 0.567013i \(0.191901\pi\)
−0.967963 + 0.251093i \(0.919210\pi\)
\(374\) −0.445434 + 0.162125i −0.0230328 + 0.00838326i
\(375\) 9.30357 + 4.64820i 0.480434 + 0.240032i
\(376\) 5.52160 0.973607i 0.284755 0.0502100i
\(377\) 4.51022 0.232288
\(378\) −2.00929 2.32489i −0.103347 0.119579i
\(379\) 19.2286 0.987705 0.493852 0.869546i \(-0.335588\pi\)
0.493852 + 0.869546i \(0.335588\pi\)
\(380\) 55.3321 9.75654i 2.83848 0.500500i
\(381\) 8.32743 5.50191i 0.426627 0.281871i
\(382\) 1.19199 0.433849i 0.0609875 0.0221976i
\(383\) 4.56911 25.9127i 0.233471 1.32408i −0.612339 0.790595i \(-0.709771\pi\)
0.845810 0.533484i \(-0.179118\pi\)
\(384\) 11.1449 + 3.31130i 0.568737 + 0.168979i
\(385\) −1.81677 4.86502i −0.0925913 0.247944i
\(386\) −1.37248 + 0.792403i −0.0698575 + 0.0403323i
\(387\) 17.6309 + 4.10115i 0.896229 + 0.208473i
\(388\) 19.7619i 1.00326i
\(389\) −1.59220 + 0.280748i −0.0807278 + 0.0142345i −0.213866 0.976863i \(-0.568606\pi\)
0.133138 + 0.991097i \(0.457495\pi\)
\(390\) −0.815250 + 1.09984i −0.0412818 + 0.0556928i
\(391\) 8.84225 10.5378i 0.447172 0.532918i
\(392\) −2.01671 + 5.84200i −0.101859 + 0.295065i
\(393\) 15.3268 20.6772i 0.773134 1.04303i
\(394\) −0.680240 + 0.570789i −0.0342700 + 0.0287559i
\(395\) −32.6351 −1.64205
\(396\) −2.67849 + 2.01145i −0.134599 + 0.101079i
\(397\) 2.97650i 0.149386i 0.997207 + 0.0746932i \(0.0237978\pi\)
−0.997207 + 0.0746932i \(0.976202\pi\)
\(398\) −0.738855 4.19025i −0.0370354 0.210038i
\(399\) 35.2054 15.6230i 1.76248 0.782128i
\(400\) −23.4917 + 8.55027i −1.17458 + 0.427514i
\(401\) −4.05799 + 4.83612i −0.202646 + 0.241505i −0.857791 0.513999i \(-0.828163\pi\)
0.655144 + 0.755504i \(0.272608\pi\)
\(402\) 3.72596 0.224796i 0.185834 0.0112118i
\(403\) 1.83035 + 0.666192i 0.0911760 + 0.0331854i
\(404\) −15.3958 + 26.6663i −0.765968 + 1.32670i
\(405\) −2.05032 30.7843i −0.101881 1.52968i
\(406\) −2.43692 0.864040i −0.120942 0.0428816i
\(407\) −1.53656 1.83121i −0.0761647 0.0907695i
\(408\) 3.12227 + 4.72572i 0.154575 + 0.233958i
\(409\) −4.42973 12.1706i −0.219036 0.601796i 0.780697 0.624910i \(-0.214864\pi\)
−0.999733 + 0.0231135i \(0.992642\pi\)
\(410\) 0.238875 0.284680i 0.0117972 0.0140593i
\(411\) 8.42364 + 2.50278i 0.415507 + 0.123453i
\(412\) 7.97262 1.40579i 0.392783 0.0692582i
\(413\) −19.6717 6.97484i −0.967982 0.343209i
\(414\) −0.976879 + 2.29084i −0.0480110 + 0.112589i
\(415\) 28.6054 + 49.5460i 1.40418 + 2.43212i
\(416\) −0.464562 2.63466i −0.0227770 0.129175i
\(417\) 1.90643 16.6104i 0.0933584 0.813414i
\(418\) 0.367901 + 1.01080i 0.0179946 + 0.0494398i
\(419\) −9.08276 7.62134i −0.443722 0.372327i 0.393378 0.919377i \(-0.371306\pi\)
−0.837100 + 0.547050i \(0.815751\pi\)
\(420\) −25.4175 + 17.0992i −1.24025 + 0.834356i
\(421\) 9.85568 + 3.58717i 0.480337 + 0.174828i 0.570829 0.821069i \(-0.306622\pi\)
−0.0904925 + 0.995897i \(0.528844\pi\)
\(422\) 0.599107 0.345895i 0.0291641 0.0168379i
\(423\) 18.5559 + 4.31630i 0.902217 + 0.209866i
\(424\) −5.54073 + 9.59683i −0.269082 + 0.466063i
\(425\) −23.4986 8.55281i −1.13985 0.414872i
\(426\) −0.0576338 + 0.193979i −0.00279237 + 0.00939832i
\(427\) −0.0976052 11.7128i −0.00472345 0.566824i
\(428\) 4.93382 + 0.869966i 0.238485 + 0.0420514i
\(429\) 0.915184 + 0.457239i 0.0441855 + 0.0220757i
\(430\) −1.58127 + 4.34449i −0.0762554 + 0.209510i
\(431\) −10.8779 + 6.28037i −0.523971 + 0.302515i −0.738558 0.674190i \(-0.764493\pi\)
0.214587 + 0.976705i \(0.431159\pi\)
\(432\) 14.8156 + 12.2749i 0.712818 + 0.590578i
\(433\) 2.84286i 0.136619i 0.997664 + 0.0683097i \(0.0217606\pi\)
−0.997664 + 0.0683097i \(0.978239\pi\)
\(434\) −0.861333 0.710598i −0.0413453 0.0341098i
\(435\) −14.3104 21.6596i −0.686132 1.03850i
\(436\) −0.708800 0.594754i −0.0339454 0.0284835i
\(437\) −23.9128 20.0653i −1.14391 0.959852i
\(438\) −0.872527 + 2.93668i −0.0416909 + 0.140320i
\(439\) 0.0910994 0.250294i 0.00434794 0.0119459i −0.937500 0.347986i \(-0.886866\pi\)
0.941848 + 0.336040i \(0.109088\pi\)
\(440\) −0.866493 1.50081i −0.0413084 0.0715483i
\(441\) −14.0898 + 15.5717i −0.670943 + 0.741509i
\(442\) 0.427004 0.739592i 0.0203105 0.0351788i
\(443\) −22.8541 27.2364i −1.08583 1.29404i −0.953022 0.302901i \(-0.902045\pi\)
−0.132809 0.991142i \(-0.542400\pi\)
\(444\) −8.39700 + 11.3283i −0.398504 + 0.537617i
\(445\) 7.07932 40.1488i 0.335592 1.90324i
\(446\) 3.28086 1.19414i 0.155353 0.0565439i
\(447\) 18.1676 7.88164i 0.859298 0.372789i
\(448\) 2.98767 17.8105i 0.141154 0.841469i
\(449\) 25.2684 + 14.5887i 1.19249 + 0.688483i 0.958870 0.283845i \(-0.0916101\pi\)
0.233618 + 0.972328i \(0.424943\pi\)
\(450\) 4.52066 + 0.244417i 0.213106 + 0.0115219i
\(451\) −0.240498 0.138852i −0.0113246 0.00653827i
\(452\) 20.9060 + 24.9149i 0.983338 + 1.17190i
\(453\) 30.8342 7.37567i 1.44872 0.346539i
\(454\) 0.496941 + 1.36533i 0.0233226 + 0.0640783i
\(455\) 8.14136 + 4.61039i 0.381673 + 0.216139i
\(456\) 10.7238 7.08520i 0.502189 0.331795i
\(457\) 0.498786 + 2.82876i 0.0233322 + 0.132324i 0.994249 0.107094i \(-0.0341546\pi\)
−0.970917 + 0.239418i \(0.923043\pi\)
\(458\) 0.871597 + 1.50965i 0.0407271 + 0.0705413i
\(459\) 3.46028 + 18.9321i 0.161512 + 0.883674i
\(460\) 21.5013 + 12.4138i 1.00251 + 0.578797i
\(461\) −6.62406 + 5.55824i −0.308513 + 0.258873i −0.783877 0.620916i \(-0.786761\pi\)
0.475364 + 0.879789i \(0.342316\pi\)
\(462\) −0.406890 0.422377i −0.0189302 0.0196508i
\(463\) −5.41640 + 30.7179i −0.251721 + 1.42758i 0.552629 + 0.833427i \(0.313625\pi\)
−0.804350 + 0.594155i \(0.797487\pi\)
\(464\) 15.9431 + 2.81119i 0.740138 + 0.130506i
\(465\) −2.60821 10.9037i −0.120953 0.505647i
\(466\) −3.21379 + 2.69669i −0.148876 + 0.124922i
\(467\) −24.9065 −1.15253 −0.576267 0.817261i \(-0.695491\pi\)
−0.576267 + 0.817261i \(0.695491\pi\)
\(468\) 1.36727 5.87790i 0.0632019 0.271706i
\(469\) −4.63891 25.0844i −0.214205 1.15829i
\(470\) −1.66422 + 4.57242i −0.0767649 + 0.210910i
\(471\) 5.37343 + 3.98301i 0.247595 + 0.183528i
\(472\) −6.85914 1.20945i −0.315718 0.0556695i
\(473\) 3.40238 + 0.599932i 0.156442 + 0.0275849i
\(474\) −3.38112 + 1.46683i −0.155300 + 0.0673737i
\(475\) −19.4085 + 53.3243i −0.890521 + 2.44669i
\(476\) 14.5357 12.4048i 0.666243 0.568572i
\(477\) −30.1090 + 22.6108i −1.37860 + 1.03528i
\(478\) 4.32106 0.197641
\(479\) 17.9386 15.0523i 0.819635 0.687756i −0.133251 0.991082i \(-0.542542\pi\)
0.952887 + 0.303327i \(0.0980973\pi\)
\(480\) −11.1785 + 10.5905i −0.510228 + 0.483386i
\(481\) 4.24130 + 0.747856i 0.193387 + 0.0340993i
\(482\) −0.811222 + 4.60067i −0.0369502 + 0.209555i
\(483\) 16.3547 + 4.71124i 0.744164 + 0.214369i
\(484\) 15.9422 13.3771i 0.724648 0.608052i
\(485\) −30.0859 17.3701i −1.36613 0.788737i
\(486\) −1.59606 3.09722i −0.0723990 0.140493i
\(487\) 7.63610 + 13.2261i 0.346025 + 0.599333i 0.985539 0.169446i \(-0.0541980\pi\)
−0.639515 + 0.768779i \(0.720865\pi\)
\(488\) −0.678750 3.84938i −0.0307256 0.174253i
\(489\) 9.01498 + 4.50402i 0.407672 + 0.203679i
\(490\) −3.51564 4.05072i −0.158821 0.182993i
\(491\) 8.86288 + 24.3506i 0.399976 + 1.09893i 0.962296 + 0.272005i \(0.0876869\pi\)
−0.562320 + 0.826920i \(0.690091\pi\)
\(492\) −0.466554 + 1.57029i −0.0210339 + 0.0707941i
\(493\) 10.4092 + 12.4052i 0.468806 + 0.558701i
\(494\) −1.67832 0.968977i −0.0755111 0.0435964i
\(495\) −0.707959 5.84579i −0.0318204 0.262749i
\(496\) 6.05482 + 3.49575i 0.271869 + 0.156964i
\(497\) 1.36388 + 0.228788i 0.0611786 + 0.0102625i
\(498\) 5.19054 + 3.84744i 0.232594 + 0.172408i
\(499\) −5.27779 + 1.92096i −0.236266 + 0.0859939i −0.457440 0.889241i \(-0.651233\pi\)
0.221174 + 0.975234i \(0.429011\pi\)
\(500\) 2.03325 11.5311i 0.0909297 0.515688i
\(501\) −11.0639 25.5029i −0.494299 1.13939i
\(502\) −2.55817 3.04871i −0.114177 0.136070i
\(503\) −12.0053 + 20.7938i −0.535291 + 0.927151i 0.463858 + 0.885909i \(0.346465\pi\)
−0.999149 + 0.0412418i \(0.986869\pi\)
\(504\) −3.77738 + 5.90259i −0.168258 + 0.262922i
\(505\) −27.0649 46.8777i −1.20437 2.08603i
\(506\) −0.162570 + 0.446657i −0.00722712 + 0.0198563i
\(507\) 20.1063 4.80951i 0.892951 0.213598i
\(508\) −8.60803 7.22300i −0.381920 0.320469i
\(509\) −0.229469 0.192548i −0.0101711 0.00853452i 0.637688 0.770295i \(-0.279891\pi\)
−0.647859 + 0.761760i \(0.724335\pi\)
\(510\) −4.90661 + 0.296027i −0.217268 + 0.0131083i
\(511\) 20.6480 + 3.46365i 0.913416 + 0.153223i
\(512\) 16.1410i 0.713340i
\(513\) 42.9616 7.85225i 1.89680 0.346685i
\(514\) 3.70418 2.13861i 0.163384 0.0943300i
\(515\) −4.86750 + 13.3733i −0.214488 + 0.589300i
\(516\) −1.22733 20.3428i −0.0540303 0.895542i
\(517\) 3.58088 + 0.631406i 0.157487 + 0.0277692i
\(518\) −2.14836 1.21660i −0.0943933 0.0534542i
\(519\) −10.5850 11.1727i −0.464628 0.490427i
\(520\) 2.93390 + 1.06785i 0.128660 + 0.0468284i
\(521\) −8.16132 + 14.1358i −0.357554 + 0.619302i −0.987552 0.157295i \(-0.949723\pi\)
0.629998 + 0.776597i \(0.283056\pi\)
\(522\) −2.45613 1.60081i −0.107502 0.0700658i
\(523\) 8.49648 4.90545i 0.371525 0.214500i −0.302599 0.953118i \(-0.597854\pi\)
0.674125 + 0.738618i \(0.264521\pi\)
\(524\) −27.2300 9.91090i −1.18955 0.432960i
\(525\) −2.12056 30.8669i −0.0925487 1.34714i
\(526\) −1.29988 1.09073i −0.0566773 0.0475579i
\(527\) 2.39194 + 6.57181i 0.104195 + 0.286273i
\(528\) 2.95007 + 2.18671i 0.128385 + 0.0951645i
\(529\) 1.59863 + 9.06626i 0.0695055 + 0.394185i
\(530\) −4.80854 8.32864i −0.208870 0.361773i
\(531\) −19.8268 12.9224i −0.860410 0.560782i
\(532\) −28.1495 32.9851i −1.22044 1.43009i
\(533\) 0.492716 0.0868791i 0.0213419 0.00376315i
\(534\) −1.07110 4.47776i −0.0463510 0.193772i
\(535\) −5.66114 + 6.74668i −0.244752 + 0.291685i
\(536\) −2.91152 7.99934i −0.125759 0.345519i
\(537\) −31.6117 + 1.90721i −1.36415 + 0.0823023i
\(538\) 3.67618 + 4.38110i 0.158491 + 0.188883i
\(539\) −2.52480 + 3.11286i −0.108751 + 0.134080i
\(540\) −32.5659 + 12.0839i −1.40141 + 0.520006i
\(541\) 7.28065 12.6105i 0.313019 0.542166i −0.665995 0.745956i \(-0.731993\pi\)
0.979015 + 0.203791i \(0.0653262\pi\)
\(542\) −2.57764 0.938186i −0.110719 0.0402985i
\(543\) −1.55570 2.35464i −0.0667616 0.101047i
\(544\) 6.17437 7.35832i 0.264724 0.315486i
\(545\) 1.52848 0.556322i 0.0654729 0.0238302i
\(546\) 1.05070 + 0.111730i 0.0449657 + 0.00478159i
\(547\) 4.82647 + 27.3723i 0.206365 + 1.17035i 0.895277 + 0.445509i \(0.146977\pi\)
−0.688912 + 0.724845i \(0.741912\pi\)
\(548\) 9.89355i 0.422632i
\(549\) 3.00911 12.9362i 0.128426 0.552104i
\(550\) 0.864073 0.0368442
\(551\) 28.1504 23.6210i 1.19925 1.00629i
\(552\) 5.64252 + 0.647612i 0.240162 + 0.0275642i
\(553\) 12.7751 + 21.7074i 0.543252 + 0.923090i
\(554\) 2.31487 2.75876i 0.0983496 0.117208i
\(555\) −9.86572 22.7410i −0.418777 0.965303i
\(556\) −18.5377 + 3.26870i −0.786174 + 0.138624i
\(557\) 1.80913i 0.0766554i 0.999265 + 0.0383277i \(0.0122031\pi\)
−0.999265 + 0.0383277i \(0.987797\pi\)
\(558\) −0.760302 1.01244i −0.0321862 0.0428598i
\(559\) −5.39047 + 3.11219i −0.227993 + 0.131632i
\(560\) 25.9051 + 21.3716i 1.09469 + 0.903117i
\(561\) 0.854544 + 3.57245i 0.0360789 + 0.150829i
\(562\) 0.406288 2.30417i 0.0171382 0.0971957i
\(563\) −3.11242 + 1.13283i −0.131173 + 0.0477430i −0.406773 0.913529i \(-0.633346\pi\)
0.275600 + 0.961273i \(0.411124\pi\)
\(564\) −1.29172 21.4101i −0.0543913 0.901526i
\(565\) −56.3067 + 9.92840i −2.36884 + 0.417691i
\(566\) −0.860218 −0.0361576
\(567\) −19.6737 + 13.4144i −0.826217 + 0.563351i
\(568\) 0.461493 0.0193638
\(569\) −10.6572 + 1.87916i −0.446774 + 0.0787784i −0.392509 0.919748i \(-0.628393\pi\)
−0.0542654 + 0.998527i \(0.517282\pi\)
\(570\) 0.671760 + 11.1343i 0.0281369 + 0.466365i
\(571\) 21.9958 8.00582i 0.920496 0.335033i 0.162060 0.986781i \(-0.448186\pi\)
0.758436 + 0.651748i \(0.225964\pi\)
\(572\) 0.200009 1.13431i 0.00836280 0.0474278i
\(573\) −2.28678 9.55995i −0.0955316 0.399373i
\(574\) −0.282864 0.0474497i −0.0118065 0.00198051i
\(575\) −21.7160 + 12.5377i −0.905618 + 0.522859i
\(576\) 8.03233 18.8363i 0.334681 0.784846i
\(577\) 39.9309i 1.66234i 0.556015 + 0.831172i \(0.312330\pi\)
−0.556015 + 0.831172i \(0.687670\pi\)
\(578\) −0.722346 + 0.127369i −0.0300456 + 0.00529785i
\(579\) 4.88765 + 11.2663i 0.203124 + 0.468211i
\(580\) −18.7870 + 22.3894i −0.780086 + 0.929670i
\(581\) 21.7580 38.4219i 0.902675 1.59401i
\(582\) −3.89774 0.447358i −0.161567 0.0185436i
\(583\) −5.50523 + 4.61944i −0.228003 + 0.191318i
\(584\) 6.98662 0.289108
\(585\) 7.74686 + 7.24806i 0.320293 + 0.299670i
\(586\) 2.43912i 0.100759i
\(587\) −6.40324 36.3146i −0.264290 1.49886i −0.771050 0.636775i \(-0.780268\pi\)
0.506760 0.862087i \(-0.330843\pi\)
\(588\) 21.3233 + 10.2130i 0.879360 + 0.421177i
\(589\) 14.9131 5.42792i 0.614483 0.223653i
\(590\) 3.88537 4.63040i 0.159958 0.190631i
\(591\) 3.79320 + 5.74121i 0.156031 + 0.236162i
\(592\) 14.5263 + 5.28716i 0.597029 + 0.217301i
\(593\) −5.87281 + 10.1720i −0.241167 + 0.417714i −0.961047 0.276385i \(-0.910864\pi\)
0.719880 + 0.694099i \(0.244197\pi\)
\(594\) −0.336095 0.573827i −0.0137901 0.0235444i
\(595\) 6.10884 + 33.0329i 0.250438 + 1.35422i
\(596\) −14.3316 17.0797i −0.587045 0.699613i
\(597\) −32.9117 + 1.98565i −1.34699 + 0.0812671i
\(598\) −0.292890 0.804709i −0.0119772 0.0329070i
\(599\) −6.84754 + 8.16058i −0.279783 + 0.333432i −0.887574 0.460664i \(-0.847611\pi\)
0.607792 + 0.794097i \(0.292056\pi\)
\(600\) −2.40195 10.0414i −0.0980590 0.409939i
\(601\) −22.3746 + 3.94524i −0.912678 + 0.160930i −0.610219 0.792233i \(-0.708919\pi\)
−0.302459 + 0.953162i \(0.597808\pi\)
\(602\) 3.50875 0.648879i 0.143006 0.0264463i
\(603\) 1.56162 28.8832i 0.0635940 1.17621i
\(604\) −17.8471 30.9121i −0.726189 1.25780i
\(605\) 6.35288 + 36.0289i 0.258281 + 1.46478i
\(606\) −4.91101 3.64025i −0.199496 0.147875i
\(607\) 7.42432 + 20.3981i 0.301344 + 0.827935i 0.994267 + 0.106924i \(0.0341001\pi\)
−0.692924 + 0.721011i \(0.743678\pi\)
\(608\) −16.6979 14.0112i −0.677188 0.568228i
\(609\) −8.80510 + 17.9973i −0.356801 + 0.729289i
\(610\) 3.18766 + 1.16021i 0.129064 + 0.0469756i
\(611\) −5.67327 + 3.27546i −0.229516 + 0.132511i
\(612\) 19.3225 9.80507i 0.781065 0.396346i
\(613\) 3.87628 6.71392i 0.156562 0.271173i −0.777065 0.629420i \(-0.783292\pi\)
0.933627 + 0.358248i \(0.116626\pi\)
\(614\) −4.46312 1.62444i −0.180117 0.0655571i
\(615\) −1.98056 2.09053i −0.0798637 0.0842983i
\(616\) −0.659078 + 1.16385i −0.0265550 + 0.0468927i
\(617\) −26.9142 4.74570i −1.08352 0.191055i −0.396751 0.917926i \(-0.629862\pi\)
−0.686773 + 0.726872i \(0.740974\pi\)
\(618\) 0.0967917 + 1.60431i 0.00389353 + 0.0645347i
\(619\) 7.51496 20.6472i 0.302052 0.829880i −0.692092 0.721810i \(-0.743311\pi\)
0.994143 0.108070i \(-0.0344672\pi\)
\(620\) −10.9312 + 6.31116i −0.439009 + 0.253462i
\(621\) 16.7730 + 9.54472i 0.673077 + 0.383016i
\(622\) 4.47654i 0.179493i
\(623\) −29.4764 + 11.0075i −1.18095 + 0.441008i
\(624\) −6.60381 + 0.398424i −0.264364 + 0.0159497i
\(625\) −10.0919 8.46815i −0.403678 0.338726i
\(626\) −3.68508 3.09215i −0.147285 0.123587i
\(627\) 8.10677 1.93917i 0.323753 0.0774431i
\(628\) 2.57557 7.07633i 0.102777 0.282376i
\(629\) 7.73160 + 13.3915i 0.308279 + 0.533955i
\(630\) −2.79718 5.40031i −0.111442 0.215153i
\(631\) 1.06343 1.84192i 0.0423346 0.0733256i −0.844082 0.536215i \(-0.819854\pi\)
0.886416 + 0.462889i \(0.153187\pi\)
\(632\) 5.40276 + 6.43875i 0.214910 + 0.256120i
\(633\) −2.13352 4.91789i −0.0847999 0.195468i
\(634\) 0.361370 2.04943i 0.0143518 0.0813932i
\(635\) 18.5627 6.75625i 0.736637 0.268114i
\(636\) 34.0567 + 25.2443i 1.35044 + 1.00100i
\(637\) −0.120340 7.22001i −0.00476803 0.286067i
\(638\) −0.484589 0.279777i −0.0191851 0.0110765i
\(639\) 1.44243 + 0.615095i 0.0570618 + 0.0243328i
\(640\) 19.9280 + 11.5055i 0.787725 + 0.454793i
\(641\) −12.7840 15.2354i −0.504938 0.601762i 0.452013 0.892011i \(-0.350706\pi\)
−0.956951 + 0.290250i \(0.906262\pi\)
\(642\) −0.283277 + 0.953430i −0.0111800 + 0.0376289i
\(643\) 5.26568 + 14.4673i 0.207658 + 0.570536i 0.999175 0.0406114i \(-0.0129306\pi\)
−0.791517 + 0.611147i \(0.790708\pi\)
\(644\) −0.159673 19.1611i −0.00629200 0.755054i
\(645\) 32.0491 + 16.0122i 1.26193 + 0.630481i
\(646\) −1.20827 6.85247i −0.0475389 0.269607i
\(647\) 4.32630 + 7.49338i 0.170084 + 0.294595i 0.938449 0.345417i \(-0.112263\pi\)
−0.768365 + 0.640012i \(0.778929\pi\)
\(648\) −5.73417 + 5.50088i −0.225260 + 0.216095i
\(649\) −3.91177 2.25846i −0.153551 0.0886525i
\(650\) −1.19253 + 1.00065i −0.0467748 + 0.0392487i
\(651\) −6.23164 + 6.00314i −0.244237 + 0.235282i
\(652\) 1.97018 11.1735i 0.0771583 0.437586i
\(653\) −7.99326 1.40943i −0.312800 0.0551551i 0.0150442 0.999887i \(-0.495211\pi\)
−0.327845 + 0.944732i \(0.606322\pi\)
\(654\) 0.133352 0.126337i 0.00521447 0.00494016i
\(655\) 39.0229 32.7441i 1.52475 1.27942i
\(656\) 1.79584 0.0701158
\(657\) 21.8372 + 9.31202i 0.851952 + 0.363296i
\(658\) 3.69283 0.682921i 0.143961 0.0266230i
\(659\) −9.97657 + 27.4104i −0.388632 + 1.06776i 0.578986 + 0.815337i \(0.303449\pi\)
−0.967618 + 0.252420i \(0.918774\pi\)
\(660\) −6.08194 + 2.63852i −0.236739 + 0.102704i
\(661\) 19.2197 + 3.38895i 0.747559 + 0.131815i 0.534434 0.845210i \(-0.320525\pi\)
0.213125 + 0.977025i \(0.431636\pi\)
\(662\) 3.08353 + 0.543709i 0.119845 + 0.0211319i
\(663\) −5.31649 3.94081i −0.206476 0.153048i
\(664\) 5.03956 13.8461i 0.195573 0.537332i
\(665\) 74.9599 13.8625i 2.90682 0.537564i
\(666\) −2.04425 1.91263i −0.0792132 0.0741129i
\(667\) 16.2383 0.628749
\(668\) −23.9758 + 20.1181i −0.927650 + 0.778391i
\(669\) −6.29418 26.3130i −0.243347 1.01732i
\(670\) 7.27556 + 1.28288i 0.281079 + 0.0495619i
\(671\) 0.440184 2.49641i 0.0169931 0.0963728i
\(672\) 11.4202 + 3.28977i 0.440542 + 0.126906i
\(673\) −12.4902 + 10.4805i −0.481462 + 0.403995i −0.850955 0.525239i \(-0.823976\pi\)
0.369492 + 0.929234i \(0.379532\pi\)
\(674\) −1.93642 1.11799i −0.0745881 0.0430634i
\(675\) 5.87608 34.5866i 0.226170 1.33124i
\(676\) −11.6377 20.1571i −0.447604 0.775273i
\(677\) 1.93545 + 10.9765i 0.0743854 + 0.421861i 0.999146 + 0.0413120i \(0.0131538\pi\)
−0.924761 + 0.380549i \(0.875735\pi\)
\(678\) −5.38735 + 3.55940i −0.206900 + 0.136698i
\(679\) 0.223424 + 26.8114i 0.00857422 + 1.02893i
\(680\) 3.83409 + 10.5341i 0.147031 + 0.403964i
\(681\) 10.9502 2.61933i 0.419613 0.100373i
\(682\) −0.155332 0.185117i −0.00594796 0.00708850i
\(683\) 29.6313 + 17.1076i 1.13381 + 0.654606i 0.944890 0.327387i \(-0.106168\pi\)
0.188920 + 0.981993i \(0.439501\pi\)
\(684\) −22.2501 43.8475i −0.850755 1.67655i
\(685\) 15.0622 + 8.69614i 0.575496 + 0.332263i
\(686\) −1.31814 + 3.92411i −0.0503270 + 0.149823i
\(687\) 12.3923 5.37613i 0.472794 0.205112i
\(688\) −20.9945 + 7.64136i −0.800406 + 0.291324i
\(689\) 2.24831 12.7508i 0.0856538 0.485767i
\(690\) −2.93518 + 3.95981i −0.111740 + 0.150747i
\(691\) −22.4978 26.8118i −0.855856 1.01997i −0.999539 0.0303456i \(-0.990339\pi\)
0.143684 0.989624i \(-0.454105\pi\)
\(692\) −8.66380 + 15.0062i −0.329348 + 0.570448i
\(693\) −3.61122 + 2.75925i −0.137179 + 0.104815i
\(694\) 1.11117 + 1.92460i 0.0421793 + 0.0730567i
\(695\) 11.3178 31.0953i 0.429307 1.17951i
\(696\) −1.90424 + 6.40913i −0.0721800 + 0.242938i
\(697\) 1.37610 + 1.15469i 0.0521236 + 0.0437369i
\(698\) 3.80784 + 3.19516i 0.144129 + 0.120939i
\(699\) 17.9209 + 27.1243i 0.677832 + 1.02593i
\(700\) −32.6324 + 12.1861i −1.23339 + 0.460592i
\(701\) 49.9356i 1.88604i −0.332736 0.943020i \(-0.607972\pi\)
0.332736 0.943020i \(-0.392028\pi\)
\(702\) 1.12838 + 0.402734i 0.0425879 + 0.0152002i
\(703\) 30.3887 17.5449i 1.14613 0.661719i
\(704\) 1.33672 3.67262i 0.0503796 0.138417i
\(705\) 33.7305 + 16.8523i 1.27036 + 0.634693i
\(706\) −0.230358 0.0406184i −0.00866965 0.00152869i
\(707\) −20.5863 + 36.3527i −0.774227 + 1.36718i
\(708\) −7.58864 + 25.5412i −0.285199 + 0.959899i
\(709\) −32.4827 11.8227i −1.21991 0.444012i −0.349782 0.936831i \(-0.613744\pi\)
−0.870132 + 0.492819i \(0.835966\pi\)
\(710\) −0.200254 + 0.346851i −0.00751541 + 0.0130171i
\(711\) 8.30494 + 27.3258i 0.311460 + 1.02480i
\(712\) −9.09317 + 5.24994i −0.340781 + 0.196750i
\(713\) 6.58986 + 2.39851i 0.246792 + 0.0898251i
\(714\) 2.11761 + 3.14777i 0.0792495 + 0.117802i
\(715\) 1.55109 + 1.30152i 0.0580076 + 0.0486742i
\(716\) 12.1947 + 33.5047i 0.455738 + 1.25213i
\(717\) 3.81805 33.2659i 0.142588 1.24234i
\(718\) 0.0140362 + 0.0796031i 0.000523825 + 0.00297076i
\(719\) −3.18608 5.51846i −0.118821 0.205804i 0.800480 0.599360i \(-0.204578\pi\)
−0.919301 + 0.393556i \(0.871245\pi\)
\(720\) 22.8665 + 30.4496i 0.852185 + 1.13479i
\(721\) 10.8007 1.99740i 0.402240 0.0743870i
\(722\) −11.3677 + 2.00442i −0.423060 + 0.0745970i
\(723\) 34.7017 + 10.3103i 1.29057 + 0.383446i
\(724\) −2.04235 + 2.43398i −0.0759035 + 0.0904583i
\(725\) −10.0961 27.7388i −0.374960 1.03019i
\(726\) 2.27755 + 3.44720i 0.0845279 + 0.127938i
\(727\) 1.07036 + 1.27560i 0.0396973 + 0.0473094i 0.785528 0.618826i \(-0.212392\pi\)
−0.745830 + 0.666136i \(0.767947\pi\)
\(728\) −0.438197 2.36951i −0.0162407 0.0878198i
\(729\) −25.2544 + 9.55072i −0.935347 + 0.353730i
\(730\) −3.03168 + 5.25103i −0.112208 + 0.194349i
\(731\) −21.0007 7.64362i −0.776738 0.282710i
\(732\) −14.9260 + 0.900522i −0.551681 + 0.0332843i
\(733\) −18.5213 + 22.0728i −0.684098 + 0.815276i −0.990628 0.136584i \(-0.956387\pi\)
0.306530 + 0.951861i \(0.400832\pi\)
\(734\) 6.62135 2.40997i 0.244398 0.0889537i
\(735\) −34.2911 + 23.4862i −1.26485 + 0.866302i
\(736\) −1.67258 9.48566i −0.0616521 0.349646i
\(737\) 5.52069i 0.203357i
\(738\) −0.299155 0.127568i −0.0110120 0.00469585i
\(739\) −6.33508 −0.233040 −0.116520 0.993188i \(-0.537174\pi\)
−0.116520 + 0.993188i \(0.537174\pi\)
\(740\) −21.3793 + 17.9393i −0.785918 + 0.659464i
\(741\) −8.94267 + 12.0644i −0.328517 + 0.443199i
\(742\) −3.65751 + 6.45869i −0.134271 + 0.237106i
\(743\) −29.0460 + 34.6157i −1.06560 + 1.26993i −0.104259 + 0.994550i \(0.533247\pi\)
−0.961336 + 0.275377i \(0.911197\pi\)
\(744\) −1.71946 + 2.31970i −0.0630384 + 0.0850443i
\(745\) 38.5996 6.80615i 1.41418 0.249358i
\(746\) 3.58610i 0.131296i
\(747\) 34.2061 36.5601i 1.25154 1.33766i
\(748\) 3.58148 2.06777i 0.130952 0.0756050i
\(749\) 6.70365 + 1.12452i 0.244946 + 0.0410890i
\(750\) 2.22832 + 0.662064i 0.0813668 + 0.0241752i
\(751\) −0.0285057 + 0.161664i −0.00104019 + 0.00589920i −0.985323 0.170698i \(-0.945398\pi\)
0.984283 + 0.176597i \(0.0565089\pi\)
\(752\) −22.0959 + 8.04224i −0.805754 + 0.293270i
\(753\) −25.7310 + 17.0004i −0.937690 + 0.619529i
\(754\) 0.992792 0.175056i 0.0361554 0.00637517i
\(755\) 62.7484 2.28365
\(756\) 20.7856 + 16.9310i 0.755966 + 0.615776i
\(757\) −35.2242 −1.28025 −0.640123 0.768272i \(-0.721117\pi\)
−0.640123 + 0.768272i \(0.721117\pi\)
\(758\) 4.23260 0.746322i 0.153735 0.0271076i
\(759\) 3.29497 + 1.64622i 0.119600 + 0.0597539i
\(760\) 23.9045 8.70051i 0.867106 0.315601i
\(761\) 0.652342 3.69962i 0.0236474 0.134111i −0.970699 0.240301i \(-0.922754\pi\)
0.994346 + 0.106190i \(0.0338651\pi\)
\(762\) 1.61949 1.53430i 0.0586681 0.0555818i
\(763\) −0.968367 0.798901i −0.0350573 0.0289222i
\(764\) −9.58411 + 5.53339i −0.346741 + 0.200191i
\(765\) −2.05645 + 38.0353i −0.0743510 + 1.37517i
\(766\) 5.88127i 0.212499i
\(767\) 8.01418