Properties

Label 189.2.ba.a.5.7
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.7
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25823 + 0.221860i) q^{2} +(0.0538771 + 1.73121i) q^{3} +(-0.345469 + 0.125740i) q^{4} +(0.640361 - 3.63167i) q^{5} +(-0.451876 - 2.16631i) q^{6} +(-1.30830 - 2.29964i) q^{7} +(2.61972 - 1.51249i) q^{8} +(-2.99419 + 0.186545i) q^{9} +O(q^{10})\) \(q+(-1.25823 + 0.221860i) q^{2} +(0.0538771 + 1.73121i) q^{3} +(-0.345469 + 0.125740i) q^{4} +(0.640361 - 3.63167i) q^{5} +(-0.451876 - 2.16631i) q^{6} +(-1.30830 - 2.29964i) q^{7} +(2.61972 - 1.51249i) q^{8} +(-2.99419 + 0.186545i) q^{9} +4.71154i q^{10} +(3.76726 - 0.664269i) q^{11} +(-0.236296 - 0.591305i) q^{12} +(0.636198 - 0.758192i) q^{13} +(2.15634 + 2.60322i) q^{14} +(6.32169 + 0.912938i) q^{15} +(-2.39738 + 2.01164i) q^{16} +0.183607 q^{17} +(3.72599 - 0.899007i) q^{18} +2.22080i q^{19} +(0.235422 + 1.33515i) q^{20} +(3.91068 - 2.38884i) q^{21} +(-4.59270 + 1.67161i) q^{22} +(4.55059 - 5.42318i) q^{23} +(2.75959 + 4.45380i) q^{24} +(-8.08049 - 2.94106i) q^{25} +(-0.632271 + 1.09512i) q^{26} +(-0.484268 - 5.17354i) q^{27} +(0.741133 + 0.629949i) q^{28} +(-4.05267 - 4.82979i) q^{29} +(-8.15668 + 0.253844i) q^{30} +(-2.37037 - 6.51253i) q^{31} +(-1.31870 + 1.57156i) q^{32} +(1.35296 + 6.48614i) q^{33} +(-0.231020 + 0.0407350i) q^{34} +(-9.18932 + 3.27870i) q^{35} +(1.01094 - 0.440936i) q^{36} +(3.97936 + 6.89245i) q^{37} +(-0.492706 - 2.79428i) q^{38} +(1.34687 + 1.06055i) q^{39} +(-3.81531 - 10.4825i) q^{40} +(-2.82696 - 2.37210i) q^{41} +(-4.39055 + 3.87333i) q^{42} +(6.59799 + 2.40147i) q^{43} +(-1.21794 + 0.703180i) q^{44} +(-1.23989 + 10.9934i) q^{45} +(-4.52250 + 7.83320i) q^{46} +(8.04594 + 2.92848i) q^{47} +(-3.61175 - 4.04200i) q^{48} +(-3.57671 + 6.01724i) q^{49} +(10.8196 + 1.90779i) q^{50} +(0.00989222 + 0.317863i) q^{51} +(-0.124451 + 0.341927i) q^{52} +(-7.25426 + 4.18825i) q^{53} +(1.75712 + 6.40205i) q^{54} -14.1068i q^{55} +(-6.90556 - 4.04562i) q^{56} +(-3.84468 + 0.119650i) q^{57} +(6.17073 + 5.17785i) q^{58} +(-5.30241 - 4.44925i) q^{59} +(-2.29874 + 0.479500i) q^{60} +(-0.169958 + 0.466955i) q^{61} +(4.42733 + 7.66836i) q^{62} +(4.34629 + 6.64152i) q^{63} +(4.44012 - 7.69051i) q^{64} +(-2.34610 - 2.79598i) q^{65} +(-3.14135 - 7.86087i) q^{66} +(-1.36604 + 7.74720i) q^{67} +(-0.0634305 + 0.0230868i) q^{68} +(9.63386 + 7.58586i) q^{69} +(10.8349 - 6.16410i) q^{70} +(3.59557 + 2.07590i) q^{71} +(-7.56179 + 5.01740i) q^{72} +(0.415503 + 0.239891i) q^{73} +(-6.53610 - 7.78942i) q^{74} +(4.65625 - 14.1475i) q^{75} +(-0.279244 - 0.767217i) q^{76} +(-6.45628 - 7.79429i) q^{77} +(-1.92996 - 1.03559i) q^{78} +(0.642778 + 3.64537i) q^{79} +(5.77043 + 9.99468i) q^{80} +(8.93040 - 1.11711i) q^{81} +(4.08323 + 2.35745i) q^{82} +(2.15821 - 1.81096i) q^{83} +(-1.05064 + 1.31700i) q^{84} +(0.117575 - 0.666800i) q^{85} +(-8.83457 - 1.55777i) q^{86} +(8.14305 - 7.27626i) q^{87} +(8.86445 - 7.43815i) q^{88} -8.53199 q^{89} +(-0.878916 - 14.1073i) q^{90} +(-2.57591 - 0.471088i) q^{91} +(-0.890174 + 2.44573i) q^{92} +(11.1469 - 4.45448i) q^{93} +(-10.7733 - 1.89963i) q^{94} +(8.06522 + 1.42212i) q^{95} +(-2.79176 - 2.19827i) q^{96} +(0.877451 - 2.41078i) q^{97} +(3.16534 - 8.36458i) q^{98} +(-11.1560 + 2.69172i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25823 + 0.221860i −0.889702 + 0.156878i −0.599773 0.800170i \(-0.704743\pi\)
−0.289928 + 0.957048i \(0.593631\pi\)
\(3\) 0.0538771 + 1.73121i 0.0311060 + 0.999516i
\(4\) −0.345469 + 0.125740i −0.172734 + 0.0628701i
\(5\) 0.640361 3.63167i 0.286378 1.62413i −0.413942 0.910303i \(-0.635848\pi\)
0.700320 0.713829i \(-0.253040\pi\)
\(6\) −0.451876 2.16631i −0.184478 0.884391i
\(7\) −1.30830 2.29964i −0.494490 0.869183i
\(8\) 2.61972 1.51249i 0.926210 0.534747i
\(9\) −2.99419 + 0.186545i −0.998065 + 0.0621818i
\(10\) 4.71154i 1.48992i
\(11\) 3.76726 0.664269i 1.13587 0.200285i 0.426072 0.904689i \(-0.359897\pi\)
0.709799 + 0.704404i \(0.248786\pi\)
\(12\) −0.236296 0.591305i −0.0682128 0.170695i
\(13\) 0.636198 0.758192i 0.176450 0.210285i −0.670570 0.741847i \(-0.733950\pi\)
0.847019 + 0.531562i \(0.178395\pi\)
\(14\) 2.15634 + 2.60322i 0.576305 + 0.695739i
\(15\) 6.32169 + 0.912938i 1.63225 + 0.235720i
\(16\) −2.39738 + 2.01164i −0.599346 + 0.502911i
\(17\) 0.183607 0.0445313 0.0222656 0.999752i \(-0.492912\pi\)
0.0222656 + 0.999752i \(0.492912\pi\)
\(18\) 3.72599 0.899007i 0.878225 0.211898i
\(19\) 2.22080i 0.509487i 0.967009 + 0.254744i \(0.0819910\pi\)
−0.967009 + 0.254744i \(0.918009\pi\)
\(20\) 0.235422 + 1.33515i 0.0526420 + 0.298548i
\(21\) 3.91068 2.38884i 0.853381 0.521288i
\(22\) −4.59270 + 1.67161i −0.979166 + 0.356387i
\(23\) 4.55059 5.42318i 0.948864 1.13081i −0.0424238 0.999100i \(-0.513508\pi\)
0.991288 0.131713i \(-0.0420476\pi\)
\(24\) 2.75959 + 4.45380i 0.563299 + 0.909128i
\(25\) −8.08049 2.94106i −1.61610 0.588212i
\(26\) −0.632271 + 1.09512i −0.123998 + 0.214772i
\(27\) −0.484268 5.17354i −0.0931975 0.995648i
\(28\) 0.741133 + 0.629949i 0.140061 + 0.119049i
\(29\) −4.05267 4.82979i −0.752563 0.896869i 0.244791 0.969576i \(-0.421281\pi\)
−0.997353 + 0.0727065i \(0.976836\pi\)
\(30\) −8.15668 + 0.253844i −1.48920 + 0.0463454i
\(31\) −2.37037 6.51253i −0.425730 1.16968i −0.948380 0.317137i \(-0.897279\pi\)
0.522650 0.852548i \(-0.324944\pi\)
\(32\) −1.31870 + 1.57156i −0.233115 + 0.277816i
\(33\) 1.35296 + 6.48614i 0.235520 + 1.12909i
\(34\) −0.231020 + 0.0407350i −0.0396196 + 0.00698600i
\(35\) −9.18932 + 3.27870i −1.55328 + 0.554202i
\(36\) 1.01094 0.440936i 0.168491 0.0734894i
\(37\) 3.97936 + 6.89245i 0.654203 + 1.13311i 0.982093 + 0.188396i \(0.0603289\pi\)
−0.327891 + 0.944716i \(0.606338\pi\)
\(38\) −0.492706 2.79428i −0.0799275 0.453292i
\(39\) 1.34687 + 1.06055i 0.215671 + 0.169823i
\(40\) −3.81531 10.4825i −0.603254 1.65743i
\(41\) −2.82696 2.37210i −0.441496 0.370460i 0.394773 0.918779i \(-0.370823\pi\)
−0.836269 + 0.548319i \(0.815268\pi\)
\(42\) −4.39055 + 3.87333i −0.677476 + 0.597668i
\(43\) 6.59799 + 2.40147i 1.00618 + 0.366221i 0.791966 0.610565i \(-0.209058\pi\)
0.214218 + 0.976786i \(0.431280\pi\)
\(44\) −1.21794 + 0.703180i −0.183612 + 0.106008i
\(45\) −1.23989 + 10.9934i −0.184833 + 1.63880i
\(46\) −4.52250 + 7.83320i −0.666806 + 1.15494i
\(47\) 8.04594 + 2.92848i 1.17362 + 0.427163i 0.853945 0.520364i \(-0.174204\pi\)
0.319676 + 0.947527i \(0.396426\pi\)
\(48\) −3.61175 4.04200i −0.521311 0.583412i
\(49\) −3.57671 + 6.01724i −0.510959 + 0.859605i
\(50\) 10.8196 + 1.90779i 1.53012 + 0.269802i
\(51\) 0.00989222 + 0.317863i 0.00138519 + 0.0445097i
\(52\) −0.124451 + 0.341927i −0.0172583 + 0.0474168i
\(53\) −7.25426 + 4.18825i −0.996449 + 0.575300i −0.907196 0.420709i \(-0.861781\pi\)
−0.0892530 + 0.996009i \(0.528448\pi\)
\(54\) 1.75712 + 6.40205i 0.239114 + 0.871209i
\(55\) 14.1068i 1.90216i
\(56\) −6.90556 4.04562i −0.922795 0.540619i
\(57\) −3.84468 + 0.119650i −0.509241 + 0.0158481i
\(58\) 6.17073 + 5.17785i 0.810256 + 0.679885i
\(59\) −5.30241 4.44925i −0.690316 0.579244i 0.228685 0.973501i \(-0.426558\pi\)
−0.919000 + 0.394257i \(0.871002\pi\)
\(60\) −2.29874 + 0.479500i −0.296766 + 0.0619032i
\(61\) −0.169958 + 0.466955i −0.0217609 + 0.0597875i −0.950097 0.311953i \(-0.899017\pi\)
0.928337 + 0.371741i \(0.121239\pi\)
\(62\) 4.42733 + 7.66836i 0.562271 + 0.973882i
\(63\) 4.34629 + 6.64152i 0.547581 + 0.836753i
\(64\) 4.44012 7.69051i 0.555015 0.961313i
\(65\) −2.34610 2.79598i −0.290998 0.346798i
\(66\) −3.14135 7.86087i −0.386673 0.967607i
\(67\) −1.36604 + 7.74720i −0.166888 + 0.946472i 0.780207 + 0.625521i \(0.215113\pi\)
−0.947096 + 0.320951i \(0.895998\pi\)
\(68\) −0.0634305 + 0.0230868i −0.00769208 + 0.00279969i
\(69\) 9.63386 + 7.58586i 1.15978 + 0.913230i
\(70\) 10.8349 6.16410i 1.29501 0.736750i
\(71\) 3.59557 + 2.07590i 0.426715 + 0.246364i 0.697946 0.716150i \(-0.254097\pi\)
−0.271231 + 0.962514i \(0.587431\pi\)
\(72\) −7.56179 + 5.01740i −0.891166 + 0.591306i
\(73\) 0.415503 + 0.239891i 0.0486309 + 0.0280771i 0.524118 0.851645i \(-0.324395\pi\)
−0.475487 + 0.879723i \(0.657728\pi\)
\(74\) −6.53610 7.78942i −0.759806 0.905501i
\(75\) 4.65625 14.1475i 0.537657 1.63361i
\(76\) −0.279244 0.767217i −0.0320315 0.0880059i
\(77\) −6.45628 7.79429i −0.735761 0.888242i
\(78\) −1.92996 1.03559i −0.218525 0.117258i
\(79\) 0.642778 + 3.64537i 0.0723181 + 0.410136i 0.999379 + 0.0352265i \(0.0112153\pi\)
−0.927061 + 0.374910i \(0.877674\pi\)
\(80\) 5.77043 + 9.99468i 0.645154 + 1.11744i
\(81\) 8.93040 1.11711i 0.992267 0.124123i
\(82\) 4.08323 + 2.35745i 0.450917 + 0.260337i
\(83\) 2.15821 1.81096i 0.236895 0.198778i −0.516610 0.856221i \(-0.672806\pi\)
0.753505 + 0.657443i \(0.228362\pi\)
\(84\) −1.05064 + 1.31700i −0.114635 + 0.143696i
\(85\) 0.117575 0.666800i 0.0127528 0.0723247i
\(86\) −8.83457 1.55777i −0.952656 0.167979i
\(87\) 8.14305 7.27626i 0.873026 0.780097i
\(88\) 8.86445 7.43815i 0.944953 0.792910i
\(89\) −8.53199 −0.904389 −0.452194 0.891919i \(-0.649359\pi\)
−0.452194 + 0.891919i \(0.649359\pi\)
\(90\) −0.878916 14.1073i −0.0926459 1.48704i
\(91\) −2.57591 0.471088i −0.270028 0.0493835i
\(92\) −0.890174 + 2.44573i −0.0928070 + 0.254985i
\(93\) 11.1469 4.45448i 1.15588 0.461908i
\(94\) −10.7733 1.89963i −1.11119 0.195932i
\(95\) 8.06522 + 1.42212i 0.827474 + 0.145906i
\(96\) −2.79176 2.19827i −0.284932 0.224360i
\(97\) 0.877451 2.41078i 0.0890916 0.244777i −0.887143 0.461495i \(-0.847313\pi\)
0.976234 + 0.216718i \(0.0695353\pi\)
\(98\) 3.16534 8.36458i 0.319748 0.844951i
\(99\) −11.1560 + 2.69172i −1.12122 + 0.270528i
\(100\) 3.16137 0.316137
\(101\) 0.273620 0.229594i 0.0272262 0.0228455i −0.629073 0.777346i \(-0.716565\pi\)
0.656299 + 0.754501i \(0.272121\pi\)
\(102\) −0.0829676 0.397750i −0.00821502 0.0393831i
\(103\) 1.22832 + 0.216586i 0.121030 + 0.0213408i 0.233835 0.972276i \(-0.424872\pi\)
−0.112805 + 0.993617i \(0.535984\pi\)
\(104\) 0.519899 2.94849i 0.0509803 0.289124i
\(105\) −6.17123 15.7320i −0.602250 1.53529i
\(106\) 8.19831 6.87920i 0.796290 0.668167i
\(107\) 16.3851 + 9.45993i 1.58401 + 0.914526i 0.994266 + 0.106932i \(0.0341026\pi\)
0.589739 + 0.807594i \(0.299231\pi\)
\(108\) 0.817821 + 1.72640i 0.0786949 + 0.166123i
\(109\) 5.24770 + 9.08929i 0.502639 + 0.870596i 0.999995 + 0.00304971i \(0.000970754\pi\)
−0.497357 + 0.867546i \(0.665696\pi\)
\(110\) 3.12973 + 17.7496i 0.298408 + 1.69236i
\(111\) −11.7179 + 7.26046i −1.11221 + 0.689132i
\(112\) 7.76255 + 2.88130i 0.733492 + 0.272257i
\(113\) 4.52851 + 12.4420i 0.426006 + 1.17044i 0.948216 + 0.317625i \(0.102885\pi\)
−0.522210 + 0.852817i \(0.674892\pi\)
\(114\) 4.81094 1.00353i 0.450586 0.0939889i
\(115\) −16.7812 19.9990i −1.56485 1.86492i
\(116\) 2.00737 + 1.15896i 0.186380 + 0.107606i
\(117\) −1.76346 + 2.38885i −0.163032 + 0.220850i
\(118\) 7.65876 + 4.42179i 0.705046 + 0.407058i
\(119\) −0.240213 0.422231i −0.0220203 0.0387058i
\(120\) 17.9419 7.16988i 1.63786 0.654518i
\(121\) 3.41437 1.24273i 0.310397 0.112975i
\(122\) 0.110247 0.625243i 0.00998132 0.0566069i
\(123\) 3.95430 5.02187i 0.356547 0.452806i
\(124\) 1.63777 + 1.95182i 0.147076 + 0.175279i
\(125\) −6.63616 + 11.4942i −0.593556 + 1.02807i
\(126\) −6.94210 7.39228i −0.618452 0.658557i
\(127\) −1.18861 2.05874i −0.105472 0.182683i 0.808459 0.588553i \(-0.200302\pi\)
−0.913931 + 0.405869i \(0.866969\pi\)
\(128\) −2.47714 + 6.80588i −0.218950 + 0.601561i
\(129\) −3.80198 + 11.5519i −0.334745 + 1.01709i
\(130\) 3.57225 + 2.99747i 0.313307 + 0.262896i
\(131\) 11.1667 + 9.37000i 0.975642 + 0.818661i 0.983426 0.181309i \(-0.0580334\pi\)
−0.00778442 + 0.999970i \(0.502478\pi\)
\(132\) −1.28297 2.07064i −0.111669 0.180226i
\(133\) 5.10705 2.90547i 0.442838 0.251936i
\(134\) 10.0508i 0.868259i
\(135\) −19.0987 1.55423i −1.64375 0.133767i
\(136\) 0.480999 0.277705i 0.0412453 0.0238130i
\(137\) 3.73213 10.2539i 0.318857 0.876053i −0.671929 0.740616i \(-0.734534\pi\)
0.990786 0.135437i \(-0.0432438\pi\)
\(138\) −13.8046 7.40738i −1.17512 0.630558i
\(139\) −14.2775 2.51750i −1.21100 0.213532i −0.468552 0.883436i \(-0.655224\pi\)
−0.742448 + 0.669904i \(0.766335\pi\)
\(140\) 2.76236 2.28816i 0.233462 0.193385i
\(141\) −4.63633 + 14.0870i −0.390450 + 1.18634i
\(142\) −4.98460 1.81425i −0.418299 0.152248i
\(143\) 1.89308 3.27891i 0.158307 0.274196i
\(144\) 6.80297 6.47047i 0.566914 0.539206i
\(145\) −20.1354 + 11.6252i −1.67215 + 0.965417i
\(146\) −0.576019 0.209654i −0.0476717 0.0173511i
\(147\) −10.6098 5.86786i −0.875083 0.483973i
\(148\) −2.24140 1.88076i −0.184242 0.154597i
\(149\) 1.54207 + 4.23681i 0.126332 + 0.347093i 0.986694 0.162590i \(-0.0519848\pi\)
−0.860362 + 0.509683i \(0.829763\pi\)
\(150\) −2.71986 + 18.8338i −0.222076 + 1.53778i
\(151\) 4.21562 + 23.9079i 0.343062 + 1.94560i 0.324845 + 0.945767i \(0.394688\pi\)
0.0182169 + 0.999834i \(0.494201\pi\)
\(152\) 3.35895 + 5.81787i 0.272447 + 0.471892i
\(153\) −0.549756 + 0.0342511i −0.0444451 + 0.00276903i
\(154\) 9.85271 + 8.37461i 0.793954 + 0.674845i
\(155\) −25.1692 + 4.43801i −2.02164 + 0.356470i
\(156\) −0.598654 0.197030i −0.0479307 0.0157750i
\(157\) 5.46527 6.51325i 0.436176 0.519814i −0.502518 0.864567i \(-0.667593\pi\)
0.938694 + 0.344753i \(0.112037\pi\)
\(158\) −1.61752 4.44410i −0.128683 0.353554i
\(159\) −7.64158 12.3330i −0.606017 0.978071i
\(160\) 4.86295 + 5.79544i 0.384450 + 0.458170i
\(161\) −18.4249 3.36960i −1.45209 0.265561i
\(162\) −10.9886 + 3.38687i −0.863349 + 0.266098i
\(163\) −1.18772 + 2.05720i −0.0930297 + 0.161132i −0.908785 0.417266i \(-0.862988\pi\)
0.815755 + 0.578398i \(0.196322\pi\)
\(164\) 1.27489 + 0.464023i 0.0995524 + 0.0362341i
\(165\) 24.4219 0.760034i 1.90124 0.0591686i
\(166\) −2.31375 + 2.75742i −0.179582 + 0.214017i
\(167\) −8.46232 + 3.08003i −0.654834 + 0.238340i −0.648004 0.761637i \(-0.724396\pi\)
−0.00682972 + 0.999977i \(0.502174\pi\)
\(168\) 6.63178 12.1730i 0.511653 0.939165i
\(169\) 2.08732 + 11.8378i 0.160563 + 0.910598i
\(170\) 0.865072i 0.0663480i
\(171\) −0.414280 6.64952i −0.0316808 0.508501i
\(172\) −2.58136 −0.196827
\(173\) 9.39285 7.88153i 0.714125 0.599222i −0.211628 0.977350i \(-0.567877\pi\)
0.925753 + 0.378128i \(0.123432\pi\)
\(174\) −8.63150 + 10.9618i −0.654353 + 0.831012i
\(175\) 3.80831 + 22.4300i 0.287881 + 1.69555i
\(176\) −7.69529 + 9.17089i −0.580054 + 0.691282i
\(177\) 7.41693 9.41932i 0.557490 0.707999i
\(178\) 10.7352 1.89290i 0.804636 0.141879i
\(179\) 22.3830i 1.67298i −0.547982 0.836490i \(-0.684604\pi\)
0.547982 0.836490i \(-0.315396\pi\)
\(180\) −0.953966 3.95377i −0.0711044 0.294697i
\(181\) 15.8784 9.16743i 1.18024 0.681409i 0.224167 0.974551i \(-0.428034\pi\)
0.956069 + 0.293141i \(0.0947007\pi\)
\(182\) 3.34559 + 0.0212471i 0.247992 + 0.00157494i
\(183\) −0.817556 0.269075i −0.0604355 0.0198906i
\(184\) 3.71873 21.0900i 0.274148 1.55477i
\(185\) 27.5793 10.0381i 2.02767 0.738012i
\(186\) −13.0370 + 8.07779i −0.955921 + 0.592293i
\(187\) 0.691696 0.121965i 0.0505818 0.00891894i
\(188\) −3.14785 −0.229580
\(189\) −11.2637 + 7.88217i −0.819315 + 0.573344i
\(190\) −10.4634 −0.759095
\(191\) −3.05044 + 0.537874i −0.220722 + 0.0389192i −0.282915 0.959145i \(-0.591302\pi\)
0.0621935 + 0.998064i \(0.480190\pi\)
\(192\) 13.5531 + 7.27244i 0.978113 + 0.524843i
\(193\) 0.886864 0.322792i 0.0638378 0.0232351i −0.309904 0.950768i \(-0.600297\pi\)
0.373742 + 0.927533i \(0.378075\pi\)
\(194\) −0.569180 + 3.22798i −0.0408647 + 0.231755i
\(195\) 4.71403 4.21224i 0.337579 0.301645i
\(196\) 0.479033 2.52850i 0.0342167 0.180607i
\(197\) 3.04712 1.75926i 0.217099 0.125342i −0.387507 0.921867i \(-0.626664\pi\)
0.604606 + 0.796525i \(0.293331\pi\)
\(198\) 13.4396 5.86186i 0.955111 0.416584i
\(199\) 11.6002i 0.822317i −0.911564 0.411158i \(-0.865124\pi\)
0.911564 0.411158i \(-0.134876\pi\)
\(200\) −25.6169 + 4.51696i −1.81139 + 0.319397i
\(201\) −13.4857 1.94751i −0.951205 0.137367i
\(202\) −0.293338 + 0.349587i −0.0206392 + 0.0245969i
\(203\) −5.80469 + 15.6385i −0.407409 + 1.09761i
\(204\) −0.0433856 0.108568i −0.00303760 0.00760127i
\(205\) −10.4249 + 8.74757i −0.728110 + 0.610957i
\(206\) −1.59356 −0.111028
\(207\) −12.6137 + 17.0870i −0.876712 + 1.18763i
\(208\) 3.09748i 0.214772i
\(209\) 1.47521 + 8.36634i 0.102042 + 0.578712i
\(210\) 11.2551 + 18.4253i 0.776676 + 1.27147i
\(211\) −7.98591 + 2.90664i −0.549773 + 0.200101i −0.601946 0.798537i \(-0.705608\pi\)
0.0521726 + 0.998638i \(0.483385\pi\)
\(212\) 1.97949 2.35906i 0.135952 0.162021i
\(213\) −3.40011 + 6.33654i −0.232972 + 0.434172i
\(214\) −22.7149 8.26756i −1.55276 0.565159i
\(215\) 12.9464 22.4239i 0.882940 1.52930i
\(216\) −9.09359 12.8207i −0.618740 0.872341i
\(217\) −11.8753 + 13.9713i −0.806151 + 0.948435i
\(218\) −8.61935 10.2721i −0.583776 0.695718i
\(219\) −0.392916 + 0.732248i −0.0265508 + 0.0494807i
\(220\) 1.77379 + 4.87346i 0.119589 + 0.328569i
\(221\) 0.116811 0.139209i 0.00785753 0.00936424i
\(222\) 13.1330 11.7350i 0.881429 0.787605i
\(223\) 28.5849 5.04028i 1.91418 0.337522i 0.916185 0.400755i \(-0.131252\pi\)
0.997999 + 0.0632329i \(0.0201411\pi\)
\(224\) 5.33928 + 0.976461i 0.356746 + 0.0652425i
\(225\) 24.7432 + 7.29873i 1.64955 + 0.486582i
\(226\) −8.45827 14.6501i −0.562636 0.974513i
\(227\) 0.754518 + 4.27909i 0.0500791 + 0.284013i 0.999555 0.0298269i \(-0.00949562\pi\)
−0.949476 + 0.313840i \(0.898385\pi\)
\(228\) 1.31317 0.524767i 0.0869669 0.0347535i
\(229\) −4.37893 12.0310i −0.289368 0.795031i −0.996155 0.0876051i \(-0.972079\pi\)
0.706788 0.707426i \(-0.250144\pi\)
\(230\) 25.5515 + 21.4403i 1.68482 + 1.41373i
\(231\) 13.1457 11.5971i 0.864925 0.763035i
\(232\) −17.9219 6.52303i −1.17663 0.428258i
\(233\) −1.11841 + 0.645712i −0.0732692 + 0.0423020i −0.536187 0.844099i \(-0.680136\pi\)
0.462918 + 0.886401i \(0.346802\pi\)
\(234\) 1.68885 3.39696i 0.110404 0.222066i
\(235\) 15.7876 27.3449i 1.02987 1.78378i
\(236\) 2.39127 + 0.870350i 0.155658 + 0.0566550i
\(237\) −6.27628 + 1.30919i −0.407688 + 0.0850408i
\(238\) 0.395919 + 0.477969i 0.0256636 + 0.0309821i
\(239\) 13.0366 + 2.29870i 0.843265 + 0.148690i 0.578561 0.815639i \(-0.303615\pi\)
0.264704 + 0.964330i \(0.414726\pi\)
\(240\) −16.9920 + 10.5283i −1.09683 + 0.679601i
\(241\) −8.34515 + 22.9281i −0.537558 + 1.47693i 0.312334 + 0.949972i \(0.398889\pi\)
−0.849892 + 0.526957i \(0.823333\pi\)
\(242\) −4.02034 + 2.32115i −0.258437 + 0.149209i
\(243\) 2.41509 + 15.4002i 0.154928 + 0.987926i
\(244\) 0.182689i 0.0116955i
\(245\) 19.5622 + 16.8426i 1.24978 + 1.07604i
\(246\) −3.86126 + 7.19595i −0.246185 + 0.458797i
\(247\) 1.68379 + 1.41287i 0.107137 + 0.0898988i
\(248\) −16.0598 13.4758i −1.01980 0.855715i
\(249\) 3.25143 + 3.63876i 0.206051 + 0.230597i
\(250\) 5.79971 15.9346i 0.366806 1.00779i
\(251\) −8.82976 15.2936i −0.557330 0.965323i −0.997718 0.0675161i \(-0.978493\pi\)
0.440388 0.897807i \(-0.354841\pi\)
\(252\) −2.33661 1.74793i −0.147193 0.110109i
\(253\) 13.5408 23.4534i 0.851303 1.47450i
\(254\) 1.95230 + 2.32666i 0.122498 + 0.145987i
\(255\) 1.16071 + 0.167622i 0.0726864 + 0.0104969i
\(256\) −1.47722 + 8.37771i −0.0923260 + 0.523607i
\(257\) −8.93192 + 3.25095i −0.557158 + 0.202789i −0.605224 0.796055i \(-0.706916\pi\)
0.0480660 + 0.998844i \(0.484694\pi\)
\(258\) 2.22085 15.3784i 0.138264 0.957420i
\(259\) 10.6440 18.1685i 0.661385 1.12893i
\(260\) 1.16207 + 0.670923i 0.0720687 + 0.0416089i
\(261\) 13.0355 + 13.7053i 0.806875 + 0.848338i
\(262\) −16.1291 9.31215i −0.996460 0.575307i
\(263\) −9.05676 10.7934i −0.558464 0.665551i 0.410757 0.911745i \(-0.365265\pi\)
−0.969221 + 0.246194i \(0.920820\pi\)
\(264\) 13.3546 + 14.9455i 0.821920 + 0.919832i
\(265\) 10.5650 + 29.0270i 0.649002 + 1.78312i
\(266\) −5.78123 + 4.78879i −0.354470 + 0.293620i
\(267\) −0.459679 14.7707i −0.0281319 0.903951i
\(268\) −0.502211 2.84818i −0.0306774 0.173980i
\(269\) −4.12864 7.15102i −0.251728 0.436005i 0.712274 0.701902i \(-0.247665\pi\)
−0.964002 + 0.265896i \(0.914332\pi\)
\(270\) 24.3753 2.28165i 1.48343 0.138857i
\(271\) −0.814011 0.469969i −0.0494476 0.0285486i 0.475072 0.879947i \(-0.342422\pi\)
−0.524520 + 0.851398i \(0.675755\pi\)
\(272\) −0.440177 + 0.369352i −0.0266896 + 0.0223953i
\(273\) 0.676772 4.48482i 0.0409601 0.271434i
\(274\) −2.42093 + 13.7298i −0.146254 + 0.829447i
\(275\) −32.3950 5.71211i −1.95349 0.344453i
\(276\) −4.28204 1.40931i −0.257749 0.0848306i
\(277\) −17.8308 + 14.9618i −1.07135 + 0.898967i −0.995174 0.0981280i \(-0.968715\pi\)
−0.0761729 + 0.997095i \(0.524270\pi\)
\(278\) 18.5229 1.11093
\(279\) 8.31222 + 19.0576i 0.497639 + 1.14095i
\(280\) −19.1144 + 22.4881i −1.14230 + 1.34392i
\(281\) 2.97166 8.16457i 0.177274 0.487057i −0.818951 0.573864i \(-0.805444\pi\)
0.996225 + 0.0868064i \(0.0276661\pi\)
\(282\) 2.70823 18.7533i 0.161273 1.11674i
\(283\) 18.5649 + 3.27349i 1.10357 + 0.194589i 0.695616 0.718414i \(-0.255131\pi\)
0.407953 + 0.913003i \(0.366243\pi\)
\(284\) −1.50318 0.265051i −0.0891973 0.0157279i
\(285\) −2.02745 + 14.0392i −0.120096 + 0.831612i
\(286\) −1.65447 + 4.54562i −0.0978308 + 0.268788i
\(287\) −1.75648 + 9.60440i −0.103682 + 0.566930i
\(288\) 3.65527 4.95156i 0.215389 0.291773i
\(289\) −16.9663 −0.998017
\(290\) 22.7557 19.0943i 1.33626 1.12126i
\(291\) 4.22084 + 1.38917i 0.247430 + 0.0814345i
\(292\) −0.173707 0.0306292i −0.0101654 0.00179244i
\(293\) −0.203056 + 1.15159i −0.0118627 + 0.0672765i −0.990164 0.139909i \(-0.955319\pi\)
0.978302 + 0.207185i \(0.0664302\pi\)
\(294\) 14.6514 + 5.02922i 0.854488 + 0.293310i
\(295\) −19.5537 + 16.4075i −1.13846 + 0.955281i
\(296\) 20.8496 + 12.0375i 1.21186 + 0.699666i
\(297\) −5.26099 19.1684i −0.305273 1.11226i
\(298\) −2.88026 4.98875i −0.166849 0.288991i
\(299\) −1.21673 6.90044i −0.0703656 0.399063i
\(300\) 0.170325 + 5.47300i 0.00983373 + 0.315984i
\(301\) −3.10961 18.3149i −0.179235 1.05565i
\(302\) −10.6084 29.1464i −0.610446 1.67719i
\(303\) 0.412218 + 0.461324i 0.0236813 + 0.0265024i
\(304\) −4.46746 5.32411i −0.256227 0.305359i
\(305\) 1.58699 + 0.916251i 0.0908710 + 0.0524644i
\(306\) 0.684119 0.165064i 0.0391085 0.00943609i
\(307\) −8.74477 5.04880i −0.499091 0.288150i 0.229247 0.973368i \(-0.426374\pi\)
−0.728338 + 0.685218i \(0.759707\pi\)
\(308\) 3.21050 + 1.88087i 0.182935 + 0.107172i
\(309\) −0.308778 + 2.13815i −0.0175657 + 0.121635i
\(310\) 30.6840 11.1681i 1.74274 0.634304i
\(311\) −2.09852 + 11.9013i −0.118996 + 0.674861i 0.865697 + 0.500568i \(0.166875\pi\)
−0.984694 + 0.174294i \(0.944236\pi\)
\(312\) 5.13248 + 0.741199i 0.290569 + 0.0419621i
\(313\) −5.53420 6.59540i −0.312812 0.372794i 0.586615 0.809866i \(-0.300460\pi\)
−0.899427 + 0.437071i \(0.856016\pi\)
\(314\) −5.43153 + 9.40768i −0.306519 + 0.530906i
\(315\) 26.9030 11.5313i 1.51581 0.649715i
\(316\) −0.680430 1.17854i −0.0382772 0.0662980i
\(317\) 6.31261 17.3438i 0.354552 0.974123i −0.626337 0.779553i \(-0.715447\pi\)
0.980889 0.194570i \(-0.0623312\pi\)
\(318\) 12.3511 + 13.8224i 0.692613 + 0.775121i
\(319\) −18.4758 15.5030i −1.03444 0.868001i
\(320\) −25.0861 21.0497i −1.40236 1.17672i
\(321\) −15.4944 + 28.8757i −0.864811 + 1.61169i
\(322\) 23.9303 + 0.151976i 1.33359 + 0.00846929i
\(323\) 0.407755i 0.0226881i
\(324\) −2.94471 + 1.50884i −0.163595 + 0.0838242i
\(325\) −7.37068 + 4.25547i −0.408852 + 0.236051i
\(326\) 1.03802 2.85193i 0.0574905 0.157954i
\(327\) −15.4528 + 9.57459i −0.854540 + 0.529476i
\(328\) −10.9936 1.93847i −0.607021 0.107034i
\(329\) −3.79202 22.3341i −0.209061 1.23132i
\(330\) −30.5597 + 6.37453i −1.68226 + 0.350906i
\(331\) 28.8835 + 10.5127i 1.58758 + 0.577833i 0.976835 0.213992i \(-0.0686468\pi\)
0.610748 + 0.791825i \(0.290869\pi\)
\(332\) −0.517885 + 0.897003i −0.0284226 + 0.0492294i
\(333\) −13.2007 19.8950i −0.723395 1.09024i
\(334\) 9.96420 5.75283i 0.545217 0.314781i
\(335\) 27.2605 + 9.92202i 1.48940 + 0.542098i
\(336\) −4.56991 + 13.5939i −0.249309 + 0.741606i
\(337\) −8.61178 7.22614i −0.469113 0.393633i 0.377358 0.926068i \(-0.376833\pi\)
−0.846471 + 0.532435i \(0.821277\pi\)
\(338\) −5.25265 14.4315i −0.285707 0.784972i
\(339\) −21.2957 + 8.51015i −1.15662 + 0.462208i
\(340\) 0.0432252 + 0.245142i 0.00234422 + 0.0132947i
\(341\) −13.2559 22.9598i −0.717845 1.24334i
\(342\) 1.99652 + 8.27470i 0.107959 + 0.447444i
\(343\) 18.5169 + 0.352828i 0.999819 + 0.0190509i
\(344\) 20.9171 3.68824i 1.12777 0.198857i
\(345\) 33.7185 30.1293i 1.81534 1.62211i
\(346\) −10.0698 + 12.0007i −0.541353 + 0.645160i
\(347\) −2.53330 6.96017i −0.135994 0.373642i 0.852937 0.522014i \(-0.174819\pi\)
−0.988932 + 0.148372i \(0.952597\pi\)
\(348\) −1.89825 + 3.53763i −0.101757 + 0.189637i
\(349\) −13.2687 15.8130i −0.710257 0.846451i 0.283389 0.959005i \(-0.408541\pi\)
−0.993646 + 0.112554i \(0.964097\pi\)
\(350\) −9.76804 27.3772i −0.522124 1.46337i
\(351\) −4.23062 2.92423i −0.225814 0.156084i
\(352\) −3.92393 + 6.79645i −0.209146 + 0.362252i
\(353\) 1.59417 + 0.580229i 0.0848489 + 0.0308825i 0.384096 0.923293i \(-0.374513\pi\)
−0.299247 + 0.954176i \(0.596735\pi\)
\(354\) −7.24242 + 13.4972i −0.384930 + 0.717367i
\(355\) 9.84145 11.7286i 0.522330 0.622489i
\(356\) 2.94753 1.07281i 0.156219 0.0568591i
\(357\) 0.718029 0.438608i 0.0380021 0.0232136i
\(358\) 4.96587 + 28.1629i 0.262455 + 1.48845i
\(359\) 0.676202i 0.0356886i −0.999841 0.0178443i \(-0.994320\pi\)
0.999841 0.0178443i \(-0.00568032\pi\)
\(360\) 13.3792 + 30.6749i 0.705148 + 1.61671i
\(361\) 14.0680 0.740423
\(362\) −17.9448 + 15.0575i −0.943159 + 0.791405i
\(363\) 2.33538 + 5.84404i 0.122576 + 0.306733i
\(364\) 0.949130 0.161149i 0.0497479 0.00844650i
\(365\) 1.13727 1.35535i 0.0595277 0.0709423i
\(366\) 1.08837 + 0.157175i 0.0568900 + 0.00821568i
\(367\) 3.81779 0.673180i 0.199287 0.0351397i −0.0731134 0.997324i \(-0.523294\pi\)
0.272401 + 0.962184i \(0.412182\pi\)
\(368\) 22.1556i 1.15494i
\(369\) 8.90696 + 6.57517i 0.463678 + 0.342290i
\(370\) −32.4741 + 18.7489i −1.68825 + 0.974709i
\(371\) 19.1222 + 11.2027i 0.992775 + 0.581616i
\(372\) −3.29078 + 2.94049i −0.170619 + 0.152457i
\(373\) −0.0555429 + 0.314999i −0.00287590 + 0.0163100i −0.986212 0.165487i \(-0.947080\pi\)
0.983336 + 0.181797i \(0.0581915\pi\)
\(374\) −0.843252 + 0.306919i −0.0436035 + 0.0158704i
\(375\) −20.2564 10.8693i −1.04603 0.561290i
\(376\) 25.5074 4.49764i 1.31544 0.231948i
\(377\) −6.24021 −0.321387
\(378\) 12.4236 12.4165i 0.639001 0.638638i
\(379\) 11.9350 0.613058 0.306529 0.951861i \(-0.400832\pi\)
0.306529 + 0.951861i \(0.400832\pi\)
\(380\) −2.96510 + 0.522827i −0.152106 + 0.0268204i
\(381\) 3.50007 2.16866i 0.179314 0.111104i
\(382\) 3.71881 1.35354i 0.190271 0.0692530i
\(383\) −5.05399 + 28.6626i −0.258247 + 1.46459i 0.529352 + 0.848402i \(0.322435\pi\)
−0.787599 + 0.616188i \(0.788676\pi\)
\(384\) −11.9159 3.92177i −0.608080 0.200132i
\(385\) −32.4406 + 18.4559i −1.65333 + 0.940600i
\(386\) −1.04426 + 0.602905i −0.0531516 + 0.0306871i
\(387\) −20.2036 5.95965i −1.02701 0.302946i
\(388\) 0.943178i 0.0478826i
\(389\) 15.9388 2.81044i 0.808129 0.142495i 0.245706 0.969344i \(-0.420980\pi\)
0.562423 + 0.826849i \(0.309869\pi\)
\(390\) −4.99680 + 6.34582i −0.253023 + 0.321333i
\(391\) 0.835521 0.995736i 0.0422541 0.0503565i
\(392\) −0.268943 + 21.1732i −0.0135837 + 1.06941i
\(393\) −15.6198 + 19.8368i −0.787916 + 1.00063i
\(394\) −3.44367 + 2.88958i −0.173490 + 0.145575i
\(395\) 13.6504 0.686826
\(396\) 3.51559 2.33266i 0.176665 0.117221i
\(397\) 5.42503i 0.272274i −0.990690 0.136137i \(-0.956531\pi\)
0.990690 0.136137i \(-0.0434688\pi\)
\(398\) 2.57362 + 14.5957i 0.129004 + 0.731617i
\(399\) 5.30514 + 8.68486i 0.265589 + 0.434787i
\(400\) 25.2884 9.20422i 1.26442 0.460211i
\(401\) −9.84116 + 11.7282i −0.491444 + 0.585680i −0.953584 0.301127i \(-0.902637\pi\)
0.462140 + 0.886807i \(0.347082\pi\)
\(402\) 17.4001 0.541509i 0.867838 0.0270080i
\(403\) −6.44577 2.34607i −0.321086 0.116866i
\(404\) −0.0656578 + 0.113723i −0.00326660 + 0.00565791i
\(405\) 1.66172 33.1476i 0.0825717 1.64712i
\(406\) 3.83407 20.9646i 0.190282 1.04046i
\(407\) 19.5697 + 23.3223i 0.970035 + 1.15604i
\(408\) 0.506681 + 0.817749i 0.0250844 + 0.0404846i
\(409\) 9.94048 + 27.3112i 0.491525 + 1.35045i 0.899284 + 0.437365i \(0.144088\pi\)
−0.407759 + 0.913090i \(0.633690\pi\)
\(410\) 11.1762 13.3193i 0.551955 0.657794i
\(411\) 17.9528 + 5.90865i 0.885547 + 0.291452i
\(412\) −0.451579 + 0.0796255i −0.0222477 + 0.00392287i
\(413\) −3.29456 + 18.0146i −0.162115 + 0.886441i
\(414\) 12.0800 24.2978i 0.593699 1.19417i
\(415\) −5.19476 8.99758i −0.255001 0.441674i
\(416\) 0.352592 + 1.99965i 0.0172873 + 0.0980409i
\(417\) 3.58911 24.8530i 0.175759 1.21706i
\(418\) −3.71231 10.1995i −0.181575 0.498873i
\(419\) 3.38803 + 2.84290i 0.165516 + 0.138885i 0.721784 0.692119i \(-0.243323\pi\)
−0.556267 + 0.831003i \(0.687767\pi\)
\(420\) 4.11011 + 4.65895i 0.200553 + 0.227333i
\(421\) −31.0132 11.2879i −1.51149 0.550138i −0.552486 0.833522i \(-0.686321\pi\)
−0.959006 + 0.283384i \(0.908543\pi\)
\(422\) 9.40324 5.42896i 0.457742 0.264278i
\(423\) −24.6374 7.26751i −1.19791 0.353359i
\(424\) −12.6694 + 21.9440i −0.615280 + 1.06570i
\(425\) −1.48364 0.540000i −0.0719669 0.0261938i
\(426\) 2.87229 8.72715i 0.139163 0.422832i
\(427\) 1.29619 0.220074i 0.0627269 0.0106501i
\(428\) −6.85002 1.20784i −0.331108 0.0583833i
\(429\) 5.77849 + 3.10067i 0.278988 + 0.149702i
\(430\) −11.3146 + 31.0867i −0.545640 + 1.49913i
\(431\) −13.0246 + 7.51978i −0.627375 + 0.362215i −0.779735 0.626110i \(-0.784646\pi\)
0.152360 + 0.988325i \(0.451313\pi\)
\(432\) 11.5683 + 11.4288i 0.556579 + 0.549867i
\(433\) 2.20776i 0.106098i 0.998592 + 0.0530491i \(0.0168940\pi\)
−0.998592 + 0.0530491i \(0.983106\pi\)
\(434\) 11.8422 20.2138i 0.568445 0.970292i
\(435\) −21.2105 34.2323i −1.01696 1.64131i
\(436\) −2.95581 2.48022i −0.141557 0.118781i
\(437\) 12.0438 + 10.1060i 0.576134 + 0.483434i
\(438\) 0.331921 1.00851i 0.0158598 0.0481883i
\(439\) −10.1389 + 27.8564i −0.483903 + 1.32951i 0.422219 + 0.906494i \(0.361251\pi\)
−0.906121 + 0.423018i \(0.860971\pi\)
\(440\) −21.3365 36.9558i −1.01718 1.76180i
\(441\) 9.58689 18.6840i 0.456519 0.889714i
\(442\) −0.116089 + 0.201073i −0.00552181 + 0.00956406i
\(443\) −5.01045 5.97122i −0.238054 0.283701i 0.633770 0.773522i \(-0.281507\pi\)
−0.871823 + 0.489821i \(0.837062\pi\)
\(444\) 3.13523 3.98167i 0.148792 0.188962i
\(445\) −5.46355 + 30.9854i −0.258997 + 1.46885i
\(446\) −34.8480 + 12.6837i −1.65010 + 0.600588i
\(447\) −7.25174 + 2.89792i −0.342995 + 0.137067i
\(448\) −23.4944 0.149208i −1.11001 0.00704940i
\(449\) 11.8087 + 6.81774i 0.557286 + 0.321749i 0.752055 0.659100i \(-0.229063\pi\)
−0.194769 + 0.980849i \(0.562396\pi\)
\(450\) −32.7519 3.69394i −1.54394 0.174134i
\(451\) −12.2256 7.05845i −0.575681 0.332369i
\(452\) −3.12891 3.72889i −0.147172 0.175392i
\(453\) −41.1626 + 8.58622i −1.93399 + 0.403416i
\(454\) −1.89871 5.21667i −0.0891110 0.244830i
\(455\) −3.36035 + 9.05317i −0.157536 + 0.424419i
\(456\) −9.89100 + 6.12851i −0.463189 + 0.286994i
\(457\) 0.0491623 + 0.278813i 0.00229971 + 0.0130423i 0.985936 0.167123i \(-0.0534478\pi\)
−0.983636 + 0.180166i \(0.942337\pi\)
\(458\) 8.17888 + 14.1662i 0.382174 + 0.661945i
\(459\) −0.0889151 0.949898i −0.00415020 0.0443375i
\(460\) 8.31206 + 4.79897i 0.387552 + 0.223753i
\(461\) −23.3591 + 19.6006i −1.08794 + 0.912893i −0.996556 0.0829225i \(-0.973575\pi\)
−0.0913875 + 0.995815i \(0.529130\pi\)
\(462\) −13.9674 + 17.5083i −0.649822 + 0.814562i
\(463\) 3.18139 18.0425i 0.147852 0.838508i −0.817182 0.576380i \(-0.804465\pi\)
0.965033 0.262128i \(-0.0844242\pi\)
\(464\) 19.4316 + 3.42632i 0.902091 + 0.159063i
\(465\) −9.03919 43.3342i −0.419182 2.00957i
\(466\) 1.26395 1.06058i 0.0585514 0.0491305i
\(467\) 32.2918 1.49429 0.747143 0.664663i \(-0.231425\pi\)
0.747143 + 0.664663i \(0.231425\pi\)
\(468\) 0.308846 1.04701i 0.0142764 0.0483982i
\(469\) 19.6030 6.99424i 0.905182 0.322964i
\(470\) −13.7977 + 37.9088i −0.636439 + 1.74860i
\(471\) 11.5703 + 9.11063i 0.533130 + 0.419796i
\(472\) −20.6203 3.63591i −0.949126 0.167357i
\(473\) 26.4516 + 4.66412i 1.21624 + 0.214457i
\(474\) 7.60654 3.03971i 0.349380 0.139618i
\(475\) 6.53151 17.9452i 0.299686 0.823381i
\(476\) 0.136077 + 0.115663i 0.00623710 + 0.00530141i
\(477\) 20.9394 13.8937i 0.958747 0.636148i
\(478\) −16.9130 −0.773580
\(479\) −23.0994 + 19.3827i −1.05544 + 0.885619i −0.993655 0.112471i \(-0.964124\pi\)
−0.0617845 + 0.998090i \(0.519679\pi\)
\(480\) −9.77113 + 8.73104i −0.445989 + 0.398516i
\(481\) 7.75746 + 1.36785i 0.353710 + 0.0623686i
\(482\) 5.41328 30.7002i 0.246568 1.39836i
\(483\) 4.84081 32.0790i 0.220264 1.45964i
\(484\) −1.02330 + 0.858647i −0.0465135 + 0.0390294i
\(485\) −8.19326 4.73038i −0.372037 0.214795i
\(486\) −6.45543 18.8412i −0.292824 0.854654i
\(487\) 7.66471 + 13.2757i 0.347321 + 0.601578i 0.985773 0.168084i \(-0.0537580\pi\)
−0.638451 + 0.769662i \(0.720425\pi\)
\(488\) 0.261026 + 1.48035i 0.0118161 + 0.0670123i
\(489\) −3.62544 1.94537i −0.163948 0.0879725i
\(490\) −28.3504 16.8518i −1.28074 0.761288i
\(491\) 1.56786 + 4.30766i 0.0707565 + 0.194402i 0.970030 0.242985i \(-0.0781264\pi\)
−0.899274 + 0.437386i \(0.855904\pi\)
\(492\) −0.734635 + 2.23211i −0.0331199 + 0.100631i
\(493\) −0.744100 0.886784i −0.0335126 0.0399387i
\(494\) −2.43206 1.40415i −0.109423 0.0631756i
\(495\) 2.63156 + 42.2385i 0.118280 + 1.89848i
\(496\) 18.7836 + 10.8447i 0.843406 + 0.486941i
\(497\) 0.0697595 10.9844i 0.00312914 0.492718i
\(498\) −4.89833 3.85703i −0.219500 0.172838i
\(499\) 31.3519 11.4112i 1.40350 0.510834i 0.474288 0.880370i \(-0.342706\pi\)
0.929216 + 0.369536i \(0.120483\pi\)
\(500\) 0.847305 4.80530i 0.0378926 0.214900i
\(501\) −5.78812 14.4841i −0.258594 0.647104i
\(502\) 14.5029 + 17.2839i 0.647296 + 0.771417i
\(503\) −5.61247 + 9.72108i −0.250248 + 0.433442i −0.963594 0.267370i \(-0.913845\pi\)
0.713346 + 0.700812i \(0.247179\pi\)
\(504\) 21.4313 + 10.8252i 0.954626 + 0.482191i
\(505\) −0.658595 1.14072i −0.0293071 0.0507614i
\(506\) −11.8341 + 32.5138i −0.526089 + 1.44542i
\(507\) −20.3813 + 4.25138i −0.905163 + 0.188810i
\(508\) 0.669495 + 0.561773i 0.0297040 + 0.0249246i
\(509\) −15.3160 12.8516i −0.678868 0.569638i 0.236807 0.971557i \(-0.423899\pi\)
−0.915675 + 0.401919i \(0.868343\pi\)
\(510\) −1.49762 + 0.0466076i −0.0663159 + 0.00206382i
\(511\) 0.00806139 1.26936i 0.000356615 0.0561530i
\(512\) 25.3542i 1.12051i
\(513\) 11.4894 1.07546i 0.507270 0.0474829i
\(514\) 10.5171 6.07207i 0.463891 0.267828i
\(515\) 1.57313 4.32215i 0.0693206 0.190457i
\(516\) −0.139076 4.46888i −0.00612248 0.196732i
\(517\) 32.2564 + 5.68768i 1.41864 + 0.250144i
\(518\) −9.36172 + 25.2216i −0.411330 + 1.10817i
\(519\) 14.1507 + 15.8364i 0.621146 + 0.695140i
\(520\) −10.3750 3.77620i −0.454975 0.165597i
\(521\) 20.2450 35.0654i 0.886951 1.53624i 0.0434906 0.999054i \(-0.486152\pi\)
0.843461 0.537191i \(-0.180515\pi\)
\(522\) −19.4423 14.3524i −0.850964 0.628187i
\(523\) 2.79043 1.61106i 0.122017 0.0704465i −0.437749 0.899097i \(-0.644224\pi\)
0.559766 + 0.828651i \(0.310891\pi\)
\(524\) −5.03594 1.83293i −0.219996 0.0800720i
\(525\) −38.6260 + 7.80145i −1.68578 + 0.340483i
\(526\) 13.7901 + 11.5713i 0.601277 + 0.504531i
\(527\) −0.435216 1.19575i −0.0189583 0.0520875i
\(528\) −16.2914 12.8281i −0.708990 0.558271i
\(529\) −4.70914 26.7068i −0.204745 1.16117i
\(530\) −19.7331 34.1787i −0.857150 1.48463i
\(531\) 16.7064 + 12.3328i 0.724998 + 0.535198i
\(532\) −1.39899 + 1.64591i −0.0606540 + 0.0713593i
\(533\) −3.59701 + 0.634250i −0.155804 + 0.0274724i
\(534\) 3.85540 + 18.4829i 0.166839 + 0.799834i
\(535\) 44.8477 53.4474i 1.93893 2.31073i
\(536\) 8.13896 + 22.3616i 0.351549 + 0.965874i
\(537\) 38.7497 1.20593i 1.67217 0.0520397i
\(538\) 6.78130 + 8.08163i 0.292362 + 0.348424i
\(539\) −9.47734 + 25.0444i −0.408218 + 1.07874i
\(540\) 6.79342 1.86454i 0.292342 0.0802368i
\(541\) 11.2539 19.4924i 0.483844 0.838043i −0.515984 0.856598i \(-0.672573\pi\)
0.999828 + 0.0185558i \(0.00590682\pi\)
\(542\) 1.12848 + 0.410733i 0.0484723 + 0.0176425i
\(543\) 16.7262 + 26.9951i 0.717792 + 1.15847i
\(544\) −0.242122 + 0.288550i −0.0103809 + 0.0123715i
\(545\) 36.3697 13.2375i 1.55791 0.567032i
\(546\) 0.143468 + 5.79308i 0.00613985 + 0.247921i
\(547\) 2.43115 + 13.7877i 0.103948 + 0.589521i 0.991635 + 0.129073i \(0.0412001\pi\)
−0.887687 + 0.460448i \(0.847689\pi\)
\(548\) 4.01169i 0.171371i
\(549\) 0.421779 1.42986i 0.0180011 0.0610250i
\(550\) 42.0276 1.79206
\(551\) 10.7260 9.00019i 0.456943 0.383421i
\(552\) 36.7115 + 5.30164i 1.56255 + 0.225653i
\(553\) 7.54211 6.24739i 0.320723 0.265666i
\(554\) 19.1158 22.7813i 0.812151 0.967883i
\(555\) 18.8639 + 47.2049i 0.800728 + 2.00373i
\(556\) 5.24897 0.925535i 0.222606 0.0392514i
\(557\) 26.1954i 1.10993i 0.831872 + 0.554967i \(0.187269\pi\)
−0.831872 + 0.554967i \(0.812731\pi\)
\(558\) −14.6868 22.1347i −0.621741 0.937035i
\(559\) 6.01840 3.47473i 0.254551 0.146965i
\(560\) 15.4347 26.3459i 0.652237 1.11332i
\(561\) 0.248413 + 1.19090i 0.0104880 + 0.0502799i
\(562\) −1.92764 + 10.9322i −0.0813125 + 0.461146i
\(563\) −33.5361 + 12.2062i −1.41338 + 0.514428i −0.932120 0.362150i \(-0.882043\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(564\) −0.169597 5.44959i −0.00714132 0.229469i
\(565\) 48.0850 8.47868i 2.02295 0.356701i
\(566\) −24.0852 −1.01237
\(567\) −14.2526 19.0752i −0.598552 0.801084i
\(568\) 12.5592 0.526970
\(569\) −8.99651 + 1.58633i −0.377153 + 0.0665023i −0.359012 0.933333i \(-0.616886\pi\)
−0.0181418 + 0.999835i \(0.505775\pi\)
\(570\) −0.563737 18.1144i −0.0236124 0.758727i
\(571\) 9.87137 3.59289i 0.413104 0.150358i −0.127103 0.991889i \(-0.540568\pi\)
0.540207 + 0.841532i \(0.318346\pi\)
\(572\) −0.241709 + 1.37080i −0.0101063 + 0.0573159i
\(573\) −1.09552 5.25198i −0.0457661 0.219404i
\(574\) 0.0792209 12.4742i 0.00330662 0.520664i
\(575\) −52.7209 + 30.4385i −2.19862 + 1.26937i
\(576\) −11.8599 + 23.8552i −0.494164 + 0.993965i
\(577\) 27.7315i 1.15448i 0.816576 + 0.577238i \(0.195870\pi\)
−0.816576 + 0.577238i \(0.804130\pi\)
\(578\) 21.3475 3.76413i 0.887937 0.156567i
\(579\) 0.606603 + 1.51796i 0.0252096 + 0.0630842i
\(580\) 5.49439 6.54796i 0.228142 0.271889i
\(581\) −6.98814 2.59385i −0.289917 0.107611i
\(582\) −5.61898 0.811457i −0.232914 0.0336360i
\(583\) −24.5465 + 20.5970i −1.01661 + 0.853040i
\(584\) 1.45133 0.0600566
\(585\) 7.54627 + 7.93405i 0.312000 + 0.328033i
\(586\) 1.49401i 0.0617170i
\(587\) −5.46195 30.9763i −0.225439 1.27853i −0.861845 0.507172i \(-0.830691\pi\)
0.636406 0.771354i \(-0.280420\pi\)
\(588\) 4.40318 + 0.693080i 0.181584 + 0.0285821i
\(589\) 14.4630 5.26411i 0.595939 0.216904i
\(590\) 20.9628 24.9825i 0.863026 1.02851i
\(591\) 3.20982 + 5.18044i 0.132034 + 0.213095i
\(592\) −23.4052 8.51879i −0.961948 0.350120i
\(593\) −8.21899 + 14.2357i −0.337513 + 0.584590i −0.983964 0.178365i \(-0.942919\pi\)
0.646451 + 0.762956i \(0.276253\pi\)
\(594\) 10.8722 + 22.9510i 0.446092 + 0.941690i
\(595\) −1.68723 + 0.601993i −0.0691695 + 0.0246793i
\(596\) −1.06548 1.26978i −0.0436436 0.0520124i
\(597\) 20.0824 0.624985i 0.821919 0.0255789i
\(598\) 3.06186 + 8.41239i 0.125209 + 0.344008i
\(599\) −13.9070 + 16.5737i −0.568225 + 0.677185i −0.971266 0.237998i \(-0.923509\pi\)
0.403040 + 0.915182i \(0.367953\pi\)
\(600\) −9.19998 44.1050i −0.375588 1.80058i
\(601\) −12.4437 + 2.19416i −0.507588 + 0.0895015i −0.421577 0.906793i \(-0.638523\pi\)
−0.0860112 + 0.996294i \(0.527412\pi\)
\(602\) 7.97592 + 22.3544i 0.325074 + 0.911096i
\(603\) 2.64499 23.4515i 0.107712 0.955017i
\(604\) −4.46255 7.72937i −0.181579 0.314504i
\(605\) −2.32675 13.1957i −0.0945958 0.536480i
\(606\) −0.621014 0.488996i −0.0252270 0.0198641i
\(607\) −7.07741 19.4450i −0.287263 0.789249i −0.996447 0.0842254i \(-0.973158\pi\)
0.709183 0.705024i \(-0.249064\pi\)
\(608\) −3.49013 2.92857i −0.141543 0.118769i
\(609\) −27.3863 9.20659i −1.10975 0.373070i
\(610\) −2.20008 0.800763i −0.0890786 0.0324220i
\(611\) 7.33916 4.23727i 0.296911 0.171422i
\(612\) 0.185617 0.0809591i 0.00750310 0.00327258i
\(613\) 17.0977 29.6141i 0.690570 1.19610i −0.281082 0.959684i \(-0.590693\pi\)
0.971651 0.236418i \(-0.0759734\pi\)
\(614\) 12.1230 + 4.41243i 0.489246 + 0.178071i
\(615\) −15.7056 17.5765i −0.633310 0.708753i
\(616\) −28.7024 10.6537i −1.15645 0.429251i
\(617\) 6.02153 + 1.06176i 0.242418 + 0.0427448i 0.293537 0.955948i \(-0.405168\pi\)
−0.0511191 + 0.998693i \(0.516279\pi\)
\(618\) −0.0858562 2.75878i −0.00345364 0.110975i
\(619\) 13.3807 36.7630i 0.537814 1.47763i −0.311759 0.950161i \(-0.600918\pi\)
0.849573 0.527470i \(-0.176859\pi\)
\(620\) 8.13714 4.69798i 0.326795 0.188675i
\(621\) −30.2608 20.9164i −1.21432 0.839346i
\(622\) 15.4401i 0.619093i
\(623\) 11.1624 + 19.6205i 0.447211 + 0.786080i
\(624\) −5.36240 + 0.166883i −0.214668 + 0.00668067i
\(625\) 4.55705 + 3.82382i 0.182282 + 0.152953i
\(626\) 8.42654 + 7.07071i 0.336792 + 0.282602i
\(627\) −14.4044 + 3.00466i −0.575258 + 0.119994i
\(628\) −1.06910 + 2.93733i −0.0426617 + 0.117212i
\(629\) 0.730639 + 1.26550i 0.0291325 + 0.0504589i
\(630\) −31.2918 + 20.4777i −1.24669 + 0.815851i
\(631\) −14.3536 + 24.8611i −0.571407 + 0.989707i 0.425014 + 0.905187i \(0.360269\pi\)
−0.996422 + 0.0845200i \(0.973064\pi\)
\(632\) 7.19750 + 8.57765i 0.286301 + 0.341200i
\(633\) −5.46226 13.6687i −0.217105 0.543283i
\(634\) −4.09483 + 23.2229i −0.162626 + 0.922300i
\(635\) −8.23780 + 2.99831i −0.326907 + 0.118984i
\(636\) 4.19068 + 3.29981i 0.166171 + 0.130846i
\(637\) 2.28672 + 6.53999i 0.0906031 + 0.259124i
\(638\) 26.6862 + 15.4073i 1.05652 + 0.609981i
\(639\) −11.1531 5.54492i −0.441209 0.219354i
\(640\) 23.1305 + 13.3544i 0.914312 + 0.527878i
\(641\) −5.32576 6.34699i −0.210355 0.250691i 0.650542 0.759470i \(-0.274542\pi\)
−0.860897 + 0.508779i \(0.830097\pi\)
\(642\) 13.0891 39.7698i 0.516585 1.56959i
\(643\) 13.6809 + 37.5878i 0.539520 + 1.48232i 0.847431 + 0.530905i \(0.178148\pi\)
−0.307911 + 0.951415i \(0.599630\pi\)
\(644\) 6.78892 1.15266i 0.267521 0.0454214i
\(645\) 39.5181 + 21.2049i 1.55602 + 0.834943i
\(646\) −0.0904644 0.513049i −0.00355927 0.0201857i
\(647\) −0.417573 0.723257i −0.0164165 0.0284342i 0.857700 0.514150i \(-0.171892\pi\)
−0.874117 + 0.485716i \(0.838559\pi\)
\(648\) 21.7055 16.4337i 0.852673 0.645576i
\(649\) −22.9311 13.2393i −0.900123 0.519686i
\(650\) 8.32989 6.98960i 0.326725 0.274155i
\(651\) −24.8271 19.8060i −0.973052 0.776258i
\(652\) 0.151649 0.860042i 0.00593902 0.0336818i
\(653\) −38.0859 6.71557i −1.49042 0.262801i −0.631684 0.775226i \(-0.717636\pi\)
−0.858732 + 0.512425i \(0.828747\pi\)
\(654\) 17.3189 15.4754i 0.677222 0.605135i
\(655\) 41.1795 34.5537i 1.60902 1.35012i
\(656\) 11.5491 0.450917
\(657\) −1.28885 0.640769i −0.0502827 0.0249988i
\(658\) 9.72627 + 27.2601i 0.379169 + 1.06271i
\(659\) 6.13729 16.8621i 0.239075 0.656853i −0.760893 0.648877i \(-0.775239\pi\)
0.999968 0.00797567i \(-0.00253876\pi\)
\(660\) −8.34143 + 3.33338i −0.324690 + 0.129752i
\(661\) −25.3026 4.46154i −0.984158 0.173534i −0.341662 0.939823i \(-0.610990\pi\)
−0.642496 + 0.766289i \(0.722101\pi\)
\(662\) −38.6744 6.81935i −1.50312 0.265041i
\(663\) 0.247295 + 0.194724i 0.00960412 + 0.00756244i
\(664\) 2.91485 8.00848i 0.113118 0.310789i
\(665\) −7.28135 20.4077i −0.282359 0.791376i
\(666\) 21.0234 + 22.1038i 0.814641 + 0.856503i
\(667\) −44.6349 −1.72827
\(668\) 2.53618 2.12811i 0.0981278 0.0823390i
\(669\) 10.2659 + 49.2149i 0.396901 + 1.90276i
\(670\) −36.5013 6.43616i −1.41017 0.248650i
\(671\) −0.330091 + 1.87204i −0.0127430 + 0.0722693i
\(672\) −1.40280 + 9.29604i −0.0541141 + 0.358602i
\(673\) 24.2002 20.3064i 0.932848 0.782752i −0.0434786 0.999054i \(-0.513844\pi\)
0.976326 + 0.216302i \(0.0693996\pi\)
\(674\) 12.4388 + 7.18153i 0.479123 + 0.276622i
\(675\) −11.3026 + 43.2290i −0.435035 + 1.66388i
\(676\) −2.20959 3.82712i −0.0849842 0.147197i
\(677\) 3.44634 + 19.5452i 0.132454 + 0.751183i 0.976599 + 0.215068i \(0.0689974\pi\)
−0.844145 + 0.536115i \(0.819892\pi\)
\(678\) 24.9068 15.4324i 0.956541 0.592676i
\(679\) −6.69189 + 1.13619i −0.256811 + 0.0436030i
\(680\) −0.700519 1.92466i −0.0268637 0.0738073i
\(681\) −7.36736 + 1.53678i −0.282318 + 0.0588894i
\(682\) 21.7727 + 25.9477i 0.833721 + 0.993591i
\(683\) −9.80796 5.66263i −0.375291 0.216674i 0.300476 0.953789i \(-0.402854\pi\)
−0.675768 + 0.737115i \(0.736188\pi\)
\(684\) 0.979233 + 2.24511i 0.0374419 + 0.0858438i
\(685\) −34.8490 20.1201i −1.33151 0.768748i
\(686\) −23.3768 + 3.66421i −0.892529 + 0.139900i
\(687\) 20.5923 8.22905i 0.785645 0.313958i
\(688\) −20.6488 + 7.51555i −0.787228 + 0.286528i
\(689\) −1.43965 + 8.16467i −0.0548464 + 0.311049i
\(690\) −35.7411 + 45.3903i −1.36064 + 1.72798i
\(691\) 6.25546 + 7.45497i 0.237969 + 0.283600i 0.871790 0.489879i \(-0.162959\pi\)
−0.633822 + 0.773479i \(0.718515\pi\)
\(692\) −2.25391 + 3.90388i −0.0856807 + 0.148403i
\(693\) 20.7853 + 22.1332i 0.789570 + 0.840772i
\(694\) 4.73165 + 8.19545i 0.179611 + 0.311095i
\(695\) −18.2855 + 50.2390i −0.693608 + 1.90567i
\(696\) 10.3272 31.3780i 0.391451 1.18938i
\(697\) −0.519050 0.435534i −0.0196604 0.0164970i
\(698\) 20.2033 + 16.9526i 0.764707 + 0.641665i
\(699\) −1.17812 1.90141i −0.0445606 0.0719179i
\(700\) −4.13601 7.27001i −0.156326 0.274781i
\(701\) 19.1934i 0.724926i 0.931998 + 0.362463i \(0.118064\pi\)
−0.931998 + 0.362463i \(0.881936\pi\)
\(702\) 5.97186 + 2.74074i 0.225393 + 0.103443i
\(703\) −15.3068 + 8.83737i −0.577306 + 0.333308i
\(704\) 11.6185 31.9216i 0.437889 1.20309i
\(705\) 48.1904 + 25.8584i 1.81496 + 0.973884i
\(706\) −2.13456 0.376380i −0.0803351 0.0141652i
\(707\) −0.885961 0.328850i −0.0333200 0.0123677i
\(708\) −1.37793 + 4.18669i −0.0517857 + 0.157345i
\(709\) −8.39288 3.05476i −0.315201 0.114724i 0.179575 0.983744i \(-0.442528\pi\)
−0.494776 + 0.869020i \(0.664750\pi\)
\(710\) −9.78069 + 16.9407i −0.367063 + 0.635771i
\(711\) −2.60463 10.7950i −0.0976812 0.404846i
\(712\) −22.3514 + 12.9046i −0.837654 + 0.483620i
\(713\) −46.1052 16.7809i −1.72665 0.628450i
\(714\) −0.806136 + 0.711171i −0.0301689 + 0.0266149i
\(715\) −10.6957 8.97473i −0.399995 0.335636i
\(716\) 2.81444 + 7.73261i 0.105181 + 0.288981i
\(717\) −3.27716 + 22.6929i −0.122388 + 0.847482i
\(718\) 0.150022 + 0.850817i 0.00559877 + 0.0317522i
\(719\) −10.5281 18.2351i −0.392630 0.680056i 0.600165 0.799876i \(-0.295101\pi\)
−0.992796 + 0.119820i \(0.961768\pi\)
\(720\) −19.1423 28.8496i −0.713390 1.07516i
\(721\) −1.10894 3.10805i −0.0412990 0.115750i
\(722\) −17.7008 + 3.12113i −0.658756 + 0.116156i
\(723\) −40.1430 13.2119i −1.49294 0.491357i
\(724\) −4.33279 + 5.16362i −0.161027 + 0.191904i
\(725\) 18.5429 + 50.9462i 0.688667 + 1.89210i
\(726\) −4.23500 6.83501i −0.157176 0.253671i
\(727\) −15.0731 17.9634i −0.559031 0.666227i 0.410310 0.911946i \(-0.365420\pi\)
−0.969341 + 0.245719i \(0.920976\pi\)
\(728\) −7.46066 + 2.66193i −0.276511 + 0.0986575i
\(729\) −26.5310 + 5.01076i −0.982628 + 0.185584i
\(730\) −1.13025 + 1.95766i −0.0418326 + 0.0724561i
\(731\) 1.21144 + 0.440927i 0.0448067 + 0.0163083i
\(732\) 0.316273 0.00984275i 0.0116898 0.000363799i
\(733\) −26.6852 + 31.8022i −0.985641 + 1.17464i −0.00100872 + 0.999999i \(0.500321\pi\)
−0.984632 + 0.174641i \(0.944123\pi\)
\(734\) −4.65431 + 1.69403i −0.171794 + 0.0625277i
\(735\) −28.1042 + 34.7738i −1.03664 + 1.28265i
\(736\) 2.52202 + 14.3031i 0.0929628 + 0.527218i
\(737\) 30.0931i 1.10850i
\(738\) −12.6658 6.29697i −0.466233 0.231795i
\(739\) −11.0605 −0.406869 −0.203434 0.979089i \(-0.565210\pi\)
−0.203434 + 0.979089i \(0.565210\pi\)
\(740\) −8.26560 + 6.93566i −0.303850 + 0.254960i
\(741\) −2.35526 + 2.99113i −0.0865227 + 0.109882i
\(742\) −26.5455 9.85314i −0.974517 0.361720i
\(743\) 14.0804 16.7804i 0.516560 0.615612i −0.443204 0.896421i \(-0.646158\pi\)
0.959764 + 0.280809i \(0.0906026\pi\)
\(744\) 22.4642 28.5290i 0.823579 1.04593i
\(745\) 16.3742 2.88721i 0.599903 0.105779i
\(746\) 0.408664i 0.0149622i
\(747\) −6.12429 + 5.82496i −0.224076 + 0.213124i
\(748\) −0.223623 + 0.129109i −0.00817648 + 0.00472069i
\(749\) 0.317896 50.0562i 0.0116157 1.82901i
\(750\) 27.8986 + 9.18202i 1.01871 + 0.335280i
\(751\) −1.21199 + 6.87354i −0.0442262 + 0.250819i −0.998903 0.0468248i \(-0.985090\pi\)
0.954677 + 0.297644i \(0.0962009\pi\)
\(752\) −25.1803 + 9.16486i −0.918230 + 0.334208i
\(753\) 26.0008 16.1102i 0.947520 0.587087i
\(754\) 7.85161 1.38445i 0.285939 0.0504187i
\(755\) 89.5253 3.25816
\(756\) 2.90015 4.13935i 0.105478 0.150547i
\(757\) 21.4744 0.780501 0.390250 0.920709i \(-0.372388\pi\)
0.390250 + 0.920709i \(0.372388\pi\)
\(758\) −15.0169 + 2.64789i −0.545439 + 0.0961756i
\(759\) 41.3323 + 22.1784i 1.50027 + 0.805025i
\(760\) 23.2795 8.47306i 0.844437 0.307350i
\(761\) 6.24778 35.4329i 0.226482 1.28444i −0.633350 0.773866i \(-0.718321\pi\)
0.859832 0.510578i \(-0.170568\pi\)
\(762\) −3.92275 + 3.50520i −0.142106 + 0.126980i
\(763\) 14.0366 23.9593i 0.508158 0.867386i
\(764\) 0.986198 0.569381i 0.0356794 0.0205995i
\(765\) −0.227654 + 2.01846i −0.00823083 + 0.0729777i
\(766\) 37.1854i 1.34356i
\(767\) −6.74677 + 1.18964i −0.243612