Properties

Label 189.2.ba.a.5.4
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.4
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.27453 + 0.401061i) q^{2} +(1.22609 + 1.22340i) q^{3} +(3.13325 - 1.14041i) q^{4} +(-0.595188 + 3.37548i) q^{5} +(-3.27944 - 2.29092i) q^{6} +(-2.64569 + 0.0174348i) q^{7} +(-2.66893 + 1.54091i) q^{8} +(0.00659757 + 2.99999i) q^{9} +O(q^{10})\) \(q+(-2.27453 + 0.401061i) q^{2} +(1.22609 + 1.22340i) q^{3} +(3.13325 - 1.14041i) q^{4} +(-0.595188 + 3.37548i) q^{5} +(-3.27944 - 2.29092i) q^{6} +(-2.64569 + 0.0174348i) q^{7} +(-2.66893 + 1.54091i) q^{8} +(0.00659757 + 2.99999i) q^{9} -7.91633i q^{10} +(1.05044 - 0.185221i) q^{11} +(5.23683 + 2.43497i) q^{12} +(2.65013 - 3.15830i) q^{13} +(6.01072 - 1.10074i) q^{14} +(-4.85931 + 3.41049i) q^{15} +(0.344058 - 0.288699i) q^{16} -6.74438 q^{17} +(-1.21819 - 6.82093i) q^{18} +3.89053i q^{19} +(1.98456 + 11.2550i) q^{20} +(-3.26519 - 3.21536i) q^{21} +(-2.31497 + 0.842581i) q^{22} +(0.748519 - 0.892051i) q^{23} +(-5.15749 - 1.37587i) q^{24} +(-6.34114 - 2.30799i) q^{25} +(-4.76112 + 8.24651i) q^{26} +(-3.66209 + 3.68634i) q^{27} +(-8.26975 + 3.07181i) q^{28} +(-1.58160 - 1.88488i) q^{29} +(9.68482 - 9.70615i) q^{30} +(3.16020 + 8.68256i) q^{31} +(3.29512 - 3.92697i) q^{32} +(1.51453 + 1.05801i) q^{33} +(15.3403 - 2.70491i) q^{34} +(1.51583 - 8.94086i) q^{35} +(3.44190 + 9.39221i) q^{36} +(-0.357225 - 0.618733i) q^{37} +(-1.56034 - 8.84913i) q^{38} +(7.11315 - 0.630202i) q^{39} +(-3.61278 - 9.92604i) q^{40} +(5.44308 + 4.56728i) q^{41} +(8.71633 + 6.00389i) q^{42} +(3.59373 + 1.30801i) q^{43} +(3.08007 - 1.77828i) q^{44} +(-10.1303 - 1.76329i) q^{45} +(-1.34476 + 2.32920i) q^{46} +(-1.83909 - 0.669375i) q^{47} +(0.775040 + 0.0669486i) q^{48} +(6.99939 - 0.0922545i) q^{49} +(15.3488 + 2.70640i) q^{50} +(-8.26923 - 8.25106i) q^{51} +(4.70176 - 12.9180i) q^{52} +(6.35643 - 3.66989i) q^{53} +(6.85110 - 9.85340i) q^{54} +3.65598i q^{55} +(7.03430 - 4.12330i) q^{56} +(-4.75966 + 4.77014i) q^{57} +(4.35336 + 3.65290i) q^{58} +(4.57964 + 3.84278i) q^{59} +(-11.3361 + 16.2275i) q^{60} +(2.34201 - 6.43463i) q^{61} +(-10.6702 - 18.4813i) q^{62} +(-0.0697595 - 7.93695i) q^{63} +(-6.36903 + 11.0315i) q^{64} +(9.08344 + 10.8252i) q^{65} +(-3.86918 - 1.79905i) q^{66} +(-0.361541 + 2.05040i) q^{67} +(-21.1319 + 7.69137i) q^{68} +(2.00909 - 0.177999i) q^{69} +(0.138020 + 20.9442i) q^{70} +(1.33942 + 0.773313i) q^{71} +(-4.64032 - 7.99660i) q^{72} +(9.58401 + 5.53333i) q^{73} +(1.06067 + 1.26406i) q^{74} +(-4.95123 - 10.5875i) q^{75} +(4.43680 + 12.1900i) q^{76} +(-2.77591 + 0.508352i) q^{77} +(-15.9263 + 4.28622i) q^{78} +(-0.698202 - 3.95970i) q^{79} +(0.769718 + 1.33319i) q^{80} +(-8.99991 + 0.0395853i) q^{81} +(-14.2122 - 8.20542i) q^{82} +(-6.13413 + 5.14714i) q^{83} +(-13.8975 - 6.35087i) q^{84} +(4.01418 - 22.7655i) q^{85} +(-8.69865 - 1.53381i) q^{86} +(0.366770 - 4.24596i) q^{87} +(-2.51814 + 2.11297i) q^{88} +11.1246 q^{89} +(23.7489 - 0.0522286i) q^{90} +(-6.95636 + 8.40209i) q^{91} +(1.32800 - 3.64864i) q^{92} +(-6.74754 + 14.5118i) q^{93} +(4.45153 + 0.784926i) q^{94} +(-13.1324 - 2.31560i) q^{95} +(8.84436 - 0.783582i) q^{96} +(-0.832291 + 2.28670i) q^{97} +(-15.8833 + 3.01702i) q^{98} +(0.562592 + 3.15009i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27453 + 0.401061i −1.60834 + 0.283593i −0.904405 0.426675i \(-0.859685\pi\)
−0.703931 + 0.710268i \(0.748574\pi\)
\(3\) 1.22609 + 1.22340i 0.707884 + 0.706329i
\(4\) 3.13325 1.14041i 1.56663 0.570205i
\(5\) −0.595188 + 3.37548i −0.266176 + 1.50956i 0.499489 + 0.866320i \(0.333521\pi\)
−0.765665 + 0.643239i \(0.777590\pi\)
\(6\) −3.27944 2.29092i −1.33882 0.935263i
\(7\) −2.64569 + 0.0174348i −0.999978 + 0.00658975i
\(8\) −2.66893 + 1.54091i −0.943609 + 0.544793i
\(9\) 0.00659757 + 2.99999i 0.00219919 + 0.999998i
\(10\) 7.91633i 2.50336i
\(11\) 1.05044 0.185221i 0.316720 0.0558462i −0.0130286 0.999915i \(-0.504147\pi\)
0.329748 + 0.944069i \(0.393036\pi\)
\(12\) 5.23683 + 2.43497i 1.51174 + 0.702914i
\(13\) 2.65013 3.15830i 0.735013 0.875954i −0.260984 0.965343i \(-0.584047\pi\)
0.995997 + 0.0893890i \(0.0284914\pi\)
\(14\) 6.01072 1.10074i 1.60643 0.294185i
\(15\) −4.85931 + 3.41049i −1.25467 + 0.880585i
\(16\) 0.344058 0.288699i 0.0860145 0.0721748i
\(17\) −6.74438 −1.63575 −0.817877 0.575393i \(-0.804849\pi\)
−0.817877 + 0.575393i \(0.804849\pi\)
\(18\) −1.21819 6.82093i −0.287129 1.60771i
\(19\) 3.89053i 0.892549i 0.894896 + 0.446274i \(0.147249\pi\)
−0.894896 + 0.446274i \(0.852751\pi\)
\(20\) 1.98456 + 11.2550i 0.443761 + 2.51669i
\(21\) −3.26519 3.21536i −0.712523 0.701649i
\(22\) −2.31497 + 0.842581i −0.493554 + 0.179639i
\(23\) 0.748519 0.892051i 0.156077 0.186005i −0.682339 0.731036i \(-0.739037\pi\)
0.838416 + 0.545030i \(0.183482\pi\)
\(24\) −5.15749 1.37587i −1.05277 0.280848i
\(25\) −6.34114 2.30799i −1.26823 0.461597i
\(26\) −4.76112 + 8.24651i −0.933733 + 1.61727i
\(27\) −3.66209 + 3.68634i −0.704770 + 0.709436i
\(28\) −8.26975 + 3.07181i −1.56284 + 0.580517i
\(29\) −1.58160 1.88488i −0.293696 0.350014i 0.598938 0.800796i \(-0.295590\pi\)
−0.892634 + 0.450782i \(0.851145\pi\)
\(30\) 9.68482 9.70615i 1.76820 1.77209i
\(31\) 3.16020 + 8.68256i 0.567588 + 1.55943i 0.808258 + 0.588828i \(0.200410\pi\)
−0.240671 + 0.970607i \(0.577367\pi\)
\(32\) 3.29512 3.92697i 0.582500 0.694196i
\(33\) 1.51453 + 1.05801i 0.263647 + 0.184176i
\(34\) 15.3403 2.70491i 2.63084 0.463888i
\(35\) 1.51583 8.94086i 0.256223 1.51128i
\(36\) 3.44190 + 9.39221i 0.573649 + 1.56537i
\(37\) −0.357225 0.618733i −0.0587275 0.101719i 0.835167 0.549997i \(-0.185371\pi\)
−0.893894 + 0.448278i \(0.852038\pi\)
\(38\) −1.56034 8.84913i −0.253121 1.43552i
\(39\) 7.11315 0.630202i 1.13902 0.100913i
\(40\) −3.61278 9.92604i −0.571231 1.56944i
\(41\) 5.44308 + 4.56728i 0.850066 + 0.713290i 0.959804 0.280671i \(-0.0905569\pi\)
−0.109738 + 0.993961i \(0.535001\pi\)
\(42\) 8.71633 + 6.00389i 1.34496 + 0.926420i
\(43\) 3.59373 + 1.30801i 0.548039 + 0.199470i 0.601175 0.799117i \(-0.294699\pi\)
−0.0531360 + 0.998587i \(0.516922\pi\)
\(44\) 3.08007 1.77828i 0.464338 0.268085i
\(45\) −10.1303 1.76329i −1.51014 0.262856i
\(46\) −1.34476 + 2.32920i −0.198275 + 0.343422i
\(47\) −1.83909 0.669375i −0.268259 0.0976384i 0.204388 0.978890i \(-0.434479\pi\)
−0.472648 + 0.881251i \(0.656702\pi\)
\(48\) 0.775040 + 0.0669486i 0.111867 + 0.00966319i
\(49\) 6.99939 0.0922545i 0.999913 0.0131792i
\(50\) 15.3488 + 2.70640i 2.17064 + 0.382743i
\(51\) −8.26923 8.25106i −1.15792 1.15538i
\(52\) 4.70176 12.9180i 0.652017 1.79140i
\(53\) 6.35643 3.66989i 0.873123 0.504098i 0.00473813 0.999989i \(-0.498492\pi\)
0.868385 + 0.495891i \(0.165158\pi\)
\(54\) 6.85110 9.85340i 0.932316 1.34088i
\(55\) 3.65598i 0.492972i
\(56\) 7.03430 4.12330i 0.939998 0.550999i
\(57\) −4.75966 + 4.77014i −0.630433 + 0.631821i
\(58\) 4.35336 + 3.65290i 0.571624 + 0.479649i
\(59\) 4.57964 + 3.84278i 0.596219 + 0.500287i 0.890228 0.455516i \(-0.150545\pi\)
−0.294009 + 0.955803i \(0.594990\pi\)
\(60\) −11.3361 + 16.2275i −1.46348 + 2.09497i
\(61\) 2.34201 6.43463i 0.299864 0.823870i −0.694658 0.719340i \(-0.744444\pi\)
0.994522 0.104529i \(-0.0333336\pi\)
\(62\) −10.6702 18.4813i −1.35512 2.34713i
\(63\) −0.0697595 7.93695i −0.00878888 0.999961i
\(64\) −6.36903 + 11.0315i −0.796128 + 1.37893i
\(65\) 9.08344 + 10.8252i 1.12666 + 1.34270i
\(66\) −3.86918 1.79905i −0.476263 0.221448i
\(67\) −0.361541 + 2.05040i −0.0441692 + 0.250496i −0.998895 0.0469900i \(-0.985037\pi\)
0.954726 + 0.297486i \(0.0961482\pi\)
\(68\) −21.1319 + 7.69137i −2.56261 + 0.932716i
\(69\) 2.00909 0.177999i 0.241865 0.0214285i
\(70\) 0.138020 + 20.9442i 0.0164965 + 2.50331i
\(71\) 1.33942 + 0.773313i 0.158960 + 0.0917754i 0.577370 0.816483i \(-0.304079\pi\)
−0.418410 + 0.908258i \(0.637412\pi\)
\(72\) −4.64032 7.99660i −0.546867 0.942408i
\(73\) 9.58401 + 5.53333i 1.12172 + 0.647627i 0.941840 0.336061i \(-0.109095\pi\)
0.179883 + 0.983688i \(0.442428\pi\)
\(74\) 1.06067 + 1.26406i 0.123300 + 0.146944i
\(75\) −4.95123 10.5875i −0.571719 1.22254i
\(76\) 4.43680 + 12.1900i 0.508936 + 1.39829i
\(77\) −2.77591 + 0.508352i −0.316345 + 0.0579321i
\(78\) −15.9263 + 4.28622i −1.80330 + 0.485319i
\(79\) −0.698202 3.95970i −0.0785539 0.445501i −0.998562 0.0536028i \(-0.982930\pi\)
0.920008 0.391899i \(-0.128182\pi\)
\(80\) 0.769718 + 1.33319i 0.0860571 + 0.149055i
\(81\) −8.99991 + 0.0395853i −0.999990 + 0.00439837i
\(82\) −14.2122 8.20542i −1.56948 0.906137i
\(83\) −6.13413 + 5.14714i −0.673308 + 0.564972i −0.914042 0.405619i \(-0.867056\pi\)
0.240735 + 0.970591i \(0.422612\pi\)
\(84\) −13.8975 6.35087i −1.51634 0.692937i
\(85\) 4.01418 22.7655i 0.435398 2.46927i
\(86\) −8.69865 1.53381i −0.937999 0.165395i
\(87\) 0.366770 4.24596i 0.0393218 0.455215i
\(88\) −2.51814 + 2.11297i −0.268435 + 0.225244i
\(89\) 11.1246 1.17920 0.589601 0.807695i \(-0.299285\pi\)
0.589601 + 0.807695i \(0.299285\pi\)
\(90\) 23.7489 0.0522286i 2.50336 0.00550537i
\(91\) −6.95636 + 8.40209i −0.729224 + 0.880779i
\(92\) 1.32800 3.64864i 0.138453 0.380397i
\(93\) −6.74754 + 14.5118i −0.699687 + 1.50480i
\(94\) 4.45153 + 0.784926i 0.459141 + 0.0809589i
\(95\) −13.1324 2.31560i −1.34736 0.237575i
\(96\) 8.84436 0.783582i 0.902673 0.0799740i
\(97\) −0.832291 + 2.28670i −0.0845063 + 0.232179i −0.974747 0.223311i \(-0.928314\pi\)
0.890241 + 0.455490i \(0.150536\pi\)
\(98\) −15.8833 + 3.01702i −1.60446 + 0.304765i
\(99\) 0.562592 + 3.15009i 0.0565426 + 0.316596i
\(100\) −22.5005 −2.25005
\(101\) 6.45368 5.41528i 0.642165 0.538840i −0.262517 0.964927i \(-0.584553\pi\)
0.904682 + 0.426087i \(0.140108\pi\)
\(102\) 22.1178 + 15.4508i 2.18999 + 1.52986i
\(103\) −4.33276 0.763983i −0.426920 0.0752775i −0.0439399 0.999034i \(-0.513991\pi\)
−0.382980 + 0.923757i \(0.625102\pi\)
\(104\) −2.20636 + 12.5129i −0.216351 + 1.22699i
\(105\) 12.7968 9.10784i 1.24884 0.888834i
\(106\) −12.9860 + 10.8966i −1.26132 + 1.05837i
\(107\) 5.59193 + 3.22850i 0.540592 + 0.312111i 0.745319 0.666708i \(-0.232297\pi\)
−0.204727 + 0.978819i \(0.565631\pi\)
\(108\) −7.27033 + 15.7265i −0.699588 + 1.51328i
\(109\) 2.16059 + 3.74226i 0.206947 + 0.358443i 0.950751 0.309954i \(-0.100314\pi\)
−0.743804 + 0.668398i \(0.766980\pi\)
\(110\) −1.46627 8.31564i −0.139803 0.792865i
\(111\) 0.318965 1.19565i 0.0302748 0.113486i
\(112\) −0.905239 + 0.769808i −0.0855371 + 0.0727400i
\(113\) −1.44517 3.97057i −0.135950 0.373519i 0.852972 0.521957i \(-0.174798\pi\)
−0.988922 + 0.148438i \(0.952576\pi\)
\(114\) 8.91288 12.7587i 0.834768 1.19497i
\(115\) 2.56559 + 3.05755i 0.239242 + 0.285118i
\(116\) −7.10510 4.10213i −0.659692 0.380873i
\(117\) 9.49235 + 7.92952i 0.877568 + 0.733085i
\(118\) −11.9577 6.90380i −1.10080 0.635546i
\(119\) 17.8436 0.117587i 1.63572 0.0107792i
\(120\) 7.71389 16.5901i 0.704179 1.51446i
\(121\) −9.26750 + 3.37309i −0.842500 + 0.306645i
\(122\) −2.74630 + 15.5750i −0.248638 + 1.41010i
\(123\) 1.08610 + 12.2590i 0.0979307 + 1.10535i
\(124\) 19.8034 + 23.6008i 1.77840 + 2.11941i
\(125\) 2.99585 5.18897i 0.267957 0.464116i
\(126\) 3.34187 + 18.0249i 0.297718 + 1.60578i
\(127\) 2.73727 + 4.74109i 0.242893 + 0.420704i 0.961537 0.274675i \(-0.0885701\pi\)
−0.718644 + 0.695378i \(0.755237\pi\)
\(128\) 6.55566 18.0115i 0.579444 1.59201i
\(129\) 2.80602 + 6.00030i 0.247057 + 0.528297i
\(130\) −25.0021 20.9793i −2.19283 1.84001i
\(131\) 12.4171 + 10.4192i 1.08489 + 0.910331i 0.996318 0.0857387i \(-0.0273250\pi\)
0.0885726 + 0.996070i \(0.471769\pi\)
\(132\) 5.95198 + 1.58782i 0.518054 + 0.138202i
\(133\) −0.0678307 10.2931i −0.00588167 0.892529i
\(134\) 4.80870i 0.415408i
\(135\) −10.2635 14.5554i −0.883342 1.25273i
\(136\) 18.0003 10.3925i 1.54351 0.891147i
\(137\) 3.02771 8.31857i 0.258675 0.710703i −0.740575 0.671974i \(-0.765447\pi\)
0.999250 0.0387294i \(-0.0123310\pi\)
\(138\) −4.49834 + 1.21063i −0.382924 + 0.103056i
\(139\) −22.0614 3.89002i −1.87123 0.329948i −0.881416 0.472341i \(-0.843409\pi\)
−0.989810 + 0.142394i \(0.954520\pi\)
\(140\) −5.44676 29.7426i −0.460335 2.51371i
\(141\) −1.43598 3.07066i −0.120932 0.258596i
\(142\) −3.35669 1.22174i −0.281687 0.102526i
\(143\) 2.19882 3.80846i 0.183874 0.318480i
\(144\) 0.868365 + 1.03027i 0.0723638 + 0.0858556i
\(145\) 7.30373 4.21681i 0.606541 0.350187i
\(146\) −24.0183 8.74195i −1.98777 0.723489i
\(147\) 8.69475 + 8.44993i 0.717131 + 0.696938i
\(148\) −1.82489 1.53126i −0.150005 0.125869i
\(149\) −5.51505 15.1525i −0.451811 1.24134i −0.931449 0.363873i \(-0.881454\pi\)
0.479638 0.877466i \(-0.340768\pi\)
\(150\) 15.5080 + 22.0959i 1.26622 + 1.80413i
\(151\) −1.76751 10.0241i −0.143838 0.815747i −0.968293 0.249818i \(-0.919629\pi\)
0.824455 0.565928i \(-0.191482\pi\)
\(152\) −5.99494 10.3835i −0.486254 0.842217i
\(153\) −0.0444965 20.2331i −0.00359733 1.63575i
\(154\) 6.11002 2.26957i 0.492360 0.182887i
\(155\) −31.1887 + 5.49941i −2.50514 + 0.441723i
\(156\) 21.5686 10.0865i 1.72687 0.807566i
\(157\) 7.17325 8.54875i 0.572488 0.682264i −0.399652 0.916667i \(-0.630869\pi\)
0.972140 + 0.234403i \(0.0753135\pi\)
\(158\) 3.17617 + 8.72644i 0.252682 + 0.694238i
\(159\) 12.2833 + 3.27683i 0.974128 + 0.259869i
\(160\) 11.2942 + 13.4599i 0.892883 + 1.06410i
\(161\) −1.96480 + 2.37314i −0.154848 + 0.187030i
\(162\) 20.4547 3.69955i 1.60707 0.290664i
\(163\) −6.62402 + 11.4731i −0.518833 + 0.898645i 0.480927 + 0.876760i \(0.340300\pi\)
−0.999761 + 0.0218848i \(0.993033\pi\)
\(164\) 22.2631 + 8.10311i 1.73846 + 0.632747i
\(165\) −4.47272 + 4.48256i −0.348200 + 0.348967i
\(166\) 11.8879 14.1675i 0.922683 1.09961i
\(167\) 5.35496 1.94905i 0.414379 0.150822i −0.126413 0.991978i \(-0.540347\pi\)
0.540793 + 0.841156i \(0.318124\pi\)
\(168\) 13.6691 + 3.55021i 1.05460 + 0.273904i
\(169\) −0.694247 3.93727i −0.0534037 0.302867i
\(170\) 53.3908i 4.09489i
\(171\) −11.6716 + 0.0256680i −0.892546 + 0.00196288i
\(172\) 12.7517 0.972311
\(173\) −10.5337 + 8.83880i −0.800860 + 0.672002i −0.948408 0.317053i \(-0.897307\pi\)
0.147547 + 0.989055i \(0.452862\pi\)
\(174\) 0.868662 + 9.80467i 0.0658531 + 0.743290i
\(175\) 16.8170 + 5.99567i 1.27124 + 0.453230i
\(176\) 0.307939 0.366988i 0.0232118 0.0276628i
\(177\) 0.913816 + 10.3143i 0.0686866 + 0.775272i
\(178\) −25.3032 + 4.46163i −1.89655 + 0.334413i
\(179\) 2.15435i 0.161023i 0.996754 + 0.0805117i \(0.0256554\pi\)
−0.996754 + 0.0805117i \(0.974345\pi\)
\(180\) −33.7518 + 6.02791i −2.51571 + 0.449294i
\(181\) 21.9924 12.6973i 1.63468 0.943786i 0.652063 0.758164i \(-0.273904\pi\)
0.982621 0.185621i \(-0.0594297\pi\)
\(182\) 12.4527 21.9007i 0.923055 1.62339i
\(183\) 10.7436 5.02423i 0.794192 0.371401i
\(184\) −0.623178 + 3.53422i −0.0459413 + 0.260546i
\(185\) 2.30113 0.837545i 0.169183 0.0615775i
\(186\) 9.52737 35.7137i 0.698581 2.61865i
\(187\) −7.08457 + 1.24920i −0.518075 + 0.0913507i
\(188\) −6.52571 −0.475936
\(189\) 9.62451 9.81676i 0.700080 0.714064i
\(190\) 30.7987 2.23437
\(191\) −13.4162 + 2.36564i −0.970765 + 0.171172i −0.636474 0.771298i \(-0.719608\pi\)
−0.334291 + 0.942470i \(0.608497\pi\)
\(192\) −21.3049 + 5.73374i −1.53755 + 0.413797i
\(193\) −17.8457 + 6.49531i −1.28456 + 0.467543i −0.891939 0.452156i \(-0.850655\pi\)
−0.392624 + 0.919699i \(0.628433\pi\)
\(194\) 0.975964 5.53497i 0.0700701 0.397388i
\(195\) −2.10643 + 24.3854i −0.150844 + 1.74627i
\(196\) 21.8257 8.27124i 1.55898 0.590803i
\(197\) −16.5034 + 9.52825i −1.17582 + 0.678860i −0.955044 0.296465i \(-0.904192\pi\)
−0.220776 + 0.975325i \(0.570859\pi\)
\(198\) −2.54301 6.93934i −0.180724 0.493158i
\(199\) 7.54509i 0.534857i −0.963578 0.267429i \(-0.913826\pi\)
0.963578 0.267429i \(-0.0861740\pi\)
\(200\) 20.4804 3.61125i 1.44819 0.255354i
\(201\) −2.95174 + 2.07167i −0.208199 + 0.146124i
\(202\) −12.5072 + 14.9055i −0.880005 + 1.04875i
\(203\) 4.21730 + 4.95924i 0.295996 + 0.348071i
\(204\) −35.3192 16.4223i −2.47284 1.14979i
\(205\) −18.6564 + 15.6546i −1.30302 + 1.09336i
\(206\) 10.1614 0.707978
\(207\) 2.68108 + 2.23967i 0.186348 + 0.155668i
\(208\) 1.85173i 0.128394i
\(209\) 0.720608 + 4.08677i 0.0498455 + 0.282688i
\(210\) −25.4539 + 25.8483i −1.75648 + 1.78371i
\(211\) 22.8365 8.31180i 1.57213 0.572208i 0.598655 0.801007i \(-0.295702\pi\)
0.973474 + 0.228799i \(0.0734798\pi\)
\(212\) 15.7311 18.7476i 1.08042 1.28759i
\(213\) 0.696179 + 2.58679i 0.0477014 + 0.177244i
\(214\) −14.0138 5.10062i −0.957966 0.348671i
\(215\) −6.55411 + 11.3521i −0.446987 + 0.774204i
\(216\) 4.09357 15.4815i 0.278532 1.05338i
\(217\) −8.51229 22.9163i −0.577852 1.55566i
\(218\) −6.41521 7.64535i −0.434493 0.517809i
\(219\) 4.98140 + 18.5094i 0.336612 + 1.25075i
\(220\) 4.16932 + 11.4551i 0.281095 + 0.772303i
\(221\) −17.8735 + 21.3008i −1.20230 + 1.43284i
\(222\) −0.245967 + 2.84747i −0.0165082 + 0.191110i
\(223\) 5.30044 0.934610i 0.354944 0.0625861i 0.00666651 0.999978i \(-0.497878\pi\)
0.348277 + 0.937392i \(0.386767\pi\)
\(224\) −8.64941 + 10.4470i −0.577913 + 0.698020i
\(225\) 6.88211 19.0386i 0.458807 1.26924i
\(226\) 4.87952 + 8.45157i 0.324581 + 0.562190i
\(227\) 2.73469 + 15.5092i 0.181508 + 1.02938i 0.930361 + 0.366645i \(0.119494\pi\)
−0.748853 + 0.662736i \(0.769395\pi\)
\(228\) −9.47331 + 20.3740i −0.627385 + 1.34930i
\(229\) −5.49184 15.0887i −0.362911 0.997091i −0.977995 0.208629i \(-0.933100\pi\)
0.615084 0.788462i \(-0.289122\pi\)
\(230\) −7.06177 5.92553i −0.465639 0.390718i
\(231\) −4.02544 2.77276i −0.264855 0.182434i
\(232\) 7.12561 + 2.59351i 0.467819 + 0.170272i
\(233\) 21.4007 12.3557i 1.40201 0.809449i 0.407408 0.913246i \(-0.366433\pi\)
0.994598 + 0.103797i \(0.0330994\pi\)
\(234\) −24.7709 14.2289i −1.61932 0.930174i
\(235\) 3.35407 5.80942i 0.218795 0.378965i
\(236\) 18.7315 + 6.81772i 1.21932 + 0.443796i
\(237\) 3.98823 5.70913i 0.259063 0.370848i
\(238\) −40.5386 + 7.42382i −2.62773 + 0.481215i
\(239\) 1.41814 + 0.250057i 0.0917321 + 0.0161748i 0.219326 0.975652i \(-0.429614\pi\)
−0.127594 + 0.991827i \(0.540725\pi\)
\(240\) −0.687278 + 2.57628i −0.0443636 + 0.166298i
\(241\) 2.10423 5.78133i 0.135546 0.372408i −0.853286 0.521442i \(-0.825394\pi\)
0.988832 + 0.149034i \(0.0476164\pi\)
\(242\) 19.7264 11.3890i 1.26806 0.732115i
\(243\) −11.0831 10.9619i −0.710984 0.703208i
\(244\) 22.8322i 1.46168i
\(245\) −3.85455 + 23.6812i −0.246258 + 1.51294i
\(246\) −7.38696 27.4478i −0.470976 1.75001i
\(247\) 12.2874 + 10.3104i 0.781832 + 0.656035i
\(248\) −21.8134 18.3036i −1.38515 1.16228i
\(249\) −13.8180 1.19361i −0.875680 0.0756419i
\(250\) −4.73306 + 13.0040i −0.299345 + 0.822444i
\(251\) −7.90667 13.6947i −0.499064 0.864405i 0.500935 0.865485i \(-0.332990\pi\)
−0.999999 + 0.00108000i \(0.999656\pi\)
\(252\) −9.26996 24.7889i −0.583952 1.56155i
\(253\) 0.621049 1.07569i 0.0390450 0.0676279i
\(254\) −8.12747 9.68594i −0.509963 0.607750i
\(255\) 32.7730 23.0017i 2.05233 1.44042i
\(256\) −3.26344 + 18.5079i −0.203965 + 1.15674i
\(257\) 9.32649 3.39457i 0.581771 0.211747i −0.0343355 0.999410i \(-0.510931\pi\)
0.616106 + 0.787663i \(0.288709\pi\)
\(258\) −8.78888 12.5225i −0.547171 0.779616i
\(259\) 0.955897 + 1.63075i 0.0593965 + 0.101330i
\(260\) 40.8059 + 23.5593i 2.53068 + 1.46109i
\(261\) 5.64420 4.75723i 0.349367 0.294465i
\(262\) −32.4219 18.7188i −2.00303 1.15645i
\(263\) 0.314400 + 0.374688i 0.0193867 + 0.0231042i 0.775651 0.631162i \(-0.217422\pi\)
−0.756264 + 0.654267i \(0.772977\pi\)
\(264\) −5.67248 0.489993i −0.349117 0.0301570i
\(265\) 8.60435 + 23.6403i 0.528561 + 1.45221i
\(266\) 4.28246 + 23.3849i 0.262575 + 1.43382i
\(267\) 13.6397 + 13.6098i 0.834738 + 0.832904i
\(268\) 1.20550 + 6.83673i 0.0736376 + 0.417620i
\(269\) −3.71312 6.43131i −0.226393 0.392124i 0.730344 0.683080i \(-0.239360\pi\)
−0.956736 + 0.290956i \(0.906027\pi\)
\(270\) 29.1823 + 28.9904i 1.77598 + 1.76430i
\(271\) 5.27042 + 3.04288i 0.320155 + 0.184842i 0.651462 0.758681i \(-0.274156\pi\)
−0.331306 + 0.943523i \(0.607489\pi\)
\(272\) −2.32046 + 1.94710i −0.140699 + 0.118060i
\(273\) −18.8082 + 1.79134i −1.13833 + 0.108417i
\(274\) −3.55037 + 20.1351i −0.214486 + 1.21641i
\(275\) −7.08848 1.24989i −0.427451 0.0753712i
\(276\) 6.09198 2.84890i 0.366694 0.171483i
\(277\) 10.7274 9.00133i 0.644545 0.540838i −0.260865 0.965375i \(-0.584008\pi\)
0.905410 + 0.424538i \(0.139563\pi\)
\(278\) 51.7395 3.10313
\(279\) −26.0268 + 9.53785i −1.55818 + 0.571016i
\(280\) 9.73138 + 26.1983i 0.581561 + 1.56565i
\(281\) 6.49576 17.8470i 0.387505 1.06466i −0.580616 0.814177i \(-0.697188\pi\)
0.968121 0.250483i \(-0.0805894\pi\)
\(282\) 4.49771 + 6.40839i 0.267835 + 0.381614i
\(283\) −13.1434 2.31753i −0.781292 0.137763i −0.231244 0.972896i \(-0.574279\pi\)
−0.550048 + 0.835133i \(0.685391\pi\)
\(284\) 5.07863 + 0.895500i 0.301361 + 0.0531381i
\(285\) −13.2686 18.9053i −0.785965 1.11985i
\(286\) −3.47385 + 9.54432i −0.205413 + 0.564368i
\(287\) −14.4803 11.9887i −0.854748 0.707673i
\(288\) 11.8026 + 9.85942i 0.695476 + 0.580972i
\(289\) 28.4867 1.67569
\(290\) −14.9213 + 12.5205i −0.876212 + 0.735229i
\(291\) −3.81801 + 1.78548i −0.223816 + 0.104667i
\(292\) 36.3394 + 6.40761i 2.12660 + 0.374977i
\(293\) 4.14559 23.5108i 0.242188 1.37351i −0.584747 0.811216i \(-0.698806\pi\)
0.826934 0.562299i \(-0.190083\pi\)
\(294\) −23.1654 15.7325i −1.35103 0.917537i
\(295\) −15.6970 + 13.1713i −0.913913 + 0.766864i
\(296\) 1.90682 + 1.10090i 0.110832 + 0.0639886i
\(297\) −3.16402 + 4.55057i −0.183595 + 0.264051i
\(298\) 18.6212 + 32.2529i 1.07870 + 1.86836i
\(299\) −0.833691 4.72809i −0.0482136 0.273433i
\(300\) −27.5876 27.5270i −1.59277 1.58927i
\(301\) −9.53072 3.39794i −0.549342 0.195854i
\(302\) 8.04052 + 22.0912i 0.462680 + 1.27120i
\(303\) 14.5378 + 1.25579i 0.835177 + 0.0721432i
\(304\) 1.12319 + 1.33857i 0.0644195 + 0.0767722i
\(305\) 20.3260 + 11.7352i 1.16386 + 0.671957i
\(306\) 8.21592 + 46.0030i 0.469673 + 2.62981i
\(307\) 9.91518 + 5.72453i 0.565889 + 0.326716i 0.755506 0.655142i \(-0.227391\pi\)
−0.189617 + 0.981858i \(0.560725\pi\)
\(308\) −8.11791 + 4.75848i −0.462561 + 0.271140i
\(309\) −4.37770 6.23740i −0.249039 0.354833i
\(310\) 68.7341 25.0172i 3.90383 1.42088i
\(311\) −1.33764 + 7.58615i −0.0758508 + 0.430171i 0.923108 + 0.384542i \(0.125640\pi\)
−0.998958 + 0.0456295i \(0.985471\pi\)
\(312\) −18.0134 + 12.6427i −1.01981 + 0.715750i
\(313\) −13.5087 16.0991i −0.763559 0.909974i 0.234509 0.972114i \(-0.424652\pi\)
−0.998067 + 0.0621404i \(0.980207\pi\)
\(314\) −12.8872 + 22.3213i −0.727267 + 1.25966i
\(315\) 26.8325 + 4.48850i 1.51184 + 0.252898i
\(316\) −6.70333 11.6105i −0.377092 0.653142i
\(317\) 3.11317 8.55336i 0.174853 0.480404i −0.821048 0.570860i \(-0.806610\pi\)
0.995901 + 0.0904554i \(0.0288323\pi\)
\(318\) −29.2529 2.52689i −1.64042 0.141701i
\(319\) −2.01050 1.68701i −0.112566 0.0944544i
\(320\) −33.4457 28.0643i −1.86967 1.56884i
\(321\) 2.90647 + 10.7996i 0.162223 + 0.602774i
\(322\) 3.51722 6.18579i 0.196007 0.344721i
\(323\) 26.2392i 1.45999i
\(324\) −28.1539 + 10.3876i −1.56410 + 0.577091i
\(325\) −24.0941 + 13.9108i −1.33650 + 0.771630i
\(326\) 10.4651 28.7526i 0.579608 1.59246i
\(327\) −1.92919 + 7.23162i −0.106684 + 0.399909i
\(328\) −21.5649 3.80248i −1.19072 0.209957i
\(329\) 4.87735 + 1.73890i 0.268897 + 0.0958685i
\(330\) 8.37555 11.9896i 0.461059 0.660003i
\(331\) −19.6845 7.16458i −1.08196 0.393801i −0.261323 0.965251i \(-0.584159\pi\)
−0.820637 + 0.571450i \(0.806381\pi\)
\(332\) −13.3499 + 23.1227i −0.732672 + 1.26902i
\(333\) 1.85384 1.07576i 0.101590 0.0589511i
\(334\) −11.3983 + 6.58083i −0.623689 + 0.360087i
\(335\) −6.70589 2.44075i −0.366382 0.133352i
\(336\) −2.05169 0.163613i −0.111929 0.00892581i
\(337\) −24.6263 20.6639i −1.34148 1.12564i −0.981243 0.192775i \(-0.938251\pi\)
−0.360237 0.932861i \(-0.617304\pi\)
\(338\) 3.15817 + 8.67701i 0.171782 + 0.471967i
\(339\) 3.08567 6.63629i 0.167591 0.360434i
\(340\) −13.3846 75.9080i −0.725883 4.11669i
\(341\) 4.92779 + 8.53518i 0.266855 + 0.462206i
\(342\) 26.5370 4.73939i 1.43496 0.256277i
\(343\) −18.5166 + 0.366110i −0.999805 + 0.0197681i
\(344\) −11.6069 + 2.04662i −0.625804 + 0.110346i
\(345\) −0.594953 + 6.88757i −0.0320312 + 0.370814i
\(346\) 20.4143 24.3288i 1.09748 1.30792i
\(347\) 6.86008 + 18.8479i 0.368269 + 1.01181i 0.976020 + 0.217682i \(0.0698496\pi\)
−0.607751 + 0.794128i \(0.707928\pi\)
\(348\) −3.69296 13.7220i −0.197964 0.735574i
\(349\) 0.359264 + 0.428154i 0.0192310 + 0.0229186i 0.775574 0.631256i \(-0.217460\pi\)
−0.756343 + 0.654175i \(0.773016\pi\)
\(350\) −40.6553 6.89270i −2.17312 0.368431i
\(351\) 1.93753 + 21.3352i 0.103418 + 1.13879i
\(352\) 2.73397 4.73537i 0.145721 0.252396i
\(353\) 22.8349 + 8.31122i 1.21538 + 0.442361i 0.868566 0.495573i \(-0.165042\pi\)
0.346812 + 0.937935i \(0.387264\pi\)
\(354\) −6.21517 23.0937i −0.330333 1.22742i
\(355\) −3.40751 + 4.06091i −0.180852 + 0.215531i
\(356\) 34.8561 12.6866i 1.84737 0.672387i
\(357\) 22.0217 + 21.6856i 1.16551 + 1.14772i
\(358\) −0.864024 4.90012i −0.0456651 0.258980i
\(359\) 13.4381i 0.709238i −0.935011 0.354619i \(-0.884611\pi\)
0.935011 0.354619i \(-0.115389\pi\)
\(360\) 29.7542 10.9038i 1.56818 0.574681i
\(361\) 3.86378 0.203357
\(362\) −44.9301 + 37.7008i −2.36147 + 1.98151i
\(363\) −15.4894 7.20212i −0.812984 0.378013i
\(364\) −12.2142 + 34.2590i −0.640198 + 1.79566i
\(365\) −24.3819 + 29.0572i −1.27621 + 1.52093i
\(366\) −22.4217 + 15.7366i −1.17200 + 0.822566i
\(367\) 24.0521 4.24104i 1.25551 0.221380i 0.493959 0.869485i \(-0.335549\pi\)
0.761551 + 0.648105i \(0.224438\pi\)
\(368\) 0.523014i 0.0272640i
\(369\) −13.6659 + 16.3593i −0.711419 + 0.851632i
\(370\) −4.89809 + 2.82792i −0.254640 + 0.147016i
\(371\) −16.7532 + 9.82022i −0.869782 + 0.509840i
\(372\) −4.59235 + 53.1641i −0.238102 + 2.75643i
\(373\) −1.13896 + 6.45937i −0.0589732 + 0.334453i −0.999992 0.00389965i \(-0.998759\pi\)
0.941019 + 0.338353i \(0.109870\pi\)
\(374\) 15.6131 5.68269i 0.807333 0.293845i
\(375\) 10.0214 2.69703i 0.517501 0.139274i
\(376\) 5.93985 1.04736i 0.306325 0.0540133i
\(377\) −10.1445 −0.522466
\(378\) −17.9541 + 26.1885i −0.923460 + 1.34699i
\(379\) 2.78708 0.143163 0.0715813 0.997435i \(-0.477195\pi\)
0.0715813 + 0.997435i \(0.477195\pi\)
\(380\) −43.7879 + 7.72098i −2.24627 + 0.396078i
\(381\) −2.44410 + 9.16178i −0.125215 + 0.469372i
\(382\) 29.5669 10.7615i 1.51277 0.550604i
\(383\) 5.80403 32.9163i 0.296572 1.68194i −0.364171 0.931332i \(-0.618648\pi\)
0.660743 0.750612i \(-0.270241\pi\)
\(384\) 30.0731 14.0636i 1.53466 0.717679i
\(385\) −0.0637414 9.67260i −0.00324856 0.492961i
\(386\) 37.9856 21.9310i 1.93342 1.11626i
\(387\) −3.90032 + 10.7898i −0.198264 + 0.548476i
\(388\) 8.11396i 0.411924i
\(389\) 6.13392 1.08158i 0.311002 0.0548380i −0.0159688 0.999872i \(-0.505083\pi\)
0.326971 + 0.945034i \(0.393972\pi\)
\(390\) −4.98889 56.3101i −0.252622 2.85137i
\(391\) −5.04830 + 6.01633i −0.255304 + 0.304259i
\(392\) −18.5387 + 11.0316i −0.936347 + 0.557181i
\(393\) 2.47770 + 27.9660i 0.124983 + 1.41070i
\(394\) 33.7161 28.2912i 1.69859 1.42529i
\(395\) 13.7815 0.693420
\(396\) 5.35514 + 9.22845i 0.269106 + 0.463747i
\(397\) 4.38660i 0.220157i 0.993923 + 0.110078i \(0.0351102\pi\)
−0.993923 + 0.110078i \(0.964890\pi\)
\(398\) 3.02604 + 17.1615i 0.151682 + 0.860230i
\(399\) 12.5094 12.7033i 0.626256 0.635961i
\(400\) −2.84804 + 1.03660i −0.142402 + 0.0518300i
\(401\) −16.4534 + 19.6084i −0.821643 + 0.979196i −0.999989 0.00477226i \(-0.998481\pi\)
0.178346 + 0.983968i \(0.442925\pi\)
\(402\) 5.88295 5.89590i 0.293415 0.294061i
\(403\) 35.7970 + 13.0291i 1.78318 + 0.649024i
\(404\) 14.0454 24.3273i 0.698783 1.21033i
\(405\) 5.22302 30.4026i 0.259534 1.51072i
\(406\) −11.5813 9.58856i −0.574772 0.475872i
\(407\) −0.489846 0.583776i −0.0242808 0.0289367i
\(408\) 34.7841 + 9.27939i 1.72207 + 0.459398i
\(409\) 6.22876 + 17.1134i 0.307992 + 0.846202i 0.993048 + 0.117711i \(0.0375556\pi\)
−0.685056 + 0.728491i \(0.740222\pi\)
\(410\) 36.1561 43.0892i 1.78562 2.12802i
\(411\) 13.8892 6.49523i 0.685102 0.320386i
\(412\) −14.4469 + 2.54738i −0.711747 + 0.125500i
\(413\) −12.1833 10.0870i −0.599503 0.496347i
\(414\) −6.99645 4.01891i −0.343857 0.197519i
\(415\) −13.7231 23.7691i −0.673641 1.16678i
\(416\) −3.67006 20.8139i −0.179939 1.02049i
\(417\) −22.2903 31.7594i −1.09156 1.55527i
\(418\) −3.27809 9.00647i −0.160337 0.440521i
\(419\) 17.2171 + 14.4469i 0.841111 + 0.705776i 0.957813 0.287391i \(-0.0927879\pi\)
−0.116702 + 0.993167i \(0.537232\pi\)
\(420\) 29.7089 43.1307i 1.44964 2.10456i
\(421\) −0.972055 0.353799i −0.0473750 0.0172431i 0.318224 0.948016i \(-0.396914\pi\)
−0.365599 + 0.930772i \(0.619136\pi\)
\(422\) −48.6088 + 28.0643i −2.36624 + 1.36615i
\(423\) 1.99599 5.52168i 0.0970482 0.268473i
\(424\) −11.3099 + 19.5893i −0.549258 + 0.951342i
\(425\) 42.7671 + 15.5659i 2.07451 + 0.755059i
\(426\) −2.62094 5.60453i −0.126985 0.271540i
\(427\) −6.08406 + 17.0649i −0.294428 + 0.825828i
\(428\) 21.2027 + 3.73862i 1.02487 + 0.180713i
\(429\) 7.35521 1.97949i 0.355113 0.0955709i
\(430\) 10.3547 28.4492i 0.499346 1.37194i
\(431\) −11.0227 + 6.36393i −0.530943 + 0.306540i −0.741400 0.671063i \(-0.765838\pi\)
0.210458 + 0.977603i \(0.432505\pi\)
\(432\) −0.195732 + 2.32556i −0.00941715 + 0.111888i
\(433\) 33.5621i 1.61289i 0.591309 + 0.806445i \(0.298612\pi\)
−0.591309 + 0.806445i \(0.701388\pi\)
\(434\) 28.5523 + 48.7099i 1.37055 + 2.33815i
\(435\) 14.1139 + 3.76517i 0.676708 + 0.180526i
\(436\) 11.0374 + 9.26148i 0.528596 + 0.443545i
\(437\) 3.47055 + 2.91214i 0.166019 + 0.139306i
\(438\) −18.7538 40.1024i −0.896089 1.91617i
\(439\) −8.37354 + 23.0061i −0.399647 + 1.09802i 0.562810 + 0.826587i \(0.309720\pi\)
−0.962457 + 0.271435i \(0.912502\pi\)
\(440\) −5.63352 9.75755i −0.268568 0.465173i
\(441\) 0.322942 + 20.9975i 0.0153782 + 0.999882i
\(442\) 32.1108 55.6176i 1.52736 2.64546i
\(443\) 5.70047 + 6.79356i 0.270838 + 0.322772i 0.884270 0.466975i \(-0.154656\pi\)
−0.613433 + 0.789747i \(0.710212\pi\)
\(444\) −0.364135 4.11003i −0.0172811 0.195053i
\(445\) −6.62121 + 37.5507i −0.313875 + 1.78008i
\(446\) −11.6812 + 4.25160i −0.553119 + 0.201319i
\(447\) 11.7755 25.3254i 0.556964 1.19785i
\(448\) 16.6582 29.2970i 0.787024 1.38415i
\(449\) −6.55230 3.78297i −0.309222 0.178529i 0.337356 0.941377i \(-0.390467\pi\)
−0.646578 + 0.762848i \(0.723801\pi\)
\(450\) −8.01792 + 46.0640i −0.377968 + 2.17148i
\(451\) 6.56358 + 3.78949i 0.309067 + 0.178440i
\(452\) −9.05615 10.7927i −0.425966 0.507646i
\(453\) 10.0963 14.4528i 0.474365 0.679051i
\(454\) −12.4403 34.1794i −0.583851 1.60412i
\(455\) −24.2207 28.4819i −1.13549 1.33525i
\(456\) 5.35286 20.0654i 0.250671 0.939647i
\(457\) −3.15444 17.8897i −0.147559 0.836846i −0.965277 0.261228i \(-0.915873\pi\)
0.817719 0.575618i \(-0.195239\pi\)
\(458\) 18.5429 + 32.1172i 0.866451 + 1.50074i
\(459\) 24.6986 24.8621i 1.15283 1.16046i
\(460\) 11.5255 + 6.65425i 0.537379 + 0.310256i
\(461\) −8.23081 + 6.90647i −0.383347 + 0.321666i −0.814015 0.580844i \(-0.802723\pi\)
0.430668 + 0.902511i \(0.358278\pi\)
\(462\) 10.2680 + 4.69228i 0.477712 + 0.218305i
\(463\) −1.72699 + 9.79424i −0.0802600 + 0.455177i 0.918019 + 0.396536i \(0.129788\pi\)
−0.998279 + 0.0586410i \(0.981323\pi\)
\(464\) −1.08833 0.191901i −0.0505243 0.00890880i
\(465\) −44.9682 31.4134i −2.08535 1.45676i
\(466\) −43.7212 + 36.6864i −2.02534 + 1.69946i
\(467\) −20.6390 −0.955059 −0.477530 0.878616i \(-0.658468\pi\)
−0.477530 + 0.878616i \(0.658468\pi\)
\(468\) 38.7849 + 14.0200i 1.79283 + 0.648076i
\(469\) 0.920778 5.43103i 0.0425176 0.250782i
\(470\) −5.29900 + 14.5589i −0.244425 + 0.671551i
\(471\) 19.2536 1.70580i 0.887158 0.0785993i
\(472\) −18.1441 3.19930i −0.835150 0.147260i
\(473\) 4.01727 + 0.708354i 0.184714 + 0.0325701i
\(474\) −6.78164 + 14.5851i −0.311491 + 0.669917i
\(475\) 8.97929 24.6704i 0.411998 1.13196i
\(476\) 55.7743 20.7174i 2.55641 0.949582i
\(477\) 11.0516 + 19.0450i 0.506017 + 0.872012i
\(478\) −3.32590 −0.152123
\(479\) −31.0077 + 26.0185i −1.41678 + 1.18882i −0.463735 + 0.885974i \(0.653491\pi\)
−0.953041 + 0.302842i \(0.902064\pi\)
\(480\) −2.61909 + 30.3203i −0.119545 + 1.38393i
\(481\) −2.90083 0.511495i −0.132267 0.0233222i
\(482\) −2.46748 + 13.9937i −0.112390 + 0.637398i
\(483\) −5.31232 + 0.505958i −0.241719 + 0.0230219i
\(484\) −25.1907 + 21.1375i −1.14503 + 0.960796i
\(485\) −7.22334 4.17039i −0.327995 0.189368i
\(486\) 29.6053 + 20.4882i 1.34293 + 0.929365i
\(487\) −16.0436 27.7883i −0.727004 1.25921i −0.958144 0.286287i \(-0.907579\pi\)
0.231140 0.972921i \(-0.425754\pi\)
\(488\) 3.66450 + 20.7824i 0.165884 + 0.940774i
\(489\) −22.1578 + 5.96330i −1.00201 + 0.269670i
\(490\) −0.730317 55.4095i −0.0329924 2.50315i
\(491\) −11.1829 30.7246i −0.504675 1.38658i −0.886663 0.462416i \(-0.846983\pi\)
0.381988 0.924167i \(-0.375240\pi\)
\(492\) 17.3833 + 37.1718i 0.783699 + 1.67583i
\(493\) 10.6669 + 12.7124i 0.480415 + 0.572536i
\(494\) −32.0833 18.5233i −1.44349 0.833402i
\(495\) −10.9679 + 0.0241206i −0.492971 + 0.00108414i
\(496\) 3.59394 + 2.07496i 0.161373 + 0.0931685i
\(497\) −3.55717 2.02260i −0.159561 0.0907259i
\(498\) 31.9082 2.82696i 1.42984 0.126679i
\(499\) 21.0760 7.67104i 0.943492 0.343403i 0.175948 0.984399i \(-0.443701\pi\)
0.767544 + 0.640996i \(0.221479\pi\)
\(500\) 3.46921 19.6749i 0.155148 0.879886i
\(501\) 8.95012 + 4.16154i 0.399862 + 0.185924i
\(502\) 23.4764 + 27.9781i 1.04780 + 1.24872i
\(503\) 4.42934 7.67184i 0.197495 0.342071i −0.750221 0.661187i \(-0.770053\pi\)
0.947715 + 0.319117i \(0.103386\pi\)
\(504\) 12.4163 + 21.0757i 0.553065 + 0.938784i
\(505\) 14.4380 + 25.0074i 0.642483 + 1.11281i
\(506\) −0.981177 + 2.69576i −0.0436187 + 0.119841i
\(507\) 3.96564 5.67680i 0.176120 0.252115i
\(508\) 13.9834 + 11.7334i 0.620411 + 0.520587i
\(509\) 9.75926 + 8.18899i 0.432572 + 0.362971i 0.832921 0.553392i \(-0.186667\pi\)
−0.400349 + 0.916363i \(0.631111\pi\)
\(510\) −65.3182 + 65.4620i −2.89234 + 2.89870i
\(511\) −25.4528 14.4724i −1.12597 0.640221i
\(512\) 5.07071i 0.224096i
\(513\) −14.3418 14.2475i −0.633206 0.629042i
\(514\) −19.8520 + 11.4615i −0.875633 + 0.505547i
\(515\) 5.15761 14.1704i 0.227272 0.624424i
\(516\) 15.6348 + 15.6004i 0.688284 + 0.686772i
\(517\) −2.05584 0.362500i −0.0904158 0.0159427i
\(518\) −2.82825 3.32582i −0.124266 0.146128i
\(519\) −23.7286 2.04969i −1.04157 0.0899716i
\(520\) −40.9237 14.8950i −1.79462 0.653190i
\(521\) 2.09954 3.63652i 0.0919827 0.159319i −0.816363 0.577540i \(-0.804013\pi\)
0.908345 + 0.418221i \(0.137346\pi\)
\(522\) −10.9300 + 13.0841i −0.478391 + 0.572677i
\(523\) −18.4606 + 10.6582i −0.807225 + 0.466052i −0.845991 0.533196i \(-0.820991\pi\)
0.0387660 + 0.999248i \(0.487657\pi\)
\(524\) 50.7882 + 18.4854i 2.21869 + 0.807538i
\(525\) 13.2840 + 27.9251i 0.579763 + 1.21875i
\(526\) −0.865385 0.726144i −0.0377326 0.0316614i
\(527\) −21.3136 58.5586i −0.928434 2.55085i
\(528\) 0.826534 0.0732282i 0.0359703 0.00318685i
\(529\) 3.75843 + 21.3151i 0.163410 + 0.926745i
\(530\) −29.0521 50.3196i −1.26194 2.18574i
\(531\) −11.4981 + 13.7643i −0.498975 + 0.597318i
\(532\) −11.9510 32.1737i −0.518139 1.39491i
\(533\) 28.8497 5.08698i 1.24962 0.220341i
\(534\) −36.4823 25.4855i −1.57874 1.10286i
\(535\) −14.2260 + 16.9539i −0.615043 + 0.732979i
\(536\) −2.19455 6.02947i −0.0947900 0.260433i
\(537\) −2.63562 + 2.64142i −0.113735 + 0.113986i
\(538\) 11.0249 + 13.1390i 0.475319 + 0.566463i
\(539\) 7.33536 1.39334i 0.315956 0.0600155i
\(540\) −48.7573 33.9011i −2.09818 1.45887i
\(541\) −8.53158 + 14.7771i −0.366801 + 0.635318i −0.989063 0.147491i \(-0.952880\pi\)
0.622262 + 0.782809i \(0.286214\pi\)
\(542\) −13.2081 4.80736i −0.567337 0.206494i
\(543\) 42.4986 + 11.3374i 1.82379 + 0.486534i
\(544\) −22.2235 + 26.4850i −0.952826 + 1.13553i
\(545\) −13.9179 + 5.06569i −0.596176 + 0.216990i
\(546\) 42.0614 11.6177i 1.80006 0.497192i
\(547\) 0.589590 + 3.34373i 0.0252090 + 0.142968i 0.994814 0.101706i \(-0.0324302\pi\)
−0.969605 + 0.244674i \(0.921319\pi\)
\(548\) 29.5170i 1.26090i
\(549\) 19.3193 + 6.98357i 0.824527 + 0.298051i
\(550\) 16.6242 0.708860
\(551\) 7.33318 6.15327i 0.312404 0.262138i
\(552\) −5.08783 + 3.57088i −0.216552 + 0.151987i
\(553\) 1.91627 + 10.4640i 0.0814879 + 0.444974i
\(554\) −20.7896 + 24.7761i −0.883267 + 1.05264i
\(555\) 3.84605 + 1.78830i 0.163256 + 0.0759090i
\(556\) −73.5603 + 12.9707i −3.11965 + 0.550078i
\(557\) 12.3208i 0.522050i 0.965332 + 0.261025i \(0.0840605\pi\)
−0.965332 + 0.261025i \(0.915940\pi\)
\(558\) 55.3734 32.1325i 2.34414 1.36028i
\(559\) 13.6549 7.88368i 0.577542 0.333444i
\(560\) −2.05968 3.51380i −0.0870375 0.148485i
\(561\) −10.2146 7.13561i −0.431261 0.301266i
\(562\) −7.61708 + 43.1986i −0.321307 + 1.82222i
\(563\) 10.0489 3.65751i 0.423512 0.154146i −0.121467 0.992595i \(-0.538760\pi\)
0.544979 + 0.838450i \(0.316538\pi\)
\(564\) −8.00111 7.98354i −0.336908 0.336167i
\(565\) 14.2627 2.51490i 0.600037 0.105803i
\(566\) 30.8244 1.29565
\(567\) 23.8103 0.261643i 0.999940 0.0109880i
\(568\) −4.76641 −0.199994
\(569\) 8.87372 1.56468i 0.372006 0.0655947i 0.0154801 0.999880i \(-0.495072\pi\)
0.356526 + 0.934286i \(0.383961\pi\)
\(570\) 37.7620 + 37.6791i 1.58168 + 1.57820i
\(571\) 29.3684 10.6892i 1.22903 0.447330i 0.355764 0.934576i \(-0.384221\pi\)
0.873265 + 0.487246i \(0.161999\pi\)
\(572\) 2.54624 14.4404i 0.106464 0.603785i
\(573\) −19.3436 13.5129i −0.808092 0.564509i
\(574\) 37.7442 + 21.4612i 1.57541 + 0.895775i
\(575\) −6.80531 + 3.92905i −0.283801 + 0.163853i
\(576\) −33.1364 19.0343i −1.38068 0.793094i
\(577\) 13.3322i 0.555028i −0.960722 0.277514i \(-0.910489\pi\)
0.960722 0.277514i \(-0.0895105\pi\)
\(578\) −64.7939 + 11.4249i −2.69507 + 0.475214i
\(579\) −29.8268 13.8686i −1.23956 0.576358i
\(580\) 18.0755 21.5416i 0.750546 0.894465i
\(581\) 16.1393 13.7247i 0.669570 0.569397i
\(582\) 7.96809 5.59238i 0.330288 0.231812i
\(583\) 5.99731 5.03234i 0.248383 0.208418i
\(584\) −34.1054 −1.41129
\(585\) −32.4157 + 27.3217i −1.34022 + 1.12961i
\(586\) 55.1386i 2.27776i
\(587\) −0.186169 1.05582i −0.00768403 0.0435783i 0.980725 0.195395i \(-0.0625988\pi\)
−0.988409 + 0.151817i \(0.951488\pi\)
\(588\) 36.8793 + 16.5602i 1.52087 + 0.682930i
\(589\) −33.7798 + 12.2948i −1.39187 + 0.506600i
\(590\) 30.4207 36.2540i 1.25240 1.49255i
\(591\) −31.8915 8.50773i −1.31184 0.349961i
\(592\) −0.301534 0.109749i −0.0123930 0.00451067i
\(593\) 19.5768 33.9081i 0.803925 1.39244i −0.113090 0.993585i \(-0.536075\pi\)
0.917015 0.398854i \(-0.130592\pi\)
\(594\) 5.37161 11.6194i 0.220400 0.476749i
\(595\) −10.2234 + 60.3006i −0.419117 + 2.47208i
\(596\) −34.5601 41.1871i −1.41564 1.68709i
\(597\) 9.23064 9.25097i 0.377785 0.378617i
\(598\) 3.79251 + 10.4198i 0.155087 + 0.426099i
\(599\) −9.15034 + 10.9049i −0.373873 + 0.445564i −0.919870 0.392223i \(-0.871706\pi\)
0.545998 + 0.837787i \(0.316151\pi\)
\(600\) 29.5289 + 20.6280i 1.20551 + 0.842134i
\(601\) −10.2398 + 1.80556i −0.417691 + 0.0736502i −0.378544 0.925583i \(-0.623575\pi\)
−0.0391471 + 0.999233i \(0.512464\pi\)
\(602\) 23.0407 + 3.90632i 0.939069 + 0.159210i
\(603\) −6.15357 1.07109i −0.250593 0.0436182i
\(604\) −16.9696 29.3922i −0.690484 1.19595i
\(605\) −5.86990 33.2899i −0.238645 1.35343i
\(606\) −33.5704 + 2.97423i −1.36370 + 0.120820i
\(607\) 4.69066 + 12.8875i 0.190388 + 0.523087i 0.997756 0.0669619i \(-0.0213306\pi\)
−0.807367 + 0.590049i \(0.799108\pi\)
\(608\) 15.2780 + 12.8198i 0.619604 + 0.519910i
\(609\) −0.896332 + 11.2399i −0.0363212 + 0.455464i
\(610\) −50.9387 18.5402i −2.06245 0.750669i
\(611\) −6.98792 + 4.03448i −0.282701 + 0.163217i
\(612\) −23.2135 63.3447i −0.938349 2.56056i
\(613\) −6.94113 + 12.0224i −0.280350 + 0.485580i −0.971471 0.237159i \(-0.923784\pi\)
0.691121 + 0.722739i \(0.257117\pi\)
\(614\) −24.8483 9.04403i −1.00279 0.364987i
\(615\) −42.0263 3.63026i −1.69466 0.146386i
\(616\) 6.62539 5.63418i 0.266945 0.227008i
\(617\) 8.55178 + 1.50791i 0.344282 + 0.0607062i 0.343116 0.939293i \(-0.388518\pi\)
0.00116607 + 0.999999i \(0.499629\pi\)
\(618\) 12.4588 + 12.4314i 0.501166 + 0.500066i
\(619\) −9.06062 + 24.8939i −0.364177 + 1.00057i 0.613360 + 0.789804i \(0.289818\pi\)
−0.977537 + 0.210765i \(0.932405\pi\)
\(620\) −91.4506 + 52.7990i −3.67274 + 2.12046i
\(621\) 0.547249 + 6.02607i 0.0219604 + 0.241818i
\(622\) 17.7914i 0.713370i
\(623\) −29.4322 + 0.193955i −1.17918 + 0.00777064i
\(624\) 2.26540 2.27039i 0.0906885 0.0908882i
\(625\) −10.1146 8.48713i −0.404583 0.339485i
\(626\) 37.1827 + 31.2000i 1.48612 + 1.24700i
\(627\) −4.11621 + 5.89234i −0.164386 + 0.235317i
\(628\) 12.7265 34.9658i 0.507844 1.39529i
\(629\) 2.40927 + 4.17297i 0.0960637 + 0.166387i
\(630\) −62.8315 + 0.552240i −2.50327 + 0.0220018i
\(631\) 15.1131 26.1767i 0.601643 1.04208i −0.390930 0.920421i \(-0.627846\pi\)
0.992572 0.121655i \(-0.0388203\pi\)
\(632\) 7.96498 + 9.49230i 0.316830 + 0.377583i
\(633\) 38.1683 + 17.7471i 1.51705 + 0.705383i
\(634\) −3.65057 + 20.7034i −0.144983 + 0.822239i
\(635\) −17.6326 + 6.41776i −0.699730 + 0.254681i
\(636\) 42.2236 3.74087i 1.67427 0.148335i
\(637\) 18.2579 22.3506i 0.723405 0.885565i
\(638\) 5.24954 + 3.03082i 0.207831 + 0.119991i
\(639\) −2.31110 + 4.02335i −0.0914256 + 0.159161i
\(640\) 56.8957 + 32.8487i 2.24900 + 1.29846i
\(641\) −21.7096 25.8725i −0.857477 1.02190i −0.999487 0.0320360i \(-0.989801\pi\)
0.142010 0.989865i \(-0.454644\pi\)
\(642\) −10.9421 23.3983i −0.431852 0.923458i
\(643\) 3.76068 + 10.3324i 0.148307 + 0.407469i 0.991494 0.130150i \(-0.0415459\pi\)
−0.843188 + 0.537619i \(0.819324\pi\)
\(644\) −3.44986 + 9.67634i −0.135943 + 0.381301i
\(645\) −21.9240 + 5.90037i −0.863257 + 0.232327i
\(646\) 10.5235 + 59.6819i 0.414043 + 2.34815i
\(647\) 15.6788 + 27.1565i 0.616399 + 1.06763i 0.990137 + 0.140100i \(0.0447424\pi\)
−0.373739 + 0.927534i \(0.621924\pi\)
\(648\) 23.9591 13.9737i 0.941203 0.548938i
\(649\) 5.52241 + 3.18836i 0.216773 + 0.125154i
\(650\) 49.2238 41.3037i 1.93072 1.62006i
\(651\) 17.5989 38.5114i 0.689756 1.50938i
\(652\) −7.67063 + 43.5023i −0.300405 + 1.70368i
\(653\) 5.01148 + 0.883658i 0.196114 + 0.0345802i 0.270842 0.962624i \(-0.412698\pi\)
−0.0747281 + 0.997204i \(0.523809\pi\)
\(654\) 1.48767 17.2223i 0.0581726 0.673443i
\(655\) −42.5604 + 35.7124i −1.66297 + 1.39540i
\(656\) 3.19131 0.124600
\(657\) −16.5367 + 28.7885i −0.645159 + 1.12314i
\(658\) −11.7911 1.99906i −0.459664 0.0779315i
\(659\) 8.93801 24.5570i 0.348176 0.956605i −0.634769 0.772702i \(-0.718905\pi\)
0.982944 0.183903i \(-0.0588731\pi\)
\(660\) −8.90219 + 19.1457i −0.346517 + 0.745247i
\(661\) −10.3360 1.82252i −0.402025 0.0708878i −0.0310200 0.999519i \(-0.509876\pi\)
−0.371005 + 0.928631i \(0.620987\pi\)
\(662\) 47.6465 + 8.40136i 1.85183 + 0.326528i
\(663\) −47.9738 + 4.25032i −1.86315 + 0.165069i
\(664\) 8.44028 23.1895i 0.327546 0.899926i
\(665\) 34.7847 + 5.89740i 1.34889 + 0.228691i
\(666\) −3.78516 + 3.19034i −0.146672 + 0.123623i
\(667\) −2.86527 −0.110944
\(668\) 14.5557 12.2137i 0.563178 0.472563i
\(669\) 7.64222 + 5.33862i 0.295465 + 0.206403i
\(670\) 16.2316 + 2.86208i 0.627083 + 0.110572i
\(671\) 1.26832 7.19298i 0.0489628 0.277682i
\(672\) −23.3858 + 2.22732i −0.902127 + 0.0859206i
\(673\) 22.4416 18.8308i 0.865061 0.725873i −0.0979910 0.995187i \(-0.531242\pi\)
0.963052 + 0.269315i \(0.0867972\pi\)
\(674\) 64.3008 + 37.1241i 2.47677 + 1.42997i
\(675\) 31.7299 14.9235i 1.22128 0.574406i
\(676\) −6.66536 11.5447i −0.256360 0.444029i
\(677\) 2.10665 + 11.9474i 0.0809652 + 0.459176i 0.998155 + 0.0607248i \(0.0193412\pi\)
−0.917189 + 0.398452i \(0.869548\pi\)
\(678\) −4.35690 + 16.3320i −0.167326 + 0.627226i
\(679\) 2.16212 6.06442i 0.0829745 0.232731i
\(680\) 24.3660 + 66.9450i 0.934393 + 2.56722i
\(681\) −15.6209 + 22.3613i −0.598596 + 0.856887i
\(682\) −14.6315 17.4372i −0.560270 0.667704i
\(683\) 29.2693 + 16.8986i 1.11996 + 0.646608i 0.941390 0.337320i \(-0.109520\pi\)
0.178568 + 0.983928i \(0.442854\pi\)
\(684\) −36.5407 + 13.3908i −1.39717 + 0.512010i
\(685\) 26.2771 + 15.1711i 1.00400 + 0.579657i
\(686\) 41.9698 8.25903i 1.60242 0.315331i
\(687\) 11.7260 25.2188i 0.447375 0.962159i
\(688\) 1.61407 0.587475i 0.0615360 0.0223973i
\(689\) 5.25475 29.8012i 0.200190 1.13533i
\(690\) −1.40910 15.9046i −0.0536434 0.605477i
\(691\) −19.0529 22.7063i −0.724806 0.863790i 0.270283 0.962781i \(-0.412883\pi\)
−0.995088 + 0.0989914i \(0.968438\pi\)
\(692\) −22.9248 + 39.7069i −0.871470 + 1.50943i
\(693\) −1.54337 8.32437i −0.0586277 0.316217i
\(694\) −23.1626 40.1189i −0.879242 1.52289i
\(695\) 26.2614 72.1526i 0.996151 2.73690i
\(696\) 5.56375 + 11.8973i 0.210894 + 0.450967i
\(697\) −36.7102 30.8035i −1.39050 1.16677i
\(698\) −0.988873 0.829763i −0.0374294 0.0314070i
\(699\) 41.3551 + 11.0323i 1.56419 + 0.417282i
\(700\) 59.5293 0.392292i 2.25000 0.0148272i
\(701\) 46.4472i 1.75429i 0.480229 + 0.877143i \(0.340554\pi\)
−0.480229 + 0.877143i \(0.659446\pi\)
\(702\) −12.9637 47.7506i −0.489284 1.80223i
\(703\) 2.40720 1.38980i 0.0907892 0.0524172i
\(704\) −4.64702 + 12.7676i −0.175141 + 0.481197i
\(705\) 11.2196 3.01951i 0.422555 0.113721i
\(706\) −55.2719 9.74593i −2.08019 0.366793i
\(707\) −16.9800 + 14.4397i −0.638600 + 0.543060i
\(708\) 14.6258 + 31.2753i 0.549670 + 1.17540i
\(709\) 9.76292 + 3.55341i 0.366654 + 0.133451i 0.518775 0.854911i \(-0.326388\pi\)
−0.152121 + 0.988362i \(0.548610\pi\)
\(710\) 6.12181 10.6033i 0.229747 0.397934i
\(711\) 11.8745 2.12073i 0.445328 0.0795335i
\(712\) −29.6907 + 17.1419i −1.11270 + 0.642421i
\(713\) 10.1108 + 3.68001i 0.378651 + 0.137818i
\(714\) −58.7863 40.4925i −2.20002 1.51540i
\(715\) 11.5467 + 9.68881i 0.431821 + 0.362341i
\(716\) 2.45684 + 6.75011i 0.0918164 + 0.252263i
\(717\) 1.43285 + 2.04155i 0.0535109 + 0.0762429i
\(718\) 5.38951 + 30.5655i 0.201135 + 1.14069i
\(719\) 6.92962 + 12.0025i 0.258431 + 0.447616i 0.965822 0.259207i \(-0.0834611\pi\)
−0.707390 + 0.706823i \(0.750128\pi\)
\(720\) −3.99449 + 2.31795i −0.148866 + 0.0863847i
\(721\) 11.4765 + 1.94572i 0.427406 + 0.0724625i
\(722\) −8.78829 + 1.54961i −0.327066 + 0.0576706i
\(723\) 9.65285 4.51413i 0.358993 0.167882i
\(724\) 54.4277 64.8644i 2.02279 2.41067i
\(725\) 5.67889 + 15.6026i 0.210909 + 0.579467i
\(726\) 38.1197 + 10.1692i 1.41475 + 0.377415i
\(727\) 25.7069 + 30.6363i 0.953416 + 1.13624i 0.990581 + 0.136928i \(0.0437228\pi\)
−0.0371652 + 0.999309i \(0.511833\pi\)
\(728\) 5.61918 33.1437i 0.208261 1.22839i
\(729\) −0.178133 26.9994i −0.00659753 0.999978i
\(730\) 43.8037 75.8702i 1.62125 2.80808i
\(731\) −24.2375 8.82173i −0.896457 0.326284i
\(732\) 27.9328 27.9943i 1.03243 1.03470i
\(733\) 17.5321 20.8940i 0.647563 0.771736i −0.337981 0.941153i \(-0.609744\pi\)
0.985544 + 0.169417i \(0.0541884\pi\)
\(734\) −53.0064 + 19.2927i −1.95650 + 0.712108i
\(735\) −33.6976 + 24.3197i −1.24295 + 0.897044i
\(736\) −1.03660 5.87882i −0.0382094 0.216696i
\(737\) 2.22079i 0.0818038i
\(738\) 24.5224 42.6906i 0.902683 1.57146i
\(739\) 2.75414 0.101313 0.0506564 0.998716i \(-0.483869\pi\)
0.0506564 + 0.998716i \(0.483869\pi\)
\(740\) 6.25489 5.24848i 0.229934 0.192938i
\(741\) 2.45182 + 27.6739i 0.0900698 + 1.01663i
\(742\) 34.1671 29.0554i 1.25431 1.06666i
\(743\) 24.2232 28.8681i 0.888662 1.05907i −0.109220 0.994018i \(-0.534835\pi\)
0.997882 0.0650490i \(-0.0207204\pi\)
\(744\) −4.35261 49.1283i −0.159574 1.80113i
\(745\) 54.4294 9.59736i 1.99414 0.351620i
\(746\) 15.1488i 0.554638i
\(747\) −15.4819 18.3684i −0.566452 0.672064i
\(748\) −20.7732 + 11.9934i −0.759542 + 0.438522i
\(749\) −14.8508 8.44413i −0.542637 0.308542i
\(750\) −21.7122 + 10.1537i −0.792818 + 0.370759i
\(751\) 7.13696 40.4757i 0.260431 1.47698i −0.521305 0.853370i \(-0.674555\pi\)
0.781737 0.623609i \(-0.214334\pi\)
\(752\) −0.826003 + 0.300641i −0.0301212 + 0.0109632i
\(753\) 7.05983 26.4640i 0.257274 0.964402i
\(754\) 23.0739 4.06855i 0.840302 0.148168i
\(755\) 34.8880 1.26970
\(756\) 18.9609 41.7343i 0.689601 1.51786i
\(757\) 23.0506 0.837788 0.418894 0.908035i \(-0.362418\pi\)
0.418894 + 0.908035i \(0.362418\pi\)
\(758\) −6.33929 + 1.11779i −0.230253 + 0.0405999i
\(759\) 2.07746 0.559102i 0.0754068 0.0202941i
\(760\) 38.6175 14.0556i 1.40081 0.509851i
\(761\) −5.65233 + 32.0560i −0.204897 + 1.16203i 0.692705 + 0.721221i \(0.256419\pi\)
−0.897602 + 0.440807i \(0.854692\pi\)
\(762\) 1.88474 21.8190i 0.0682769 0.790418i
\(763\) −5.78152 9.86320i −0.209305 0.357072i
\(764\) −39.3387 + 22.7122i −1.42322 + 0.821698i
\(765\) 68.3229 + 11.8923i 2.47022 + 0.429967i
\(766\) 77.1969i 2.78924i
\(767\) 24.2733 4.28003i 0.876457 0.154543i
\(768\) −26.6438