Properties

Label 189.2.ba.a.5.8
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.8
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21351 + 0.213974i) q^{2} +(-1.60161 - 0.659440i) q^{3} +(-0.452565 + 0.164720i) q^{4} +(-0.378134 + 2.14451i) q^{5} +(2.08467 + 0.457534i) q^{6} +(-0.671624 - 2.55909i) q^{7} +(2.64823 - 1.52896i) q^{8} +(2.13028 + 2.11232i) q^{9} +O(q^{10})\) \(q+(-1.21351 + 0.213974i) q^{2} +(-1.60161 - 0.659440i) q^{3} +(-0.452565 + 0.164720i) q^{4} +(-0.378134 + 2.14451i) q^{5} +(2.08467 + 0.457534i) q^{6} +(-0.671624 - 2.55909i) q^{7} +(2.64823 - 1.52896i) q^{8} +(2.13028 + 2.11232i) q^{9} -2.68329i q^{10} +(-0.0432582 + 0.00762759i) q^{11} +(0.833453 + 0.0346227i) q^{12} +(2.80925 - 3.34793i) q^{13} +(1.36260 + 2.96176i) q^{14} +(2.01979 - 3.18529i) q^{15} +(-2.14863 + 1.80291i) q^{16} +4.53595 q^{17} +(-3.03710 - 2.10750i) q^{18} -6.99767i q^{19} +(-0.182113 - 1.03281i) q^{20} +(-0.611886 + 4.54154i) q^{21} +(0.0508621 - 0.0185123i) q^{22} +(0.167036 - 0.199066i) q^{23} +(-5.24967 + 0.702436i) q^{24} +(0.242545 + 0.0882792i) q^{25} +(-2.69268 + 4.66385i) q^{26} +(-2.01891 - 4.78790i) q^{27} +(0.725487 + 1.04752i) q^{28} +(2.65522 + 3.16437i) q^{29} +(-1.76947 + 4.29757i) q^{30} +(1.31493 + 3.61275i) q^{31} +(-1.70958 + 2.03739i) q^{32} +(0.0743125 + 0.0163098i) q^{33} +(-5.50442 + 0.970577i) q^{34} +(5.74194 - 0.472625i) q^{35} +(-1.31203 - 0.605064i) q^{36} +(-2.18902 - 3.79150i) q^{37} +(1.49732 + 8.49174i) q^{38} +(-6.70706 + 3.50953i) q^{39} +(2.27747 + 6.25730i) q^{40} +(-5.10519 - 4.28376i) q^{41} +(-0.229244 - 5.64213i) q^{42} +(9.15605 + 3.33253i) q^{43} +(0.0183207 - 0.0105775i) q^{44} +(-5.33542 + 3.76965i) q^{45} +(-0.160105 + 0.277310i) q^{46} +(-6.09518 - 2.21846i) q^{47} +(4.63016 - 1.47066i) q^{48} +(-6.09784 + 3.43749i) q^{49} +(-0.313220 - 0.0552292i) q^{50} +(-7.26480 - 2.99119i) q^{51} +(-0.719895 + 1.97790i) q^{52} +(7.32681 - 4.23013i) q^{53} +(3.47446 + 5.37817i) q^{54} -0.0956517i q^{55} +(-5.69135 - 5.75017i) q^{56} +(-4.61454 + 11.2075i) q^{57} +(-3.89923 - 3.27184i) q^{58} +(-7.98695 - 6.70185i) q^{59} +(-0.389406 + 1.77425i) q^{60} +(3.82219 - 10.5014i) q^{61} +(-2.36872 - 4.10274i) q^{62} +(3.97487 - 6.87025i) q^{63} +(4.44347 - 7.69631i) q^{64} +(6.11738 + 7.29041i) q^{65} +(-0.0936688 - 0.00389112i) q^{66} +(0.622290 - 3.52918i) q^{67} +(-2.05281 + 0.747162i) q^{68} +(-0.398798 + 0.208675i) q^{69} +(-6.86677 + 1.80216i) q^{70} +(5.14654 + 2.97136i) q^{71} +(8.87112 + 2.33682i) q^{72} +(5.45458 + 3.14920i) q^{73} +(3.46769 + 4.13263i) q^{74} +(-0.330247 - 0.301332i) q^{75} +(1.15266 + 3.16690i) q^{76} +(0.0485729 + 0.105579i) q^{77} +(7.38813 - 5.69399i) q^{78} +(1.77980 + 10.0937i) q^{79} +(-3.05389 - 5.28948i) q^{80} +(0.0761693 + 8.99968i) q^{81} +(7.11181 + 4.10601i) q^{82} +(9.64103 - 8.08979i) q^{83} +(-0.471165 - 2.15613i) q^{84} +(-1.71520 + 9.72737i) q^{85} +(-11.8240 - 2.08490i) q^{86} +(-2.16590 - 6.81902i) q^{87} +(-0.102895 + 0.0863395i) q^{88} +0.332132 q^{89} +(5.66798 - 5.71615i) q^{90} +(-10.4544 - 4.94055i) q^{91} +(-0.0428046 + 0.117605i) q^{92} +(0.276387 - 6.65332i) q^{93} +(7.87125 + 1.38791i) q^{94} +(15.0065 + 2.64606i) q^{95} +(4.08160 - 2.13574i) q^{96} +(-1.19363 + 3.27948i) q^{97} +(6.66425 - 5.47621i) q^{98} +(-0.108264 - 0.0751265i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21351 + 0.213974i −0.858081 + 0.151303i −0.585343 0.810786i \(-0.699040\pi\)
−0.272738 + 0.962088i \(0.587929\pi\)
\(3\) −1.60161 0.659440i −0.924687 0.380728i
\(4\) −0.452565 + 0.164720i −0.226282 + 0.0823601i
\(5\) −0.378134 + 2.14451i −0.169107 + 0.959052i 0.775622 + 0.631198i \(0.217436\pi\)
−0.944728 + 0.327854i \(0.893675\pi\)
\(6\) 2.08467 + 0.457534i 0.851061 + 0.186787i
\(7\) −0.671624 2.55909i −0.253850 0.967244i
\(8\) 2.64823 1.52896i 0.936291 0.540568i
\(9\) 2.13028 + 2.11232i 0.710093 + 0.704108i
\(10\) 2.68329i 0.848530i
\(11\) −0.0432582 + 0.00762759i −0.0130428 + 0.00229980i −0.180166 0.983636i \(-0.557663\pi\)
0.167123 + 0.985936i \(0.446552\pi\)
\(12\) 0.833453 + 0.0346227i 0.240597 + 0.00999472i
\(13\) 2.80925 3.34793i 0.779145 0.928549i −0.219750 0.975556i \(-0.570524\pi\)
0.998895 + 0.0470077i \(0.0149685\pi\)
\(14\) 1.36260 + 2.96176i 0.364171 + 0.791565i
\(15\) 2.01979 3.18529i 0.521509 0.822439i
\(16\) −2.14863 + 1.80291i −0.537157 + 0.450728i
\(17\) 4.53595 1.10013 0.550065 0.835122i \(-0.314603\pi\)
0.550065 + 0.835122i \(0.314603\pi\)
\(18\) −3.03710 2.10750i −0.715850 0.496743i
\(19\) 6.99767i 1.60538i −0.596399 0.802688i \(-0.703402\pi\)
0.596399 0.802688i \(-0.296598\pi\)
\(20\) −0.182113 1.03281i −0.0407217 0.230944i
\(21\) −0.611886 + 4.54154i −0.133524 + 0.991046i
\(22\) 0.0508621 0.0185123i 0.0108438 0.00394684i
\(23\) 0.167036 0.199066i 0.0348295 0.0415082i −0.748349 0.663306i \(-0.769153\pi\)
0.783178 + 0.621798i \(0.213597\pi\)
\(24\) −5.24967 + 0.702436i −1.07159 + 0.143384i
\(25\) 0.242545 + 0.0882792i 0.0485090 + 0.0176558i
\(26\) −2.69268 + 4.66385i −0.528077 + 0.914657i
\(27\) −2.01891 4.78790i −0.388540 0.921432i
\(28\) 0.725487 + 1.04752i 0.137104 + 0.197963i
\(29\) 2.65522 + 3.16437i 0.493062 + 0.587608i 0.953993 0.299828i \(-0.0969292\pi\)
−0.460932 + 0.887436i \(0.652485\pi\)
\(30\) −1.76947 + 4.29757i −0.323059 + 0.784625i
\(31\) 1.31493 + 3.61275i 0.236169 + 0.648869i 0.999994 + 0.00344562i \(0.00109678\pi\)
−0.763825 + 0.645423i \(0.776681\pi\)
\(32\) −1.70958 + 2.03739i −0.302213 + 0.360164i
\(33\) 0.0743125 + 0.0163098i 0.0129361 + 0.00283917i
\(34\) −5.50442 + 0.970577i −0.944000 + 0.166453i
\(35\) 5.74194 0.472625i 0.970565 0.0798881i
\(36\) −1.31203 0.605064i −0.218672 0.100844i
\(37\) −2.18902 3.79150i −0.359873 0.623319i 0.628066 0.778160i \(-0.283847\pi\)
−0.987939 + 0.154841i \(0.950513\pi\)
\(38\) 1.49732 + 8.49174i 0.242898 + 1.37754i
\(39\) −6.70706 + 3.50953i −1.07399 + 0.561975i
\(40\) 2.27747 + 6.25730i 0.360100 + 0.989365i
\(41\) −5.10519 4.28376i −0.797297 0.669012i 0.150243 0.988649i \(-0.451994\pi\)
−0.947540 + 0.319638i \(0.896439\pi\)
\(42\) −0.229244 5.64213i −0.0353732 0.870600i
\(43\) 9.15605 + 3.33253i 1.39628 + 0.508206i 0.927073 0.374880i \(-0.122316\pi\)
0.469211 + 0.883086i \(0.344538\pi\)
\(44\) 0.0183207 0.0105775i 0.00276195 0.00159461i
\(45\) −5.33542 + 3.76965i −0.795358 + 0.561946i
\(46\) −0.160105 + 0.277310i −0.0236062 + 0.0408872i
\(47\) −6.09518 2.21846i −0.889073 0.323596i −0.143208 0.989693i \(-0.545742\pi\)
−0.745866 + 0.666096i \(0.767964\pi\)
\(48\) 4.63016 1.47066i 0.668307 0.212272i
\(49\) −6.09784 + 3.43749i −0.871120 + 0.491070i
\(50\) −0.313220 0.0552292i −0.0442960 0.00781059i
\(51\) −7.26480 2.99119i −1.01728 0.418850i
\(52\) −0.719895 + 1.97790i −0.0998315 + 0.274285i
\(53\) 7.32681 4.23013i 1.00641 0.581054i 0.0962747 0.995355i \(-0.469307\pi\)
0.910140 + 0.414301i \(0.135974\pi\)
\(54\) 3.47446 + 5.37817i 0.472814 + 0.731876i
\(55\) 0.0956517i 0.0128977i
\(56\) −5.69135 5.75017i −0.760538 0.768398i
\(57\) −4.61454 + 11.2075i −0.611211 + 1.48447i
\(58\) −3.89923 3.27184i −0.511993 0.429613i
\(59\) −7.98695 6.70185i −1.03981 0.872506i −0.0478267 0.998856i \(-0.515230\pi\)
−0.991986 + 0.126349i \(0.959674\pi\)
\(60\) −0.389406 + 1.77425i −0.0502721 + 0.229055i
\(61\) 3.82219 10.5014i 0.489382 1.34457i −0.411860 0.911247i \(-0.635121\pi\)
0.901241 0.433318i \(-0.142657\pi\)
\(62\) −2.36872 4.10274i −0.300828 0.521049i
\(63\) 3.97487 6.87025i 0.500787 0.865571i
\(64\) 4.44347 7.69631i 0.555434 0.962039i
\(65\) 6.11738 + 7.29041i 0.758768 + 0.904264i
\(66\) −0.0936688 0.00389112i −0.0115298 0.000478964i
\(67\) 0.622290 3.52918i 0.0760248 0.431158i −0.922910 0.385016i \(-0.874196\pi\)
0.998935 0.0461425i \(-0.0146928\pi\)
\(68\) −2.05281 + 0.747162i −0.248940 + 0.0906067i
\(69\) −0.398798 + 0.208675i −0.0480097 + 0.0251215i
\(70\) −6.86677 + 1.80216i −0.820736 + 0.215400i
\(71\) 5.14654 + 2.97136i 0.610782 + 0.352635i 0.773272 0.634075i \(-0.218619\pi\)
−0.162489 + 0.986710i \(0.551952\pi\)
\(72\) 8.87112 + 2.33682i 1.04547 + 0.275397i
\(73\) 5.45458 + 3.14920i 0.638410 + 0.368586i 0.784002 0.620759i \(-0.213175\pi\)
−0.145592 + 0.989345i \(0.546509\pi\)
\(74\) 3.46769 + 4.13263i 0.403110 + 0.480408i
\(75\) −0.330247 0.301332i −0.0381336 0.0347949i
\(76\) 1.15266 + 3.16690i 0.132219 + 0.363269i
\(77\) 0.0485729 + 0.105579i 0.00553540 + 0.0120318i
\(78\) 7.38813 5.69399i 0.836541 0.644717i
\(79\) 1.77980 + 10.0937i 0.200243 + 1.13563i 0.904752 + 0.425938i \(0.140056\pi\)
−0.704510 + 0.709694i \(0.748833\pi\)
\(80\) −3.05389 5.28948i −0.341435 0.591382i
\(81\) 0.0761693 + 8.99968i 0.00846326 + 0.999964i
\(82\) 7.11181 + 4.10601i 0.785368 + 0.453433i
\(83\) 9.64103 8.08979i 1.05824 0.887970i 0.0643051 0.997930i \(-0.479517\pi\)
0.993936 + 0.109961i \(0.0350725\pi\)
\(84\) −0.471165 2.15613i −0.0514083 0.235253i
\(85\) −1.71520 + 9.72737i −0.186039 + 1.05508i
\(86\) −11.8240 2.08490i −1.27502 0.224820i
\(87\) −2.16590 6.81902i −0.232209 0.731076i
\(88\) −0.102895 + 0.0863395i −0.0109687 + 0.00920382i
\(89\) 0.332132 0.0352060 0.0176030 0.999845i \(-0.494397\pi\)
0.0176030 + 0.999845i \(0.494397\pi\)
\(90\) 5.66798 5.71615i 0.597457 0.602535i
\(91\) −10.4544 4.94055i −1.09592 0.517911i
\(92\) −0.0428046 + 0.117605i −0.00446269 + 0.0122611i
\(93\) 0.276387 6.65332i 0.0286600 0.689917i
\(94\) 7.87125 + 1.38791i 0.811858 + 0.143152i
\(95\) 15.0065 + 2.64606i 1.53964 + 0.271480i
\(96\) 4.08160 2.13574i 0.416577 0.217978i
\(97\) −1.19363 + 3.27948i −0.121195 + 0.332981i −0.985424 0.170119i \(-0.945585\pi\)
0.864228 + 0.503100i \(0.167807\pi\)
\(98\) 6.66425 5.47621i 0.673191 0.553181i
\(99\) −0.108264 0.0751265i −0.0108809 0.00755049i
\(100\) −0.124309 −0.0124309
\(101\) −3.91229 + 3.28280i −0.389288 + 0.326651i −0.816336 0.577578i \(-0.803998\pi\)
0.427048 + 0.904229i \(0.359554\pi\)
\(102\) 9.45594 + 2.07535i 0.936278 + 0.205490i
\(103\) 4.71444 + 0.831282i 0.464527 + 0.0819087i 0.401013 0.916072i \(-0.368658\pi\)
0.0635140 + 0.997981i \(0.479769\pi\)
\(104\) 2.32069 13.1613i 0.227563 1.29057i
\(105\) −9.50798 3.02950i −0.927884 0.295649i
\(106\) −7.98601 + 6.70106i −0.775670 + 0.650864i
\(107\) −4.62564 2.67061i −0.447177 0.258178i 0.259460 0.965754i \(-0.416455\pi\)
−0.706637 + 0.707576i \(0.749789\pi\)
\(108\) 1.70235 + 1.83428i 0.163809 + 0.176504i
\(109\) −5.25793 9.10701i −0.503619 0.872293i −0.999991 0.00418370i \(-0.998668\pi\)
0.496372 0.868110i \(-0.334665\pi\)
\(110\) 0.0204670 + 0.116074i 0.00195145 + 0.0110672i
\(111\) 1.00569 + 7.51602i 0.0954554 + 0.713389i
\(112\) 6.05688 + 4.28764i 0.572321 + 0.405144i
\(113\) −5.25570 14.4399i −0.494415 1.35839i −0.896602 0.442836i \(-0.853972\pi\)
0.402188 0.915557i \(-0.368250\pi\)
\(114\) 3.20167 14.5878i 0.299864 1.36627i
\(115\) 0.363736 + 0.433484i 0.0339186 + 0.0404226i
\(116\) −1.72289 0.994713i −0.159967 0.0923568i
\(117\) 13.0564 1.19798i 1.20706 0.110753i
\(118\) 11.1263 + 6.42375i 1.02426 + 0.591354i
\(119\) −3.04645 11.6079i −0.279268 1.06409i
\(120\) 0.478704 11.5236i 0.0436995 1.05195i
\(121\) −10.3348 + 3.76156i −0.939528 + 0.341960i
\(122\) −2.39124 + 13.5614i −0.216493 + 1.22779i
\(123\) 5.35162 + 10.2275i 0.482539 + 0.922179i
\(124\) −1.19019 1.41841i −0.106882 0.127377i
\(125\) −5.72500 + 9.91599i −0.512060 + 0.886913i
\(126\) −3.35349 + 9.18764i −0.298752 + 0.818500i
\(127\) 1.20135 + 2.08079i 0.106602 + 0.184640i 0.914392 0.404831i \(-0.132670\pi\)
−0.807789 + 0.589471i \(0.799336\pi\)
\(128\) −1.92608 + 5.29187i −0.170243 + 0.467740i
\(129\) −12.4668 11.3753i −1.09764 1.00154i
\(130\) −8.98346 7.53802i −0.787902 0.661128i
\(131\) 3.57730 + 3.00171i 0.312550 + 0.262260i 0.785545 0.618805i \(-0.212383\pi\)
−0.472995 + 0.881065i \(0.656827\pi\)
\(132\) −0.0363178 + 0.00485952i −0.00316106 + 0.000422967i
\(133\) −17.9076 + 4.69981i −1.55279 + 0.407525i
\(134\) 4.41585i 0.381471i
\(135\) 11.0311 2.51910i 0.949406 0.216810i
\(136\) 12.0122 6.93527i 1.03004 0.594694i
\(137\) −6.14278 + 16.8771i −0.524813 + 1.44191i 0.340292 + 0.940320i \(0.389474\pi\)
−0.865104 + 0.501592i \(0.832748\pi\)
\(138\) 0.439295 0.338562i 0.0373952 0.0288203i
\(139\) 14.2972 + 2.52097i 1.21267 + 0.213826i 0.743167 0.669106i \(-0.233323\pi\)
0.469501 + 0.882932i \(0.344434\pi\)
\(140\) −2.52075 + 1.15971i −0.213042 + 0.0980131i
\(141\) 8.29913 + 7.57251i 0.698913 + 0.637720i
\(142\) −6.88118 2.50454i −0.577455 0.210177i
\(143\) −0.0959863 + 0.166253i −0.00802678 + 0.0139028i
\(144\) −8.38551 0.697893i −0.698792 0.0581578i
\(145\) −7.79003 + 4.49757i −0.646927 + 0.373503i
\(146\) −7.29303 2.65445i −0.603576 0.219684i
\(147\) 12.0332 1.48434i 0.992478 0.122426i
\(148\) 1.61521 + 1.35532i 0.132770 + 0.111407i
\(149\) 6.37610 + 17.5182i 0.522351 + 1.43515i 0.867897 + 0.496745i \(0.165472\pi\)
−0.345546 + 0.938402i \(0.612306\pi\)
\(150\) 0.465235 + 0.295005i 0.0379863 + 0.0240871i
\(151\) −1.11155 6.30392i −0.0904567 0.513006i −0.996045 0.0888482i \(-0.971681\pi\)
0.905588 0.424157i \(-0.139430\pi\)
\(152\) −10.6991 18.5315i −0.867815 1.50310i
\(153\) 9.66283 + 9.58140i 0.781194 + 0.774610i
\(154\) −0.0815348 0.117727i −0.00657026 0.00948673i
\(155\) −8.24478 + 1.45378i −0.662237 + 0.116770i
\(156\) 2.45729 2.69308i 0.196741 0.215619i
\(157\) 11.2601 13.4193i 0.898655 1.07098i −0.0984651 0.995141i \(-0.531393\pi\)
0.997120 0.0758352i \(-0.0241623\pi\)
\(158\) −4.31960 11.8680i −0.343649 0.944167i
\(159\) −14.5242 + 1.94342i −1.15184 + 0.154123i
\(160\) −3.72275 4.43660i −0.294309 0.350744i
\(161\) −0.621613 0.293763i −0.0489900 0.0231517i
\(162\) −2.01813 10.9049i −0.158560 0.856770i
\(163\) −3.72087 + 6.44474i −0.291441 + 0.504791i −0.974151 0.225899i \(-0.927468\pi\)
0.682710 + 0.730690i \(0.260801\pi\)
\(164\) 3.01605 + 1.09775i 0.235514 + 0.0857202i
\(165\) −0.0630765 + 0.153196i −0.00491050 + 0.0119263i
\(166\) −9.96848 + 11.8800i −0.773704 + 0.922065i
\(167\) −23.5674 + 8.57783i −1.82370 + 0.663772i −0.829210 + 0.558937i \(0.811209\pi\)
−0.994490 + 0.104835i \(0.966569\pi\)
\(168\) 5.32340 + 12.9626i 0.410710 + 1.00009i
\(169\) −1.05934 6.00782i −0.0814877 0.462140i
\(170\) 12.1713i 0.933493i
\(171\) 14.7814 14.9070i 1.13036 1.13997i
\(172\) −4.69264 −0.357811
\(173\) −2.47077 + 2.07322i −0.187849 + 0.157624i −0.731862 0.681452i \(-0.761349\pi\)
0.544013 + 0.839077i \(0.316904\pi\)
\(174\) 4.08744 + 7.81150i 0.309868 + 0.592188i
\(175\) 0.0630148 0.679984i 0.00476347 0.0514020i
\(176\) 0.0791938 0.0943796i 0.00596946 0.00711413i
\(177\) 8.37248 + 16.0006i 0.629314 + 1.20268i
\(178\) −0.403046 + 0.0710679i −0.0302096 + 0.00532676i
\(179\) 6.05400i 0.452497i 0.974070 + 0.226249i \(0.0726462\pi\)
−0.974070 + 0.226249i \(0.927354\pi\)
\(180\) 1.79369 2.58486i 0.133694 0.192664i
\(181\) −20.8337 + 12.0283i −1.54856 + 0.894059i −0.550303 + 0.834965i \(0.685488\pi\)
−0.998252 + 0.0590938i \(0.981179\pi\)
\(182\) 13.7437 + 3.75843i 1.01875 + 0.278594i
\(183\) −13.0467 + 14.2986i −0.964438 + 1.05698i
\(184\) 0.137987 0.782564i 0.0101726 0.0576914i
\(185\) 8.95864 3.26068i 0.658652 0.239730i
\(186\) 1.08824 + 8.13300i 0.0797937 + 0.596341i
\(187\) −0.196217 + 0.0345983i −0.0143488 + 0.00253008i
\(188\) 3.12389 0.227833
\(189\) −10.8967 + 8.38224i −0.792618 + 0.609718i
\(190\) −18.7768 −1.36221
\(191\) 6.41790 1.13165i 0.464383 0.0818832i 0.0634387 0.997986i \(-0.479793\pi\)
0.400944 + 0.916103i \(0.368682\pi\)
\(192\) −12.1919 + 9.39626i −0.879878 + 0.678116i
\(193\) 19.1535 6.97130i 1.37870 0.501805i 0.456915 0.889510i \(-0.348954\pi\)
0.921784 + 0.387705i \(0.126732\pi\)
\(194\) 0.746760 4.23509i 0.0536143 0.304062i
\(195\) −4.99004 15.7104i −0.357344 1.12505i
\(196\) 2.19345 2.56012i 0.156675 0.182866i
\(197\) −15.3673 + 8.87232i −1.09487 + 0.632126i −0.934870 0.354990i \(-0.884484\pi\)
−0.160005 + 0.987116i \(0.551151\pi\)
\(198\) 0.147454 + 0.0680010i 0.0104791 + 0.00483262i
\(199\) 11.1081i 0.787433i 0.919232 + 0.393716i \(0.128811\pi\)
−0.919232 + 0.393716i \(0.871189\pi\)
\(200\) 0.777290 0.137057i 0.0549627 0.00969141i
\(201\) −3.32394 + 5.24199i −0.234453 + 0.369742i
\(202\) 4.04517 4.82084i 0.284617 0.339193i
\(203\) 6.31457 8.92020i 0.443196 0.626075i
\(204\) 3.78050 + 0.157047i 0.264688 + 0.0109955i
\(205\) 11.1170 9.32827i 0.776445 0.651515i
\(206\) −5.89889 −0.410995
\(207\) 0.776326 0.0712313i 0.0539584 0.00495092i
\(208\) 12.2583i 0.849958i
\(209\) 0.0533754 + 0.302707i 0.00369205 + 0.0209387i
\(210\) 12.1863 + 1.64187i 0.840932 + 0.113300i
\(211\) −0.626599 + 0.228064i −0.0431369 + 0.0157005i −0.363498 0.931595i \(-0.618418\pi\)
0.320362 + 0.947295i \(0.396196\pi\)
\(212\) −2.61907 + 3.12128i −0.179878 + 0.214371i
\(213\) −6.28330 8.15278i −0.430525 0.558619i
\(214\) 6.18470 + 2.25105i 0.422777 + 0.153878i
\(215\) −10.6088 + 18.3751i −0.723517 + 1.25317i
\(216\) −12.6670 9.59263i −0.861883 0.652696i
\(217\) 8.36219 5.79144i 0.567663 0.393148i
\(218\) 8.32922 + 9.92638i 0.564126 + 0.672299i
\(219\) −6.65937 8.64075i −0.449999 0.583887i
\(220\) 0.0157558 + 0.0432886i 0.00106225 + 0.00291852i
\(221\) 12.7426 15.1860i 0.857160 1.02152i
\(222\) −2.82865 8.90557i −0.189846 0.597703i
\(223\) −3.89164 + 0.686201i −0.260604 + 0.0459514i −0.302423 0.953174i \(-0.597796\pi\)
0.0418197 + 0.999125i \(0.486684\pi\)
\(224\) 6.36206 + 3.00659i 0.425083 + 0.200886i
\(225\) 0.330214 + 0.700393i 0.0220143 + 0.0466929i
\(226\) 9.46762 + 16.3984i 0.629777 + 1.09081i
\(227\) −0.687421 3.89856i −0.0456257 0.258756i 0.953459 0.301521i \(-0.0974945\pi\)
−0.999085 + 0.0427649i \(0.986383\pi\)
\(228\) 0.242278 5.83223i 0.0160453 0.386249i
\(229\) −2.13581 5.86810i −0.141138 0.387775i 0.848903 0.528548i \(-0.177263\pi\)
−0.990042 + 0.140773i \(0.955041\pi\)
\(230\) −0.534152 0.448207i −0.0352209 0.0295539i
\(231\) −0.00817191 0.201126i −0.000537672 0.0132331i
\(232\) 11.8698 + 4.32026i 0.779291 + 0.283639i
\(233\) 20.4315 11.7961i 1.33851 0.772789i 0.351923 0.936029i \(-0.385528\pi\)
0.986586 + 0.163240i \(0.0521946\pi\)
\(234\) −15.5877 + 4.24749i −1.01900 + 0.277667i
\(235\) 7.06230 12.2323i 0.460694 0.797945i
\(236\) 4.71854 + 1.71741i 0.307151 + 0.111794i
\(237\) 3.80567 17.3398i 0.247205 1.12634i
\(238\) 6.18069 + 13.4344i 0.400635 + 0.870824i
\(239\) 0.767685 + 0.135364i 0.0496574 + 0.00875594i 0.198422 0.980117i \(-0.436418\pi\)
−0.148764 + 0.988873i \(0.547530\pi\)
\(240\) 1.40302 + 10.4855i 0.0905646 + 0.676837i
\(241\) 4.98893 13.7070i 0.321365 0.882944i −0.668850 0.743397i \(-0.733213\pi\)
0.990216 0.139547i \(-0.0445645\pi\)
\(242\) 11.7365 6.77608i 0.754451 0.435583i
\(243\) 5.81275 14.4642i 0.372888 0.927876i
\(244\) 5.38215i 0.344557i
\(245\) −5.06591 14.3767i −0.323649 0.918493i
\(246\) −8.68265 11.2660i −0.553586 0.718295i
\(247\) −23.4277 19.6582i −1.49067 1.25082i
\(248\) 9.00598 + 7.55692i 0.571881 + 0.479865i
\(249\) −20.7759 + 6.59896i −1.31662 + 0.418192i
\(250\) 4.82557 13.2582i 0.305196 0.838519i
\(251\) 4.52654 + 7.84019i 0.285712 + 0.494868i 0.972782 0.231724i \(-0.0744365\pi\)
−0.687069 + 0.726592i \(0.741103\pi\)
\(252\) −0.667219 + 3.76398i −0.0420308 + 0.237108i
\(253\) −0.00570730 + 0.00988533i −0.000358815 + 0.000621485i
\(254\) −1.90308 2.26800i −0.119410 0.142307i
\(255\) 9.16168 14.4483i 0.573727 0.904790i
\(256\) −1.88141 + 10.6700i −0.117588 + 0.666874i
\(257\) 11.3566 4.13346i 0.708405 0.257838i 0.0374099 0.999300i \(-0.488089\pi\)
0.670995 + 0.741462i \(0.265867\pi\)
\(258\) 17.5626 + 11.1364i 1.09340 + 0.693323i
\(259\) −8.23258 + 8.14837i −0.511547 + 0.506315i
\(260\) −3.96939 2.29173i −0.246171 0.142127i
\(261\) −1.02781 + 12.3497i −0.0636201 + 0.764425i
\(262\) −4.98337 2.87715i −0.307874 0.177751i
\(263\) −4.57384 5.45089i −0.282035 0.336116i 0.606365 0.795186i \(-0.292627\pi\)
−0.888400 + 0.459070i \(0.848183\pi\)
\(264\) 0.221734 0.0704285i 0.0136468 0.00433457i
\(265\) 6.30103 + 17.3119i 0.387069 + 1.06346i
\(266\) 20.7255 9.53504i 1.27076 0.584631i
\(267\) −0.531945 0.219021i −0.0325545 0.0134039i
\(268\) 0.299701 + 1.69969i 0.0183071 + 0.103825i
\(269\) 10.3782 + 17.9755i 0.632768 + 1.09599i 0.986983 + 0.160823i \(0.0514148\pi\)
−0.354215 + 0.935164i \(0.615252\pi\)
\(270\) −12.8473 + 5.41733i −0.781863 + 0.329688i
\(271\) 17.9167 + 10.3442i 1.08836 + 0.628367i 0.933141 0.359512i \(-0.117057\pi\)
0.155224 + 0.987879i \(0.450390\pi\)
\(272\) −9.74606 + 8.17792i −0.590942 + 0.495859i
\(273\) 13.4858 + 14.8069i 0.816199 + 0.896152i
\(274\) 3.84304 21.7950i 0.232167 1.31668i
\(275\) −0.0111654 0.00196876i −0.000673300 0.000118721i
\(276\) 0.146109 0.160129i 0.00879474 0.00963864i
\(277\) −9.49475 + 7.96704i −0.570484 + 0.478693i −0.881806 0.471611i \(-0.843673\pi\)
0.311322 + 0.950304i \(0.399228\pi\)
\(278\) −17.8892 −1.07292
\(279\) −4.83013 + 10.4737i −0.289172 + 0.627046i
\(280\) 14.4834 10.0308i 0.865546 0.599455i
\(281\) −1.59337 + 4.37775i −0.0950525 + 0.261155i −0.978102 0.208125i \(-0.933264\pi\)
0.883050 + 0.469279i \(0.155486\pi\)
\(282\) −11.6914 7.41351i −0.696212 0.441468i
\(283\) −19.5994 3.45591i −1.16507 0.205432i −0.442522 0.896758i \(-0.645916\pi\)
−0.722543 + 0.691325i \(0.757027\pi\)
\(284\) −2.81859 0.496993i −0.167252 0.0294911i
\(285\) −22.2896 14.1339i −1.32032 0.837217i
\(286\) 0.0809064 0.222288i 0.00478409 0.0131442i
\(287\) −7.53375 + 15.9417i −0.444703 + 0.941009i
\(288\) −7.94551 + 0.729035i −0.468194 + 0.0429588i
\(289\) 3.57483 0.210284
\(290\) 8.49091 7.12472i 0.498603 0.418378i
\(291\) 4.07435 4.46530i 0.238843 0.261761i
\(292\) −2.98729 0.526740i −0.174818 0.0308251i
\(293\) 3.35078 19.0032i 0.195755 1.11018i −0.715586 0.698525i \(-0.753840\pi\)
0.911340 0.411654i \(-0.135049\pi\)
\(294\) −14.2847 + 4.37605i −0.833103 + 0.255216i
\(295\) 17.3923 14.5939i 1.01262 0.849688i
\(296\) −11.5941 6.69385i −0.673892 0.389072i
\(297\) 0.123855 + 0.191716i 0.00718678 + 0.0111245i
\(298\) −11.4859 19.8942i −0.665361 1.15244i
\(299\) −0.197213 1.11845i −0.0114051 0.0646817i
\(300\) 0.199094 + 0.0819742i 0.0114947 + 0.00473278i
\(301\) 2.37880 25.6693i 0.137112 1.47956i
\(302\) 2.69776 + 7.41202i 0.155238 + 0.426514i
\(303\) 8.43076 2.67783i 0.484335 0.153837i
\(304\) 12.6162 + 15.0354i 0.723588 + 0.862339i
\(305\) 21.0750 + 12.1676i 1.20675 + 0.696717i
\(306\) −13.7761 9.55952i −0.787528 0.546481i
\(307\) −3.69874 2.13547i −0.211098 0.121878i 0.390723 0.920508i \(-0.372225\pi\)
−0.601822 + 0.798630i \(0.705558\pi\)
\(308\) −0.0393733 0.0397802i −0.00224350 0.00226669i
\(309\) −7.00248 4.44027i −0.398357 0.252598i
\(310\) 9.69405 3.52835i 0.550585 0.200397i
\(311\) −4.10127 + 23.2594i −0.232561 + 1.31892i 0.615127 + 0.788428i \(0.289105\pi\)
−0.847689 + 0.530494i \(0.822006\pi\)
\(312\) −12.3959 + 19.5489i −0.701781 + 1.10674i
\(313\) 0.887728 + 1.05795i 0.0501773 + 0.0597990i 0.790549 0.612398i \(-0.209795\pi\)
−0.740372 + 0.672197i \(0.765351\pi\)
\(314\) −10.7929 + 18.6938i −0.609077 + 1.05495i
\(315\) 13.2303 + 11.1220i 0.745441 + 0.626655i
\(316\) −2.46811 4.27490i −0.138842 0.240482i
\(317\) 2.88645 7.93046i 0.162119 0.445419i −0.831860 0.554985i \(-0.812724\pi\)
0.993979 + 0.109566i \(0.0349462\pi\)
\(318\) 17.2094 5.46616i 0.965054 0.306527i
\(319\) −0.138996 0.116632i −0.00778230 0.00653013i
\(320\) 14.8246 + 12.4393i 0.828718 + 0.695377i
\(321\) 5.64733 + 7.32760i 0.315203 + 0.408987i
\(322\) 0.817191 + 0.223474i 0.0455403 + 0.0124537i
\(323\) 31.7411i 1.76612i
\(324\) −1.51690 4.06039i −0.0842722 0.225577i
\(325\) 0.976921 0.564026i 0.0541899 0.0312865i
\(326\) 3.13630 8.61692i 0.173704 0.477247i
\(327\) 2.41561 + 18.0531i 0.133584 + 0.998340i
\(328\) −20.0694 3.53878i −1.10815 0.195396i
\(329\) −1.58357 + 17.0881i −0.0873049 + 0.942096i
\(330\) 0.0437639 0.199402i 0.00240912 0.0109767i
\(331\) 22.3801 + 8.14567i 1.23012 + 0.447727i 0.873638 0.486576i \(-0.161754\pi\)
0.356481 + 0.934303i \(0.383977\pi\)
\(332\) −3.03064 + 5.24923i −0.166328 + 0.288089i
\(333\) 3.34565 12.7009i 0.183341 0.696004i
\(334\) 26.7638 15.4521i 1.46445 0.845501i
\(335\) 7.33304 + 2.66901i 0.400647 + 0.145823i
\(336\) −6.87328 10.8613i −0.374968 0.592530i
\(337\) −4.78944 4.01882i −0.260898 0.218919i 0.502950 0.864315i \(-0.332248\pi\)
−0.763848 + 0.645396i \(0.776692\pi\)
\(338\) 2.57104 + 7.06387i 0.139846 + 0.384224i
\(339\) −1.10470 + 26.5929i −0.0599992 + 1.44433i
\(340\) −0.826055 4.68479i −0.0447991 0.254069i
\(341\) −0.0844382 0.146251i −0.00457258 0.00791995i
\(342\) −14.7476 + 21.2526i −0.797459 + 1.14921i
\(343\) 12.8923 + 13.2962i 0.696118 + 0.717927i
\(344\) 29.3426 5.17390i 1.58205 0.278958i
\(345\) −0.296705 0.934132i −0.0159741 0.0502920i
\(346\) 2.55469 3.04456i 0.137341 0.163677i
\(347\) −2.59393 7.12677i −0.139250 0.382585i 0.850391 0.526151i \(-0.176365\pi\)
−0.989641 + 0.143566i \(0.954143\pi\)
\(348\) 2.10344 + 2.72928i 0.112756 + 0.146305i
\(349\) 8.81684 + 10.5075i 0.471954 + 0.562453i 0.948533 0.316678i \(-0.102568\pi\)
−0.476578 + 0.879132i \(0.658123\pi\)
\(350\) 0.0690302 + 0.838651i 0.00368982 + 0.0448278i
\(351\) −21.7012 6.69121i −1.15832 0.357151i
\(352\) 0.0584128 0.101174i 0.00311341 0.00539259i
\(353\) −5.40349 1.96671i −0.287599 0.104677i 0.194192 0.980963i \(-0.437791\pi\)
−0.481791 + 0.876286i \(0.660014\pi\)
\(354\) −13.5838 17.6254i −0.721971 0.936780i
\(355\) −8.31818 + 9.91322i −0.441483 + 0.526139i
\(356\) −0.150312 + 0.0547089i −0.00796649 + 0.00289957i
\(357\) −2.77548 + 20.6002i −0.146894 + 1.09028i
\(358\) −1.29540 7.34659i −0.0684641 0.388279i
\(359\) 26.9598i 1.42288i −0.702745 0.711442i \(-0.748042\pi\)
0.702745 0.711442i \(-0.251958\pi\)
\(360\) −8.36580 + 18.1405i −0.440916 + 0.956090i
\(361\) −29.9674 −1.57723
\(362\) 22.7081 19.0544i 1.19351 1.00148i
\(363\) 19.0328 + 0.790647i 0.998963 + 0.0414982i
\(364\) 5.54510 + 0.513870i 0.290642 + 0.0269341i
\(365\) −8.81604 + 10.5066i −0.461453 + 0.549938i
\(366\) 12.7727 20.1431i 0.667642 1.05290i
\(367\) 1.06672 0.188092i 0.0556825 0.00981833i −0.145738 0.989323i \(-0.546555\pi\)
0.201420 + 0.979505i \(0.435444\pi\)
\(368\) 0.728871i 0.0379950i
\(369\) −1.82678 19.9094i −0.0950982 1.03644i
\(370\) −10.1737 + 5.87379i −0.528905 + 0.305364i
\(371\) −15.7461 15.9089i −0.817499 0.825947i
\(372\) 0.970852 + 3.05658i 0.0503364 + 0.158477i
\(373\) 2.74691 15.5785i 0.142230 0.806625i −0.827320 0.561731i \(-0.810136\pi\)
0.969550 0.244894i \(-0.0787532\pi\)
\(374\) 0.230708 0.0839708i 0.0119296 0.00434203i
\(375\) 15.7082 12.1062i 0.811167 0.625162i
\(376\) −19.5334 + 3.44426i −1.00736 + 0.177624i
\(377\) 18.0532 0.929789
\(378\) 11.4297 12.5035i 0.587878 0.643113i
\(379\) −35.6120 −1.82927 −0.914633 0.404284i \(-0.867521\pi\)
−0.914633 + 0.404284i \(0.867521\pi\)
\(380\) −7.22730 + 1.27437i −0.370753 + 0.0653737i
\(381\) −0.551925 4.12482i −0.0282760 0.211321i
\(382\) −7.54604 + 2.74653i −0.386089 + 0.140525i
\(383\) −5.66579 + 32.1323i −0.289509 + 1.64188i 0.399213 + 0.916858i \(0.369283\pi\)
−0.688721 + 0.725026i \(0.741828\pi\)
\(384\) 6.57450 7.20536i 0.335504 0.367697i
\(385\) −0.244781 + 0.0642420i −0.0124752 + 0.00327408i
\(386\) −21.7513 + 12.5581i −1.10711 + 0.639191i
\(387\) 12.4655 + 26.4398i 0.633659 + 1.34401i
\(388\) 1.68079i 0.0853294i
\(389\) −10.9769 + 1.93553i −0.556552 + 0.0981352i −0.444848 0.895606i \(-0.646742\pi\)
−0.111705 + 0.993741i \(0.535631\pi\)
\(390\) 9.41709 + 17.9970i 0.476853 + 0.911313i
\(391\) 0.757668 0.902954i 0.0383169 0.0456643i
\(392\) −10.8927 + 18.4266i −0.550165 + 0.930684i
\(393\) −3.74997 7.16656i −0.189161 0.361505i
\(394\) 16.7499 14.0548i 0.843849 0.708073i
\(395\) −22.3190 −1.12299
\(396\) 0.0613713 + 0.0161664i 0.00308402 + 0.000812390i
\(397\) 14.3758i 0.721500i −0.932663 0.360750i \(-0.882521\pi\)
0.932663 0.360750i \(-0.117479\pi\)
\(398\) −2.37685 13.4798i −0.119141 0.675681i
\(399\) 31.7802 + 4.28178i 1.59100 + 0.214357i
\(400\) −0.680298 + 0.247608i −0.0340149 + 0.0123804i
\(401\) 10.6855 12.7345i 0.533609 0.635930i −0.430133 0.902765i \(-0.641533\pi\)
0.963742 + 0.266835i \(0.0859779\pi\)
\(402\) 2.91199 7.07245i 0.145237 0.352742i
\(403\) 15.7892 + 5.74680i 0.786516 + 0.286268i
\(404\) 1.22982 2.13012i 0.0611860 0.105977i
\(405\) −19.3287 3.23974i −0.960449 0.160984i
\(406\) −5.75410 + 12.1759i −0.285571 + 0.604280i
\(407\) 0.123613 + 0.147317i 0.00612728 + 0.00730221i
\(408\) −23.8123 + 3.18621i −1.17888 + 0.157741i
\(409\) −0.284532 0.781744i −0.0140692 0.0386548i 0.932459 0.361275i \(-0.117658\pi\)
−0.946528 + 0.322620i \(0.895436\pi\)
\(410\) −11.4946 + 13.6987i −0.567677 + 0.676531i
\(411\) 20.9678 22.9797i 1.03426 1.13351i
\(412\) −2.27052 + 0.400353i −0.111860 + 0.0197240i
\(413\) −11.7864 + 24.9404i −0.579969 + 1.22724i
\(414\) −0.926838 + 0.252554i −0.0455516 + 0.0124123i
\(415\) 13.7030 + 23.7343i 0.672653 + 1.16507i
\(416\) 2.01843 + 11.4471i 0.0989616 + 0.561239i
\(417\) −21.2360 13.4657i −1.03993 0.659419i
\(418\) −0.129543 0.355916i −0.00633616 0.0174084i
\(419\) 4.03215 + 3.38337i 0.196983 + 0.165289i 0.735944 0.677042i \(-0.236739\pi\)
−0.538961 + 0.842331i \(0.681183\pi\)
\(420\) 4.80200 0.195109i 0.234314 0.00952035i
\(421\) 25.6716 + 9.34372i 1.25116 + 0.455385i 0.880793 0.473501i \(-0.157010\pi\)
0.370366 + 0.928886i \(0.379232\pi\)
\(422\) 0.711584 0.410833i 0.0346394 0.0199991i
\(423\) −8.29831 17.6009i −0.403478 0.855787i
\(424\) 12.9354 22.4047i 0.628198 1.08807i
\(425\) 1.10017 + 0.400430i 0.0533662 + 0.0194237i
\(426\) 9.36933 + 8.54901i 0.453946 + 0.414201i
\(427\) −29.4410 2.72833i −1.42475 0.132033i
\(428\) 2.53330 + 0.446690i 0.122452 + 0.0215916i
\(429\) 0.263366 0.202975i 0.0127154 0.00979971i
\(430\) 8.94214 24.5683i 0.431228 1.18479i
\(431\) −22.2979 + 12.8737i −1.07405 + 0.620104i −0.929285 0.369362i \(-0.879576\pi\)
−0.144766 + 0.989466i \(0.546243\pi\)
\(432\) 12.9701 + 6.64749i 0.624022 + 0.319827i
\(433\) 10.9555i 0.526489i 0.964729 + 0.263245i \(0.0847927\pi\)
−0.964729 + 0.263245i \(0.915207\pi\)
\(434\) −8.90838 + 8.81726i −0.427616 + 0.423242i
\(435\) 15.4424 2.06628i 0.740408 0.0990707i
\(436\) 3.87967 + 3.25543i 0.185802 + 0.155907i
\(437\) −1.39300 1.16887i −0.0666362 0.0559144i
\(438\) 9.93011 + 9.06069i 0.474479 + 0.432937i
\(439\) −8.32770 + 22.8802i −0.397459 + 1.09201i 0.566058 + 0.824365i \(0.308468\pi\)
−0.963518 + 0.267645i \(0.913754\pi\)
\(440\) −0.146247 0.253308i −0.00697207 0.0120760i
\(441\) −20.2512 5.55781i −0.964342 0.264658i
\(442\) −12.2138 + 21.1550i −0.580953 + 1.00624i
\(443\) −21.0336 25.0669i −0.999339 1.19097i −0.981566 0.191123i \(-0.938787\pi\)
−0.0177725 0.999842i \(-0.505657\pi\)
\(444\) −1.69318 3.23583i −0.0803547 0.153566i
\(445\) −0.125591 + 0.712260i −0.00595357 + 0.0337644i
\(446\) 4.57571 1.66542i 0.216666 0.0788601i
\(447\) 1.34020 32.2619i 0.0633893 1.52594i
\(448\) −22.6799 6.20219i −1.07152 0.293026i
\(449\) 13.1832 + 7.61132i 0.622154 + 0.359201i 0.777707 0.628627i \(-0.216383\pi\)
−0.155553 + 0.987827i \(0.549716\pi\)
\(450\) −0.550584 0.779276i −0.0259548 0.0367354i
\(451\) 0.253516 + 0.146368i 0.0119376 + 0.00689218i
\(452\) 4.75709 + 5.66928i 0.223755 + 0.266661i
\(453\) −2.37679 + 10.8294i −0.111671 + 0.508809i
\(454\) 1.66838 + 4.58385i 0.0783011 + 0.215131i
\(455\) 14.5482 20.5513i 0.682030 0.963461i
\(456\) 4.91542 + 36.7355i 0.230185 + 1.72030i
\(457\) −2.63572 14.9479i −0.123294 0.699234i −0.982307 0.187280i \(-0.940033\pi\)
0.859013 0.511954i \(-0.171078\pi\)
\(458\) 3.84745 + 6.66398i 0.179780 + 0.311387i
\(459\) −9.15769 21.7177i −0.427444 1.01369i
\(460\) −0.236018 0.136265i −0.0110044 0.00635339i
\(461\) −1.36503 + 1.14540i −0.0635760 + 0.0533466i −0.674022 0.738711i \(-0.735435\pi\)
0.610446 + 0.792058i \(0.290990\pi\)
\(462\) 0.0529525 + 0.242320i 0.00246358 + 0.0112737i
\(463\) −4.20119 + 23.8261i −0.195246 + 1.10729i 0.716822 + 0.697256i \(0.245596\pi\)
−0.912068 + 0.410038i \(0.865515\pi\)
\(464\) −11.4101 2.01192i −0.529703 0.0934009i
\(465\) 14.1636 + 3.10856i 0.656820 + 0.144156i
\(466\) −22.2697 + 18.6865i −1.03162 + 0.865635i
\(467\) −1.75046 −0.0810018 −0.0405009 0.999180i \(-0.512895\pi\)
−0.0405009 + 0.999180i \(0.512895\pi\)
\(468\) −5.71153 + 2.69282i −0.264016 + 0.124475i
\(469\) −9.44942 + 0.777791i −0.436334 + 0.0359151i
\(470\) −5.95278 + 16.3551i −0.274581 + 0.754406i
\(471\) −26.8835 + 14.0670i −1.23873 + 0.648174i
\(472\) −31.3981 5.53634i −1.44522 0.254831i
\(473\) −0.421493 0.0743206i −0.0193803 0.00341727i
\(474\) −0.907941 + 21.8564i −0.0417031 + 1.00390i
\(475\) 0.617749 1.69725i 0.0283443 0.0778752i
\(476\) 3.29077 + 4.75151i 0.150832 + 0.217785i
\(477\) 24.5436 + 6.46523i 1.12377 + 0.296023i
\(478\) −0.960557 −0.0439349
\(479\) −11.3189 + 9.49769i −0.517174 + 0.433961i −0.863645 0.504100i \(-0.831824\pi\)
0.346471 + 0.938061i \(0.387380\pi\)
\(480\) 3.03671 + 9.56062i 0.138606 + 0.436380i
\(481\) −18.8432 3.32256i −0.859176 0.151496i
\(482\) −3.12117 + 17.7010i −0.142165 + 0.806260i
\(483\) 0.801860 + 0.880408i 0.0364859 + 0.0400600i
\(484\) 4.05757 3.40470i 0.184435 0.154759i
\(485\) −6.58151 3.79984i −0.298851 0.172542i
\(486\) −3.95887 + 18.7962i −0.179578 + 0.852612i
\(487\) 8.57754 + 14.8567i 0.388685 + 0.673223i 0.992273 0.124074i \(-0.0395960\pi\)
−0.603588 + 0.797297i \(0.706263\pi\)
\(488\) −5.93412 33.6541i −0.268625 1.52345i
\(489\) 10.2093 7.86824i 0.461680 0.355814i
\(490\) 9.22378 + 16.3623i 0.416688 + 0.739172i
\(491\) −10.3608 28.4661i −0.467577 1.28466i −0.919672 0.392687i \(-0.871546\pi\)
0.452096 0.891970i \(-0.350677\pi\)
\(492\) −4.10662 3.74707i −0.185141 0.168931i
\(493\) 12.0439 + 14.3534i 0.542431 + 0.646445i
\(494\) 32.6361 + 18.8425i 1.46837 + 0.847763i
\(495\) 0.202047 0.203765i 0.00908136 0.00915854i
\(496\) −9.33877 5.39174i −0.419323 0.242096i
\(497\) 4.14742 15.1661i 0.186037 0.680292i
\(498\) 23.7997 12.4534i 1.06649 0.558051i
\(499\) −12.0166 + 4.37367i −0.537935 + 0.195792i −0.596678 0.802481i \(-0.703513\pi\)
0.0587428 + 0.998273i \(0.481291\pi\)
\(500\) 0.957571 5.43065i 0.0428239 0.242866i
\(501\) 43.4022 + 1.80298i 1.93907 + 0.0805513i
\(502\) −7.17059 8.54558i −0.320039 0.381408i
\(503\) −3.27645 + 5.67499i −0.146090 + 0.253035i −0.929779 0.368118i \(-0.880002\pi\)
0.783689 + 0.621153i \(0.213336\pi\)
\(504\) 0.0220611 24.2714i 0.000982679 1.08114i
\(505\) −5.56062 9.63127i −0.247444 0.428586i
\(506\) 0.00481065 0.0132172i 0.000213860 0.000587574i
\(507\) −2.26515 + 10.3207i −0.100599 + 0.458359i
\(508\) −0.886436 0.743808i −0.0393292 0.0330011i
\(509\) 9.37776 + 7.86888i 0.415662 + 0.348782i 0.826510 0.562922i \(-0.190323\pi\)
−0.410848 + 0.911704i \(0.634767\pi\)
\(510\) −8.02621 + 19.4936i −0.355407 + 0.863189i
\(511\) 4.39565 16.0738i 0.194452 0.711064i
\(512\) 24.6137i 1.08778i
\(513\) −33.5042 + 14.1277i −1.47924 + 0.623753i
\(514\) −12.8969 + 7.44602i −0.568857 + 0.328430i
\(515\) −3.56538 + 9.79580i −0.157109 + 0.431654i
\(516\) 7.51576 + 3.09452i 0.330863 + 0.136228i
\(517\) 0.280588 + 0.0494752i 0.0123402 + 0.00217592i
\(518\) 8.24677 11.6497i 0.362342 0.511858i
\(519\) 5.32437 1.69116i 0.233714 0.0742337i
\(520\) 27.3470 + 9.95348i 1.19924 + 0.436489i
\(521\) 19.5442 33.8516i 0.856249 1.48307i −0.0192325 0.999815i \(-0.506122\pi\)
0.875481 0.483252i \(-0.160544\pi\)
\(522\) −1.39525 15.2064i −0.0610684 0.665564i
\(523\) 3.66206 2.11429i 0.160131 0.0924514i −0.417793 0.908542i \(-0.637196\pi\)
0.577924 + 0.816091i \(0.303863\pi\)
\(524\) −2.11340 0.769215i −0.0923244 0.0336033i
\(525\) −0.549334 + 1.04751i −0.0239749 + 0.0457172i
\(526\) 6.71675 + 5.63602i 0.292864 + 0.245742i
\(527\) 5.96447 + 16.3872i 0.259816 + 0.713840i
\(528\) −0.189075 + 0.0989352i −0.00822843 + 0.00430560i
\(529\) 3.98218 + 22.5841i 0.173138 + 0.981916i
\(530\) −11.3507 19.6599i −0.493042 0.853973i
\(531\) −2.85795 31.1478i −0.124024 1.35170i
\(532\) 7.33022 5.07672i 0.317805 0.220104i
\(533\) −28.6835 + 5.05767i −1.24242 + 0.219072i
\(534\) 0.692385 + 0.151962i 0.0299624 + 0.00657603i
\(535\) 7.47625 8.90985i 0.323227 0.385207i
\(536\) −3.74800 10.2975i −0.161889 0.444786i
\(537\) 3.99225 9.69612i 0.172278 0.418419i
\(538\) −16.4403 19.5928i −0.708792 0.844706i
\(539\) 0.237562 0.195211i 0.0102325 0.00840835i
\(540\) −4.57734 + 2.95710i −0.196977 + 0.127253i
\(541\) −12.8174 + 22.2003i −0.551061 + 0.954466i 0.447137 + 0.894465i \(0.352444\pi\)
−0.998198 + 0.0600007i \(0.980890\pi\)
\(542\) −23.9555 8.71910i −1.02898 0.374517i
\(543\) 41.2993 5.52608i 1.77232 0.237147i
\(544\) −7.75455 + 9.24151i −0.332474 + 0.396227i
\(545\) 21.5182 7.83200i 0.921740 0.335486i
\(546\) −19.5335 15.0826i −0.835955 0.645478i
\(547\) 2.11377 + 11.9878i 0.0903783 + 0.512561i 0.996066 + 0.0886153i \(0.0282442\pi\)
−0.905688 + 0.423946i \(0.860645\pi\)
\(548\) 8.64984i 0.369503i
\(549\) 30.3247 14.2972i 1.29423 0.610188i
\(550\) 0.0139706 0.000595709
\(551\) 22.1432 18.5803i 0.943332 0.791549i
\(552\) −0.737055 + 1.16236i −0.0313712 + 0.0494735i
\(553\) 24.6353 11.3338i 1.04760 0.481964i
\(554\) 9.81722 11.6997i 0.417094 0.497073i
\(555\) −16.4984 0.685366i −0.700319 0.0290921i
\(556\) −6.88565 + 1.21413i −0.292016 + 0.0514904i
\(557\) 35.9805i 1.52454i −0.647258 0.762271i \(-0.724084\pi\)
0.647258 0.762271i \(-0.275916\pi\)
\(558\) 3.62029 13.7435i 0.153259 0.581808i
\(559\) 36.8787 21.2919i 1.55980 0.900552i
\(560\) −11.4852 + 11.3677i −0.485337 + 0.480373i
\(561\) 0.337078 + 0.0739804i 0.0142314 + 0.00312346i
\(562\) 0.996844 5.65338i 0.0420493 0.238474i
\(563\) −28.7430 + 10.4616i −1.21137 + 0.440904i −0.867180 0.497995i \(-0.834070\pi\)
−0.344194 + 0.938899i \(0.611848\pi\)
\(564\) −5.00324 2.06002i −0.210674 0.0867424i
\(565\) 32.9539 5.81065i 1.38638 0.244456i
\(566\) 24.5236 1.03080
\(567\) 22.9798 6.23933i 0.965061 0.262027i
\(568\) 18.1723 0.762493
\(569\) 25.1224 4.42976i 1.05319 0.185705i 0.379856 0.925046i \(-0.375974\pi\)
0.673332 + 0.739340i \(0.264863\pi\)
\(570\) 30.0730 + 12.3822i 1.25962 + 0.518631i
\(571\) 33.3922 12.1538i 1.39742 0.508619i 0.470008 0.882662i \(-0.344251\pi\)
0.927411 + 0.374043i \(0.122029\pi\)
\(572\) 0.0160548 0.0910512i 0.000671285 0.00380704i
\(573\) −11.0252 2.41976i −0.460584 0.101087i
\(574\) 5.73116 20.9574i 0.239214 0.874747i
\(575\) 0.0580872 0.0335367i 0.00242241 0.00139858i
\(576\) 25.7229 7.00924i 1.07179 0.292052i
\(577\) 12.7442i 0.530549i 0.964173 + 0.265275i \(0.0854626\pi\)
−0.964173 + 0.265275i \(0.914537\pi\)
\(578\) −4.33809 + 0.764922i −0.180441 + 0.0318166i
\(579\) −35.2735 1.46531i −1.46592 0.0608960i
\(580\) 2.78465 3.31862i 0.115626 0.137798i
\(581\) −27.1776 19.2389i −1.12752 0.798166i
\(582\) −3.98880 + 6.29049i −0.165341 + 0.260749i
\(583\) −0.284679 + 0.238874i −0.0117902 + 0.00989315i
\(584\) 19.2600 0.796983
\(585\) −2.36799 + 28.4525i −0.0979044 + 1.17637i
\(586\) 23.7776i 0.982242i
\(587\) −3.09078 17.5287i −0.127570 0.723487i −0.979748 0.200234i \(-0.935830\pi\)
0.852178 0.523252i \(-0.175281\pi\)
\(588\) −5.20128 + 2.65386i −0.214497 + 0.109443i
\(589\) 25.2808 9.20147i 1.04168 0.379140i
\(590\) −17.9830 + 21.4313i −0.740348 + 0.882313i
\(591\) 30.4631 4.07613i 1.25308 0.167670i
\(592\) 11.5391 + 4.19990i 0.474256 + 0.172615i
\(593\) −12.9163 + 22.3717i −0.530408 + 0.918694i 0.468962 + 0.883218i \(0.344628\pi\)
−0.999371 + 0.0354760i \(0.988705\pi\)
\(594\) −0.191321 0.206148i −0.00785001 0.00845836i
\(595\) 26.0451 2.14380i 1.06775 0.0878873i
\(596\) −5.77120 6.87785i −0.236398 0.281728i
\(597\) 7.32513 17.7908i 0.299797 0.728129i
\(598\) 0.478640 + 1.31505i 0.0195731 + 0.0537765i
\(599\) 14.7106 17.5314i 0.601057 0.716312i −0.376633 0.926362i \(-0.622918\pi\)
0.977691 + 0.210050i \(0.0673628\pi\)
\(600\) −1.33529 0.293065i −0.0545131 0.0119643i
\(601\) −11.3373 + 1.99907i −0.462457 + 0.0815436i −0.400022 0.916505i \(-0.630998\pi\)
−0.0624345 + 0.998049i \(0.519886\pi\)
\(602\) 2.60588 + 31.6590i 0.106208 + 1.29032i
\(603\) 8.78043 6.20366i 0.357567 0.252632i
\(604\) 1.54143 + 2.66984i 0.0627200 + 0.108634i
\(605\) −4.15875 23.5854i −0.169077 0.958884i
\(606\) −9.65782 + 5.05354i −0.392322 + 0.205286i
\(607\) 5.99762 + 16.4783i 0.243436 + 0.668834i 0.999891 + 0.0147883i \(0.00470745\pi\)
−0.756455 + 0.654046i \(0.773070\pi\)
\(608\) 14.2570 + 11.9631i 0.578198 + 0.485166i
\(609\) −15.9958 + 10.1225i −0.648182 + 0.410186i
\(610\) −28.1783 10.2560i −1.14090 0.415255i
\(611\) −24.5501 + 14.1740i −0.993192 + 0.573420i
\(612\) −5.95131 2.74454i −0.240567 0.110941i
\(613\) −16.7170 + 28.9547i −0.675193 + 1.16947i 0.301220 + 0.953555i \(0.402606\pi\)
−0.976412 + 0.215914i \(0.930727\pi\)
\(614\) 4.94540 + 1.79998i 0.199580 + 0.0726412i
\(615\) −23.9565 + 7.60921i −0.966019 + 0.306833i
\(616\) 0.290057 + 0.205331i 0.0116867 + 0.00827300i
\(617\) −0.596187 0.105124i −0.0240016 0.00423212i 0.161634 0.986851i \(-0.448323\pi\)
−0.185636 + 0.982619i \(0.559435\pi\)
\(618\) 9.44769 + 3.88996i 0.380042 + 0.156477i
\(619\) −5.14679 + 14.1407i −0.206867 + 0.568362i −0.999125 0.0418239i \(-0.986683\pi\)
0.792258 + 0.610186i \(0.208905\pi\)
\(620\) 3.49183 2.01601i 0.140235 0.0809649i
\(621\) −1.29034 0.397856i −0.0517796 0.0159654i
\(622\) 29.1031i 1.16693i
\(623\) −0.223068 0.849955i −0.00893704 0.0340527i
\(624\) 8.08360 19.6329i 0.323603 0.785946i
\(625\) −18.1115 15.1973i −0.724458 0.607893i
\(626\) −1.30364 1.09388i −0.0521040 0.0437204i
\(627\) 0.114131 0.520014i 0.00455794 0.0207674i
\(628\) −2.88551 + 7.92787i −0.115144 + 0.316356i
\(629\) −9.92930 17.1981i −0.395907 0.685731i
\(630\) −18.4349 10.6657i −0.734463 0.424933i
\(631\) −5.47505 + 9.48307i −0.217958 + 0.377515i −0.954184 0.299222i \(-0.903273\pi\)
0.736225 + 0.676736i \(0.236606\pi\)
\(632\) 20.1462 + 24.0093i 0.801372 + 0.955038i
\(633\) 1.15396 + 0.0479369i 0.0458657 + 0.00190532i
\(634\) −1.80582 + 10.2413i −0.0717183 + 0.406734i
\(635\) −4.91654 + 1.78947i −0.195107 + 0.0710131i
\(636\) 6.25301 3.27195i 0.247948 0.129741i
\(637\) −5.62187 + 30.0719i −0.222746 + 1.19149i
\(638\) 0.193630 + 0.111792i 0.00766587 + 0.00442589i
\(639\) 4.68710 + 17.2010i 0.185419 + 0.680461i
\(640\) −10.6201 6.13154i −0.419798 0.242370i
\(641\) 13.8457 + 16.5006i 0.546871 + 0.651735i 0.966713 0.255862i \(-0.0823592\pi\)
−0.419843 + 0.907597i \(0.637915\pi\)
\(642\) −8.42101 7.68372i −0.332351 0.303252i
\(643\) 14.9068 + 40.9562i 0.587868 + 1.61515i 0.774394 + 0.632703i \(0.218055\pi\)
−0.186527 + 0.982450i \(0.559723\pi\)
\(644\) 0.329709 + 0.0305545i 0.0129924 + 0.00120401i
\(645\) 29.1084 22.4337i 1.14614 0.883326i
\(646\) 6.79178 + 38.5181i 0.267219 + 1.51547i
\(647\) −4.16497 7.21394i −0.163742 0.283609i 0.772466 0.635056i \(-0.219023\pi\)
−0.936208 + 0.351447i \(0.885690\pi\)
\(648\) 13.9618 + 23.7168i 0.548473 + 0.931682i
\(649\) 0.396620 + 0.228989i 0.0155687 + 0.00898859i
\(650\) −1.06482 + 0.893487i −0.0417655 + 0.0350454i
\(651\) −17.2120 + 3.76123i −0.674593 + 0.147414i
\(652\) 0.622358 3.52957i 0.0243734 0.138228i
\(653\) 0.880334 + 0.155227i 0.0344501 + 0.00607449i 0.190847 0.981620i \(-0.438877\pi\)
−0.156397 + 0.987694i \(0.549988\pi\)
\(654\) −6.79427 21.3908i −0.265677 0.836445i
\(655\) −7.78988 + 6.53648i −0.304376 + 0.255402i
\(656\) 18.6924 0.729816
\(657\) 4.96763 + 18.2305i 0.193806 + 0.711240i
\(658\) −1.73473 21.0754i −0.0676270 0.821604i
\(659\) −8.57287 + 23.5538i −0.333951 + 0.917524i 0.653122 + 0.757253i \(0.273459\pi\)
−0.987073 + 0.160271i \(0.948763\pi\)
\(660\) 0.00331172 0.0797212i 0.000128909 0.00310314i
\(661\) −6.90665 1.21783i −0.268638 0.0473681i 0.0377066 0.999289i \(-0.487995\pi\)
−0.306344 + 0.951921i \(0.599106\pi\)
\(662\) −28.9014 5.09609i −1.12328 0.198065i
\(663\) −30.4229 + 15.9191i −1.18153 + 0.618245i
\(664\) 13.1627 36.1644i 0.510814 1.40345i
\(665\) −3.30727 40.1802i −0.128251 1.55812i
\(666\) −1.34232 + 16.1285i −0.0520137 + 0.624968i
\(667\) 1.07344 0.0415636
\(668\) 9.25283 7.76405i 0.358003 0.300400i
\(669\) 6.68538 + 1.46728i 0.258472 + 0.0567283i
\(670\) −9.46981 1.66978i −0.365851 0.0645093i
\(671\) −0.0852409 + 0.483425i −0.00329069 + 0.0186624i
\(672\) −8.20684 9.01076i −0.316586 0.347598i
\(673\) −15.9699 + 13.4003i −0.615593 + 0.516543i −0.896415 0.443216i \(-0.853837\pi\)
0.280822 + 0.959760i \(0.409393\pi\)
\(674\) 6.67196 + 3.85206i 0.256994 + 0.148376i
\(675\) −0.0670055 1.33951i −0.00257904 0.0515578i
\(676\) 1.46903 + 2.54443i 0.0565011 + 0.0978628i
\(677\) 1.52435 + 8.64503i 0.0585856 + 0.332255i 0.999987 0.00503198i \(-0.00160173\pi\)
−0.941402 + 0.337287i \(0.890491\pi\)
\(678\) −4.34963 32.5071i −0.167047 1.24843i
\(679\) 9.19414 + 0.852031i 0.352839 + 0.0326979i
\(680\) 10.3305 + 28.3828i 0.396156 + 1.08843i
\(681\) −1.46989 + 6.69727i −0.0563262 + 0.256640i
\(682\) 0.133761 + 0.159410i 0.00512196 + 0.00610411i
\(683\) −19.2647 11.1225i −0.737142 0.425589i 0.0838871 0.996475i \(-0.473267\pi\)
−0.821029 + 0.570886i \(0.806600\pi\)
\(684\) −4.23404 + 9.18117i −0.161893 + 0.351051i
\(685\) −33.8703 19.5550i −1.29412 0.747160i
\(686\) −18.4900 13.3764i −0.705950 0.510715i
\(687\) −0.448929 + 10.8068i −0.0171277 + 0.412306i
\(688\) −25.6812 + 9.34719i −0.979086 + 0.356358i
\(689\) 6.42062 36.4131i 0.244606 1.38723i
\(690\) 0.559935 + 1.07009i 0.0213164 + 0.0407377i
\(691\) −26.5759 31.6719i −1.01099 1.20486i −0.978683 0.205378i \(-0.934158\pi\)
−0.0323116 0.999478i \(-0.510287\pi\)
\(692\) 0.776683 1.34526i 0.0295251 0.0511389i
\(693\) −0.119542 + 0.327513i −0.00454104 + 0.0124412i
\(694\) 4.67271 + 8.09337i 0.177374 + 0.307220i
\(695\) −10.8125 + 29.7071i −0.410141 + 1.12685i
\(696\) −16.1618 14.7468i −0.612611 0.558975i
\(697\) −23.1569 19.4309i −0.877130 0.735999i
\(698\) −12.9477 10.8644i −0.490076 0.411222i
\(699\) −40.5019 + 5.41939i −1.53192 + 0.204980i
\(700\) 0.0834888 + 0.318117i 0.00315558 + 0.0120237i
\(701\) 2.77920i 0.104969i 0.998622 + 0.0524844i \(0.0167140\pi\)
−0.998622 + 0.0524844i \(0.983286\pi\)
\(702\) 27.7663 + 3.47635i 1.04797 + 0.131206i
\(703\) −26.5317 + 15.3181i −1.00066 + 0.577732i
\(704\) −0.133512 + 0.366822i −0.00503193 + 0.0138251i
\(705\) −19.3775 + 14.9341i −0.729798 + 0.562451i
\(706\) 6.97802 + 1.23041i 0.262621 + 0.0463072i
\(707\) 11.0286 + 7.80708i 0.414772 + 0.293616i
\(708\) −6.42472 5.86221i −0.241456 0.220315i
\(709\) −6.12927 2.23087i −0.230189 0.0837821i 0.224350 0.974509i \(-0.427974\pi\)
−0.454540 + 0.890726i \(0.650196\pi\)
\(710\) 7.97301 13.8097i 0.299222 0.518268i
\(711\) −17.5298 + 25.2619i −0.657417 + 0.947397i
\(712\) 0.879563 0.507816i 0.0329630 0.0190312i
\(713\) 0.938818 + 0.341702i 0.0351590 + 0.0127968i
\(714\) −1.03984 25.5924i −0.0389150 0.957772i
\(715\) −0.320235 0.268709i −0.0119761 0.0100492i
\(716\) −0.997216 2.73983i −0.0372677 0.102392i
\(717\) −1.14026 0.723041i −0.0425839 0.0270025i
\(718\) 5.76871 + 32.7160i 0.215286 + 1.22095i
\(719\) 12.9225 + 22.3824i 0.481928 + 0.834724i 0.999785 0.0207432i \(-0.00660324\pi\)
−0.517857 + 0.855467i \(0.673270\pi\)
\(720\) 4.66748 17.7189i 0.173947 0.660343i
\(721\) −1.03901 12.6230i −0.0386947 0.470103i
\(722\) 36.3657 6.41226i 1.35339 0.238640i
\(723\) −17.0292 + 18.6633i −0.633323 + 0.694094i
\(724\) 7.44729 8.87533i 0.276776 0.329849i
\(725\) 0.364662 + 1.00190i 0.0135432 + 0.0372097i
\(726\) −23.2657 + 3.11308i −0.863470 + 0.115537i
\(727\) 0.704657 + 0.839777i 0.0261343 + 0.0311456i 0.778953 0.627082i \(-0.215751\pi\)
−0.752819 + 0.658228i \(0.771306\pi\)
\(728\) −35.2395 + 2.90060i −1.30606 + 0.107503i
\(729\) −18.8480 + 19.3327i −0.698073 + 0.716026i
\(730\) 8.45022 14.6362i 0.312757 0.541710i
\(731\) 41.5314 + 15.1162i 1.53609 + 0.559092i
\(732\) 3.54921 8.62008i 0.131182 0.318607i
\(733\) −25.3107 + 30.1641i −0.934872 + 1.11414i 0.0583953 + 0.998294i \(0.481402\pi\)
−0.993267 + 0.115844i \(0.963043\pi\)
\(734\) −1.25423 + 0.456503i −0.0462945 + 0.0168498i
\(735\) −1.36697 + 26.3664i −0.0504214 + 0.972541i
\(736\) 0.120015 + 0.680637i 0.00442380 + 0.0250886i
\(737\) 0.157413i 0.00579837i
\(738\) 6.47692 + 23.7694i 0.238419 + 0.874964i
\(739\) 36.8444 1.35534 0.677672 0.735364i \(-0.262989\pi\)
0.677672 + 0.735364i \(0.262989\pi\)
\(740\) −3.51727 + 2.95134i −0.129297 + 0.108493i
\(741\) 24.5586 + 46.9338i 0.902181 + 1.72416i
\(742\) 22.5122 + 15.9363i 0.826448 + 0.585040i
\(743\) 24.6431 29.3685i 0.904066 1.07742i −0.0925892 0.995704i \(-0.529514\pi\)
0.996655 0.0817197i \(-0.0260412\pi\)
\(744\) −9.44070 18.0421i −0.346113 0.661456i
\(745\) −39.9789 + 7.04936i −1.46471 + 0.258269i
\(746\) 19.4924i 0.713669i
\(747\) 37.6263 + 3.13150i 1.37668 + 0.114575i
\(748\) 0.0831019 0.0479789i 0.00303851 0.00175428i
\(749\) −3.72764 + 13.6310i −0.136205 + 0.498068i
\(750\) −16.4716 + 18.0521i −0.601458 + 0.659171i
\(751\) −4.91683 + 27.8847i −0.179418 + 1.01753i 0.753503 + 0.657445i \(0.228363\pi\)
−0.932920 + 0.360083i \(0.882748\pi\)
\(752\) 17.0960 6.22242i 0.623426 0.226908i
\(753\) −2.07959 15.5419i −0.0757844 0.566377i
\(754\) −21.9078 + 3.86293i −0.797834 + 0.140680i
\(755\) 13.9391 0.507296
\(756\) 3.55074 5.58842i 0.129139 0.203249i
\(757\) 45.6205 1.65811 0.829053 0.559170i \(-0.188880\pi\)
0.829053 + 0.559170i \(0.188880\pi\)
\(758\) 43.2155 7.62006i 1.56966 0.276773i
\(759\) 0.0156596 0.0120688i 0.000568408 0.000438069i
\(760\) 43.7865 15.9370i 1.58830 0.578095i
\(761\) 2.23609 12.6815i 0.0810582 0.459704i −0.917080 0.398704i \(-0.869460\pi\)
0.998138 0.0609997i \(-0.0194289\pi\)
\(762\) 1.55237 + 4.88741i 0.0562365 + 0.177052i
\(763\) −19.7743 + 19.5720i −0.715876 + 0.708554i
\(764\) −2.71811 + 1.56930i −0.0983378 + 0.0567754i
\(765\) −24.2012 + 17.0989i −0.874996 + 0.618214i
\(766\) 40.2052i 1.45267i
\(767\) −44.8746 + 7.91261i