Properties

Label 189.2.ba.a.5.6
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.6
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27749 + 0.225257i) q^{2} +(1.73184 - 0.0269248i) q^{3} +(-0.298135 + 0.108512i) q^{4} +(0.194492 - 1.10302i) q^{5} +(-2.20635 + 0.424505i) q^{6} +(0.0727513 + 2.64475i) q^{7} +(2.60324 - 1.50298i) q^{8} +(2.99855 - 0.0932590i) q^{9} +O(q^{10})\) \(q+(-1.27749 + 0.225257i) q^{2} +(1.73184 - 0.0269248i) q^{3} +(-0.298135 + 0.108512i) q^{4} +(0.194492 - 1.10302i) q^{5} +(-2.20635 + 0.424505i) q^{6} +(0.0727513 + 2.64475i) q^{7} +(2.60324 - 1.50298i) q^{8} +(2.99855 - 0.0932590i) q^{9} +1.45291i q^{10} +(3.40359 - 0.600145i) q^{11} +(-0.513401 + 0.195953i) q^{12} +(-1.38711 + 1.65309i) q^{13} +(-0.688687 - 3.36227i) q^{14} +(0.307131 - 1.91549i) q^{15} +(-2.50098 + 2.09857i) q^{16} +3.10594 q^{17} +(-3.80962 + 0.794581i) q^{18} -2.29012i q^{19} +(0.0617062 + 0.349953i) q^{20} +(0.197203 + 4.57833i) q^{21} +(-4.21288 + 1.53336i) q^{22} +(-2.19188 + 2.61218i) q^{23} +(4.46793 - 2.67302i) q^{24} +(3.51964 + 1.28104i) q^{25} +(1.39965 - 2.42427i) q^{26} +(5.19050 - 0.242245i) q^{27} +(-0.308678 - 0.780599i) q^{28} +(-5.56147 - 6.62791i) q^{29} +(0.0391193 + 2.51621i) q^{30} +(2.76420 + 7.59457i) q^{31} +(-1.14212 + 1.36112i) q^{32} +(5.87832 - 1.13100i) q^{33} +(-3.96782 + 0.699634i) q^{34} +(2.93136 + 0.434137i) q^{35} +(-0.883854 + 0.353183i) q^{36} +(-3.24708 - 5.62411i) q^{37} +(0.515865 + 2.92562i) q^{38} +(-2.35775 + 2.90024i) q^{39} +(-1.15151 - 3.16374i) q^{40} +(-5.58386 - 4.68541i) q^{41} +(-1.28323 - 5.80437i) q^{42} +(-5.76293 - 2.09753i) q^{43} +(-0.949607 + 0.548256i) q^{44} +(0.480327 - 3.32559i) q^{45} +(2.21171 - 3.83079i) q^{46} +(-8.47795 - 3.08572i) q^{47} +(-4.27480 + 3.70174i) q^{48} +(-6.98941 + 0.384818i) q^{49} +(-4.78488 - 0.843704i) q^{50} +(5.37900 - 0.0836270i) q^{51} +(0.234165 - 0.643364i) q^{52} +(-1.56288 + 0.902330i) q^{53} +(-6.57627 + 1.47866i) q^{54} -3.87095i q^{55} +(4.16440 + 6.77558i) q^{56} +(-0.0616611 - 3.96613i) q^{57} +(8.59773 + 7.21435i) q^{58} +(-3.53619 - 2.96722i) q^{59} +(0.116288 + 0.604402i) q^{60} +(-1.65318 + 4.54209i) q^{61} +(-5.24198 - 9.07937i) q^{62} +(0.464795 + 7.92363i) q^{63} +(4.41725 - 7.65090i) q^{64} +(1.55361 + 1.85152i) q^{65} +(-7.25475 + 2.76897i) q^{66} +(0.408498 - 2.31671i) q^{67} +(-0.925991 + 0.337033i) q^{68} +(-3.72566 + 4.58291i) q^{69} +(-3.84258 + 0.105701i) q^{70} +(7.52345 + 4.34366i) q^{71} +(7.66578 - 4.74954i) q^{72} +(0.768958 + 0.443958i) q^{73} +(5.41499 + 6.45334i) q^{74} +(6.12995 + 2.12380i) q^{75} +(0.248506 + 0.682766i) q^{76} +(1.83485 + 8.95799i) q^{77} +(2.35871 - 4.23614i) q^{78} +(-2.34942 - 13.3242i) q^{79} +(1.82835 + 3.16679i) q^{80} +(8.98261 - 0.559284i) q^{81} +(8.18876 + 4.72778i) q^{82} +(0.171662 - 0.144041i) q^{83} +(-0.555599 - 1.34356i) q^{84} +(0.604081 - 3.42591i) q^{85} +(7.83459 + 1.38145i) q^{86} +(-9.81005 - 11.3287i) q^{87} +(7.95836 - 6.67786i) q^{88} -0.204873 q^{89} +(0.135497 + 4.35662i) q^{90} +(-4.47294 - 3.54830i) q^{91} +(0.370023 - 1.01663i) q^{92} +(4.99164 + 13.0782i) q^{93} +(11.5256 + 2.03228i) q^{94} +(-2.52605 - 0.445410i) q^{95} +(-1.94132 + 2.38800i) q^{96} +(-5.66132 + 15.5543i) q^{97} +(8.84225 - 2.06601i) q^{98} +(10.1499 - 2.11698i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27749 + 0.225257i −0.903325 + 0.159280i −0.605971 0.795487i \(-0.707215\pi\)
−0.297354 + 0.954767i \(0.596104\pi\)
\(3\) 1.73184 0.0269248i 0.999879 0.0155451i
\(4\) −0.298135 + 0.108512i −0.149068 + 0.0542562i
\(5\) 0.194492 1.10302i 0.0869794 0.493285i −0.909932 0.414756i \(-0.863867\pi\)
0.996912 0.0785284i \(-0.0250221\pi\)
\(6\) −2.20635 + 0.424505i −0.900739 + 0.173303i
\(7\) 0.0727513 + 2.64475i 0.0274974 + 0.999622i
\(8\) 2.60324 1.50298i 0.920385 0.531384i
\(9\) 2.99855 0.0932590i 0.999517 0.0310863i
\(10\) 1.45291i 0.459450i
\(11\) 3.40359 0.600145i 1.02622 0.180950i 0.364895 0.931049i \(-0.381105\pi\)
0.661326 + 0.750098i \(0.269994\pi\)
\(12\) −0.513401 + 0.195953i −0.148206 + 0.0565669i
\(13\) −1.38711 + 1.65309i −0.384715 + 0.458486i −0.923297 0.384088i \(-0.874516\pi\)
0.538581 + 0.842573i \(0.318960\pi\)
\(14\) −0.688687 3.36227i −0.184059 0.898603i
\(15\) 0.307131 1.91549i 0.0793008 0.494577i
\(16\) −2.50098 + 2.09857i −0.625246 + 0.524644i
\(17\) 3.10594 0.753302 0.376651 0.926355i \(-0.377076\pi\)
0.376651 + 0.926355i \(0.377076\pi\)
\(18\) −3.80962 + 0.794581i −0.897937 + 0.187285i
\(19\) 2.29012i 0.525390i −0.964879 0.262695i \(-0.915389\pi\)
0.964879 0.262695i \(-0.0846113\pi\)
\(20\) 0.0617062 + 0.349953i 0.0137979 + 0.0782520i
\(21\) 0.197203 + 4.57833i 0.0430333 + 0.999074i
\(22\) −4.21288 + 1.53336i −0.898189 + 0.326914i
\(23\) −2.19188 + 2.61218i −0.457039 + 0.544678i −0.944519 0.328456i \(-0.893472\pi\)
0.487480 + 0.873134i \(0.337916\pi\)
\(24\) 4.46793 2.67302i 0.912013 0.545628i
\(25\) 3.51964 + 1.28104i 0.703928 + 0.256209i
\(26\) 1.39965 2.42427i 0.274495 0.475439i
\(27\) 5.19050 0.242245i 0.998913 0.0466201i
\(28\) −0.308678 0.780599i −0.0583346 0.147519i
\(29\) −5.56147 6.62791i −1.03274 1.23077i −0.972577 0.232583i \(-0.925282\pi\)
−0.0601632 0.998189i \(-0.519162\pi\)
\(30\) 0.0391193 + 2.51621i 0.00714218 + 0.459395i
\(31\) 2.76420 + 7.59457i 0.496465 + 1.36403i 0.894669 + 0.446729i \(0.147411\pi\)
−0.398204 + 0.917297i \(0.630367\pi\)
\(32\) −1.14212 + 1.36112i −0.201900 + 0.240615i
\(33\) 5.87832 1.13100i 1.02328 0.196881i
\(34\) −3.96782 + 0.699634i −0.680476 + 0.119986i
\(35\) 2.93136 + 0.434137i 0.495490 + 0.0733825i
\(36\) −0.883854 + 0.353183i −0.147309 + 0.0588639i
\(37\) −3.24708 5.62411i −0.533817 0.924598i −0.999220 0.0394987i \(-0.987424\pi\)
0.465403 0.885099i \(-0.345909\pi\)
\(38\) 0.515865 + 2.92562i 0.0836844 + 0.474598i
\(39\) −2.35775 + 2.90024i −0.377542 + 0.464411i
\(40\) −1.15151 3.16374i −0.182069 0.500231i
\(41\) −5.58386 4.68541i −0.872052 0.731738i 0.0924774 0.995715i \(-0.470521\pi\)
−0.964529 + 0.263976i \(0.914966\pi\)
\(42\) −1.28323 5.80437i −0.198006 0.895633i
\(43\) −5.76293 2.09753i −0.878838 0.319871i −0.137097 0.990558i \(-0.543777\pi\)
−0.741741 + 0.670687i \(0.766000\pi\)
\(44\) −0.949607 + 0.548256i −0.143159 + 0.0826527i
\(45\) 0.480327 3.32559i 0.0716030 0.495750i
\(46\) 2.21171 3.83079i 0.326098 0.564819i
\(47\) −8.47795 3.08572i −1.23664 0.450099i −0.360771 0.932654i \(-0.617486\pi\)
−0.875865 + 0.482556i \(0.839709\pi\)
\(48\) −4.27480 + 3.70174i −0.617015 + 0.534300i
\(49\) −6.98941 + 0.384818i −0.998488 + 0.0549740i
\(50\) −4.78488 0.843704i −0.676685 0.119318i
\(51\) 5.37900 0.0836270i 0.753211 0.0117101i
\(52\) 0.234165 0.643364i 0.0324729 0.0892185i
\(53\) −1.56288 + 0.902330i −0.214678 + 0.123945i −0.603484 0.797375i \(-0.706221\pi\)
0.388805 + 0.921320i \(0.372888\pi\)
\(54\) −6.57627 + 1.47866i −0.894917 + 0.201220i
\(55\) 3.87095i 0.521958i
\(56\) 4.16440 + 6.77558i 0.556492 + 0.905425i
\(57\) −0.0616611 3.96613i −0.00816722 0.525327i
\(58\) 8.59773 + 7.21435i 1.12894 + 0.947291i
\(59\) −3.53619 2.96722i −0.460373 0.386299i 0.382895 0.923792i \(-0.374927\pi\)
−0.843268 + 0.537493i \(0.819372\pi\)
\(60\) 0.116288 + 0.604402i 0.0150127 + 0.0780280i
\(61\) −1.65318 + 4.54209i −0.211669 + 0.581554i −0.999406 0.0344564i \(-0.989030\pi\)
0.787738 + 0.616011i \(0.211252\pi\)
\(62\) −5.24198 9.07937i −0.665732 1.15308i
\(63\) 0.464795 + 7.92363i 0.0585587 + 0.998284i
\(64\) 4.41725 7.65090i 0.552156 0.956363i
\(65\) 1.55361 + 1.85152i 0.192702 + 0.229653i
\(66\) −7.25475 + 2.76897i −0.892998 + 0.340837i
\(67\) 0.408498 2.31671i 0.0499060 0.283031i −0.949634 0.313361i \(-0.898545\pi\)
0.999540 + 0.0303304i \(0.00965596\pi\)
\(68\) −0.925991 + 0.337033i −0.112293 + 0.0408713i
\(69\) −3.72566 + 4.58291i −0.448517 + 0.551717i
\(70\) −3.84258 + 0.105701i −0.459277 + 0.0126337i
\(71\) 7.52345 + 4.34366i 0.892869 + 0.515498i 0.874880 0.484340i \(-0.160940\pi\)
0.0179890 + 0.999838i \(0.494274\pi\)
\(72\) 7.66578 4.74954i 0.903421 0.559739i
\(73\) 0.768958 + 0.443958i 0.0899998 + 0.0519614i 0.544324 0.838875i \(-0.316786\pi\)
−0.454325 + 0.890836i \(0.650119\pi\)
\(74\) 5.41499 + 6.45334i 0.629480 + 0.750185i
\(75\) 6.12995 + 2.12380i 0.707826 + 0.245235i
\(76\) 0.248506 + 0.682766i 0.0285056 + 0.0783186i
\(77\) 1.83485 + 8.95799i 0.209100 + 1.02086i
\(78\) 2.35871 4.23614i 0.267071 0.479649i
\(79\) −2.34942 13.3242i −0.264330 1.49909i −0.770936 0.636913i \(-0.780211\pi\)
0.506606 0.862178i \(-0.330900\pi\)
\(80\) 1.82835 + 3.16679i 0.204415 + 0.354058i
\(81\) 8.98261 0.559284i 0.998067 0.0621427i
\(82\) 8.18876 + 4.72778i 0.904297 + 0.522096i
\(83\) 0.171662 0.144041i 0.0188423 0.0158106i −0.633318 0.773892i \(-0.718307\pi\)
0.652160 + 0.758081i \(0.273863\pi\)
\(84\) −0.555599 1.34356i −0.0606208 0.146595i
\(85\) 0.604081 3.42591i 0.0655218 0.371592i
\(86\) 7.83459 + 1.38145i 0.844825 + 0.148966i
\(87\) −9.81005 11.3287i −1.05175 1.21457i
\(88\) 7.95836 6.67786i 0.848364 0.711862i
\(89\) −0.204873 −0.0217165 −0.0108583 0.999941i \(-0.503456\pi\)
−0.0108583 + 0.999941i \(0.503456\pi\)
\(90\) 0.135497 + 4.35662i 0.0142826 + 0.459228i
\(91\) −4.47294 3.54830i −0.468891 0.371963i
\(92\) 0.370023 1.01663i 0.0385776 0.105991i
\(93\) 4.99164 + 13.0782i 0.517609 + 1.35614i
\(94\) 11.5256 + 2.03228i 1.18878 + 0.209613i
\(95\) −2.52605 0.445410i −0.259167 0.0456981i
\(96\) −1.94132 + 2.38800i −0.198135 + 0.243725i
\(97\) −5.66132 + 15.5543i −0.574820 + 1.57930i 0.221974 + 0.975053i \(0.428750\pi\)
−0.796794 + 0.604252i \(0.793472\pi\)
\(98\) 8.84225 2.06601i 0.893202 0.208699i
\(99\) 10.1499 2.11698i 1.02010 0.212764i
\(100\) −1.18834 −0.118834
\(101\) −7.43666 + 6.24010i −0.739975 + 0.620913i −0.932831 0.360314i \(-0.882670\pi\)
0.192856 + 0.981227i \(0.438225\pi\)
\(102\) −6.85280 + 1.31849i −0.678529 + 0.130550i
\(103\) 18.2550 + 3.21885i 1.79872 + 0.317163i 0.970110 0.242665i \(-0.0780216\pi\)
0.828609 + 0.559828i \(0.189133\pi\)
\(104\) −1.12641 + 6.38820i −0.110454 + 0.626415i
\(105\) 5.08834 + 0.672930i 0.496571 + 0.0656712i
\(106\) 1.79332 1.50477i 0.174182 0.146156i
\(107\) 8.36447 + 4.82923i 0.808624 + 0.466859i 0.846478 0.532424i \(-0.178719\pi\)
−0.0378540 + 0.999283i \(0.512052\pi\)
\(108\) −1.52118 + 0.635455i −0.146376 + 0.0611467i
\(109\) −1.81292 3.14007i −0.173646 0.300764i 0.766046 0.642786i \(-0.222222\pi\)
−0.939692 + 0.342022i \(0.888888\pi\)
\(110\) 0.871956 + 4.94511i 0.0831378 + 0.471498i
\(111\) −5.77486 9.65264i −0.548125 0.916188i
\(112\) −5.73216 6.46181i −0.541638 0.610583i
\(113\) 0.232529 + 0.638868i 0.0218745 + 0.0600996i 0.950149 0.311795i \(-0.100930\pi\)
−0.928275 + 0.371895i \(0.878708\pi\)
\(114\) 0.972168 + 5.05282i 0.0910519 + 0.473240i
\(115\) 2.45498 + 2.92574i 0.228928 + 0.272826i
\(116\) 2.37728 + 1.37252i 0.220725 + 0.127436i
\(117\) −4.00515 + 5.08625i −0.370277 + 0.470224i
\(118\) 5.18585 + 2.99405i 0.477396 + 0.275625i
\(119\) 0.225961 + 8.21445i 0.0207138 + 0.753017i
\(120\) −2.07941 5.44809i −0.189823 0.497341i
\(121\) 0.887634 0.323072i 0.0806940 0.0293702i
\(122\) 1.08880 6.17488i 0.0985751 0.559047i
\(123\) −9.79651 7.96405i −0.883321 0.718094i
\(124\) −1.64821 1.96426i −0.148014 0.176396i
\(125\) 4.89764 8.48297i 0.438059 0.758740i
\(126\) −2.37862 10.0177i −0.211905 0.892447i
\(127\) 10.6145 + 18.3849i 0.941888 + 1.63140i 0.761865 + 0.647736i \(0.224284\pi\)
0.180024 + 0.983662i \(0.442383\pi\)
\(128\) −2.70418 + 7.42966i −0.239018 + 0.656696i
\(129\) −10.0370 3.47743i −0.883705 0.306171i
\(130\) −2.40180 2.01535i −0.210651 0.176758i
\(131\) −5.73871 4.81535i −0.501393 0.420719i 0.356695 0.934221i \(-0.383903\pi\)
−0.858088 + 0.513502i \(0.828348\pi\)
\(132\) −1.62981 + 0.975060i −0.141856 + 0.0848681i
\(133\) 6.05680 0.166609i 0.525191 0.0144469i
\(134\) 3.05160i 0.263618i
\(135\) 0.742310 5.77234i 0.0638879 0.496804i
\(136\) 8.08552 4.66818i 0.693328 0.400293i
\(137\) 2.84591 7.81907i 0.243142 0.668028i −0.756755 0.653699i \(-0.773216\pi\)
0.999897 0.0143297i \(-0.00456143\pi\)
\(138\) 3.72718 6.69386i 0.317279 0.569820i
\(139\) −16.6292 2.93217i −1.41047 0.248704i −0.584031 0.811732i \(-0.698525\pi\)
−0.826438 + 0.563028i \(0.809636\pi\)
\(140\) −0.921050 + 0.188657i −0.0778430 + 0.0159444i
\(141\) −14.7656 5.11571i −1.24348 0.430821i
\(142\) −10.5896 3.85430i −0.888659 0.323445i
\(143\) −3.72906 + 6.45892i −0.311840 + 0.540122i
\(144\) −7.30361 + 6.52592i −0.608635 + 0.543827i
\(145\) −8.39237 + 4.84533i −0.696948 + 0.402383i
\(146\) −1.08234 0.393941i −0.0895754 0.0326028i
\(147\) −12.0942 + 0.854633i −0.997513 + 0.0704889i
\(148\) 1.57835 + 1.32440i 0.129740 + 0.108865i
\(149\) −7.46545 20.5112i −0.611593 1.68034i −0.726674 0.686983i \(-0.758935\pi\)
0.115080 0.993356i \(-0.463288\pi\)
\(150\) −8.30938 1.33233i −0.678458 0.108784i
\(151\) −2.64937 15.0253i −0.215603 1.22274i −0.879857 0.475238i \(-0.842362\pi\)
0.664255 0.747506i \(-0.268749\pi\)
\(152\) −3.44201 5.96174i −0.279184 0.483561i
\(153\) 9.31333 0.289657i 0.752938 0.0234174i
\(154\) −4.36185 11.0305i −0.351488 0.888860i
\(155\) 8.91457 1.57188i 0.716036 0.126256i
\(156\) 0.388215 1.12051i 0.0310821 0.0897125i
\(157\) −4.12579 + 4.91693i −0.329274 + 0.392413i −0.905128 0.425139i \(-0.860225\pi\)
0.575854 + 0.817553i \(0.304670\pi\)
\(158\) 6.00273 + 16.4924i 0.477552 + 1.31206i
\(159\) −2.68237 + 1.60477i −0.212726 + 0.127267i
\(160\) 1.27921 + 1.52451i 0.101131 + 0.120523i
\(161\) −7.06804 5.60695i −0.557040 0.441889i
\(162\) −11.3492 + 2.73787i −0.891681 + 0.215108i
\(163\) 4.61932 8.00090i 0.361813 0.626679i −0.626446 0.779465i \(-0.715491\pi\)
0.988259 + 0.152786i \(0.0488245\pi\)
\(164\) 2.17317 + 0.790969i 0.169696 + 0.0617643i
\(165\) −0.104225 6.70387i −0.00811387 0.521895i
\(166\) −0.186851 + 0.222680i −0.0145024 + 0.0172833i
\(167\) 18.6355 6.78276i 1.44206 0.524866i 0.501696 0.865044i \(-0.332710\pi\)
0.940361 + 0.340178i \(0.110487\pi\)
\(168\) 7.39452 + 11.6221i 0.570499 + 0.896665i
\(169\) 1.44878 + 8.21645i 0.111445 + 0.632035i
\(170\) 4.51266i 0.346105i
\(171\) −0.213575 6.86705i −0.0163325 0.525136i
\(172\) 1.94574 0.148361
\(173\) −15.2196 + 12.7708i −1.15713 + 0.970944i −0.999862 0.0166126i \(-0.994712\pi\)
−0.157264 + 0.987557i \(0.550267\pi\)
\(174\) 15.0841 + 12.2626i 1.14353 + 0.929627i
\(175\) −3.13198 + 9.40177i −0.236756 + 0.710707i
\(176\) −7.25288 + 8.64364i −0.546706 + 0.651539i
\(177\) −6.20402 5.04354i −0.466323 0.379096i
\(178\) 0.261725 0.0461491i 0.0196171 0.00345902i
\(179\) 3.20921i 0.239868i 0.992782 + 0.119934i \(0.0382683\pi\)
−0.992782 + 0.119934i \(0.961732\pi\)
\(180\) 0.217666 + 1.04360i 0.0162238 + 0.0777852i
\(181\) −10.2749 + 5.93220i −0.763726 + 0.440937i −0.830632 0.556822i \(-0.812021\pi\)
0.0669061 + 0.997759i \(0.478687\pi\)
\(182\) 6.51342 + 3.52537i 0.482807 + 0.261318i
\(183\) −2.74076 + 7.91068i −0.202603 + 0.584775i
\(184\) −1.77993 + 10.0945i −0.131218 + 0.744177i
\(185\) −6.83503 + 2.48775i −0.502521 + 0.182903i
\(186\) −9.32273 15.5829i −0.683576 1.14259i
\(187\) 10.5714 1.86402i 0.773054 0.136310i
\(188\) 2.86241 0.208763
\(189\) 1.01829 + 13.7100i 0.0740700 + 0.997253i
\(190\) 3.32734 0.241391
\(191\) 11.0750 1.95283i 0.801362 0.141302i 0.242055 0.970262i \(-0.422178\pi\)
0.559307 + 0.828961i \(0.311067\pi\)
\(192\) 7.44398 13.3691i 0.537223 0.964831i
\(193\) 18.0902 6.58428i 1.30216 0.473947i 0.404459 0.914556i \(-0.367460\pi\)
0.897699 + 0.440609i \(0.145238\pi\)
\(194\) 3.72858 21.1458i 0.267696 1.51818i
\(195\) 2.74046 + 3.16471i 0.196248 + 0.226630i
\(196\) 2.04203 0.873165i 0.145859 0.0623690i
\(197\) −6.15694 + 3.55471i −0.438664 + 0.253263i −0.703031 0.711160i \(-0.748170\pi\)
0.264367 + 0.964422i \(0.414837\pi\)
\(198\) −12.4895 + 4.99075i −0.887592 + 0.354677i
\(199\) 5.58860i 0.396165i 0.980185 + 0.198083i \(0.0634714\pi\)
−0.980185 + 0.198083i \(0.936529\pi\)
\(200\) 11.0879 1.95509i 0.784030 0.138246i
\(201\) 0.645077 4.02317i 0.0455002 0.283773i
\(202\) 8.09466 9.64684i 0.569539 0.678750i
\(203\) 17.1246 15.1909i 1.20191 1.06619i
\(204\) −1.59460 + 0.608620i −0.111644 + 0.0426119i
\(205\) −6.25411 + 5.24782i −0.436806 + 0.366524i
\(206\) −24.0457 −1.67535
\(207\) −6.32886 + 8.03718i −0.439886 + 0.558623i
\(208\) 7.04532i 0.488505i
\(209\) −1.37440 7.79464i −0.0950696 0.539166i
\(210\) −6.65190 + 0.286518i −0.459025 + 0.0197716i
\(211\) 14.8632 5.40977i 1.02323 0.372424i 0.224729 0.974421i \(-0.427850\pi\)
0.798498 + 0.601997i \(0.205628\pi\)
\(212\) 0.368036 0.438608i 0.0252768 0.0301237i
\(213\) 13.1464 + 7.31997i 0.900774 + 0.501556i
\(214\) −11.7734 4.28516i −0.804811 0.292927i
\(215\) −3.43446 + 5.94866i −0.234228 + 0.405695i
\(216\) 13.1480 8.43186i 0.894611 0.573715i
\(217\) −19.8847 + 7.86313i −1.34986 + 0.533784i
\(218\) 3.02332 + 3.60305i 0.204765 + 0.244029i
\(219\) 1.34367 + 0.748161i 0.0907966 + 0.0505561i
\(220\) 0.420045 + 1.15407i 0.0283195 + 0.0778071i
\(221\) −4.30829 + 5.13442i −0.289807 + 0.345378i
\(222\) 9.55166 + 11.0304i 0.641066 + 0.740309i
\(223\) 8.98448 1.58421i 0.601645 0.106086i 0.135474 0.990781i \(-0.456744\pi\)
0.466171 + 0.884695i \(0.345633\pi\)
\(224\) −3.68293 2.92160i −0.246076 0.195207i
\(225\) 10.6733 + 3.51304i 0.711552 + 0.234202i
\(226\) −0.440964 0.763771i −0.0293325 0.0508053i
\(227\) 0.0310321 + 0.175992i 0.00205967 + 0.0116810i 0.985820 0.167805i \(-0.0536678\pi\)
−0.983761 + 0.179486i \(0.942557\pi\)
\(228\) 0.448757 + 1.17575i 0.0297197 + 0.0778660i
\(229\) −1.14080 3.13431i −0.0753860 0.207121i 0.896276 0.443497i \(-0.146262\pi\)
−0.971662 + 0.236376i \(0.924040\pi\)
\(230\) −3.79527 3.18461i −0.250253 0.209987i
\(231\) 3.41886 + 15.4644i 0.224944 + 1.01748i
\(232\) −24.4395 8.89524i −1.60453 0.584001i
\(233\) −21.5975 + 12.4693i −1.41490 + 0.816891i −0.995844 0.0910706i \(-0.970971\pi\)
−0.419053 + 0.907962i \(0.637638\pi\)
\(234\) 3.97085 7.39983i 0.259583 0.483742i
\(235\) −5.05250 + 8.75119i −0.329589 + 0.570865i
\(236\) 1.37624 + 0.500912i 0.0895858 + 0.0326066i
\(237\) −4.42757 23.0122i −0.287602 1.49480i
\(238\) −2.13902 10.4430i −0.138652 0.676920i
\(239\) 0.740457 + 0.130563i 0.0478962 + 0.00844539i 0.197545 0.980294i \(-0.436703\pi\)
−0.149649 + 0.988739i \(0.547814\pi\)
\(240\) 3.25167 + 5.43515i 0.209894 + 0.350837i
\(241\) −1.14049 + 3.13348i −0.0734657 + 0.201845i −0.970990 0.239119i \(-0.923141\pi\)
0.897525 + 0.440965i \(0.145364\pi\)
\(242\) −1.06117 + 0.612668i −0.0682148 + 0.0393838i
\(243\) 15.5414 1.21045i 0.996981 0.0776502i
\(244\) 1.53355i 0.0981752i
\(245\) −0.934923 + 7.78430i −0.0597301 + 0.497321i
\(246\) 14.3089 + 7.96729i 0.912304 + 0.507976i
\(247\) 3.78579 + 3.17665i 0.240884 + 0.202126i
\(248\) 18.6104 + 15.6160i 1.18176 + 0.991615i
\(249\) 0.293413 0.254079i 0.0185943 0.0161016i
\(250\) −4.34586 + 11.9402i −0.274857 + 0.755162i
\(251\) −7.22428 12.5128i −0.455993 0.789803i 0.542752 0.839893i \(-0.317382\pi\)
−0.998745 + 0.0500905i \(0.984049\pi\)
\(252\) −0.998384 2.31188i −0.0628923 0.145635i
\(253\) −5.89258 + 10.2063i −0.370464 + 0.641662i
\(254\) −17.7013 21.0956i −1.11068 1.32366i
\(255\) 0.953930 5.94940i 0.0597374 0.372566i
\(256\) −1.28720 + 7.30009i −0.0804501 + 0.456255i
\(257\) −9.45698 + 3.44206i −0.589910 + 0.214710i −0.619690 0.784847i \(-0.712742\pi\)
0.0297799 + 0.999556i \(0.490519\pi\)
\(258\) 13.6055 + 2.18151i 0.847039 + 0.135815i
\(259\) 14.6381 8.99688i 0.909569 0.559039i
\(260\) −0.664099 0.383418i −0.0411857 0.0237786i
\(261\) −17.2945 19.3555i −1.07050 1.19807i
\(262\) 8.41585 + 4.85889i 0.519933 + 0.300184i
\(263\) −0.936984 1.11665i −0.0577769 0.0688558i 0.736382 0.676566i \(-0.236533\pi\)
−0.794159 + 0.607710i \(0.792088\pi\)
\(264\) 13.6028 11.7793i 0.837196 0.724964i
\(265\) 0.691319 + 1.89938i 0.0424674 + 0.116678i
\(266\) −7.70000 + 1.57718i −0.472117 + 0.0967029i
\(267\) −0.354808 + 0.00551618i −0.0217139 + 0.000337585i
\(268\) 0.129604 + 0.735020i 0.00791681 + 0.0448985i
\(269\) −1.24773 2.16113i −0.0760753 0.131766i 0.825478 0.564434i \(-0.190906\pi\)
−0.901553 + 0.432668i \(0.857572\pi\)
\(270\) 0.351961 + 7.54133i 0.0214196 + 0.458951i
\(271\) −25.2165 14.5588i −1.53179 0.884382i −0.999279 0.0379619i \(-0.987913\pi\)
−0.532516 0.846420i \(-0.678753\pi\)
\(272\) −7.76792 + 6.51806i −0.470999 + 0.395215i
\(273\) −7.84195 6.02465i −0.474617 0.364629i
\(274\) −1.87433 + 10.6299i −0.113233 + 0.642174i
\(275\) 12.7482 + 2.24786i 0.768747 + 0.135551i
\(276\) 0.613449 1.77061i 0.0369253 0.106578i
\(277\) 5.55286 4.65940i 0.333639 0.279956i −0.460542 0.887638i \(-0.652345\pi\)
0.794181 + 0.607682i \(0.207900\pi\)
\(278\) 21.9042 1.31372
\(279\) 8.99685 + 22.5149i 0.538627 + 1.34793i
\(280\) 8.28353 3.27562i 0.495036 0.195756i
\(281\) 5.95356 16.3573i 0.355160 0.975794i −0.625526 0.780203i \(-0.715116\pi\)
0.980686 0.195590i \(-0.0626623\pi\)
\(282\) 20.0153 + 3.20926i 1.19189 + 0.191108i
\(283\) −17.4136 3.07048i −1.03513 0.182521i −0.369831 0.929099i \(-0.620584\pi\)
−0.665298 + 0.746578i \(0.731696\pi\)
\(284\) −2.71434 0.478612i −0.161067 0.0284004i
\(285\) −4.38671 0.703367i −0.259846 0.0416638i
\(286\) 3.30894 9.09123i 0.195661 0.537576i
\(287\) 11.9855 15.1088i 0.707482 0.891843i
\(288\) −3.29776 + 4.18791i −0.194323 + 0.246775i
\(289\) −7.35311 −0.432536
\(290\) 9.62975 8.08032i 0.565478 0.474493i
\(291\) −9.38571 + 27.0901i −0.550200 + 1.58805i
\(292\) −0.277428 0.0489181i −0.0162353 0.00286272i
\(293\) −3.33188 + 18.8960i −0.194650 + 1.10392i 0.718265 + 0.695769i \(0.244936\pi\)
−0.912916 + 0.408148i \(0.866175\pi\)
\(294\) 15.2578 3.81609i 0.889850 0.222559i
\(295\) −3.96066 + 3.32339i −0.230599 + 0.193495i
\(296\) −16.9059 9.76061i −0.982634 0.567324i
\(297\) 17.5210 3.93956i 1.01667 0.228596i
\(298\) 14.1573 + 24.5212i 0.820113 + 1.42048i
\(299\) −1.27780 7.24678i −0.0738972 0.419092i
\(300\) −2.05801 + 0.0319958i −0.118819 + 0.00184728i
\(301\) 5.12820 15.3941i 0.295584 0.887302i
\(302\) 6.76911 + 18.5980i 0.389519 + 1.07019i
\(303\) −12.7111 + 11.0071i −0.730234 + 0.632341i
\(304\) 4.80599 + 5.72756i 0.275643 + 0.328498i
\(305\) 4.68847 + 2.70689i 0.268461 + 0.154996i
\(306\) −11.8325 + 2.46792i −0.676417 + 0.141082i
\(307\) 21.4370 + 12.3766i 1.22347 + 0.706372i 0.965657 0.259822i \(-0.0836638\pi\)
0.257816 + 0.966194i \(0.416997\pi\)
\(308\) −1.51909 2.47159i −0.0865579 0.140832i
\(309\) 31.7014 + 5.08303i 1.80343 + 0.289163i
\(310\) −11.0342 + 4.01613i −0.626702 + 0.228101i
\(311\) 0.297483 1.68711i 0.0168687 0.0956672i −0.975211 0.221277i \(-0.928978\pi\)
0.992080 + 0.125610i \(0.0400887\pi\)
\(312\) −1.77877 + 11.0937i −0.100703 + 0.628056i
\(313\) 11.6665 + 13.9036i 0.659432 + 0.785880i 0.987304 0.158842i \(-0.0507760\pi\)
−0.327872 + 0.944722i \(0.606332\pi\)
\(314\) 4.16310 7.21071i 0.234937 0.406924i
\(315\) 8.83031 + 1.02840i 0.497532 + 0.0579440i
\(316\) 2.14628 + 3.71747i 0.120738 + 0.209124i
\(317\) 9.12297 25.0651i 0.512397 1.40780i −0.366335 0.930483i \(-0.619388\pi\)
0.878732 0.477316i \(-0.158390\pi\)
\(318\) 3.06522 2.65431i 0.171889 0.148846i
\(319\) −22.9067 19.2210i −1.28253 1.07617i
\(320\) −7.57997 6.36035i −0.423733 0.355554i
\(321\) 14.6160 + 8.13825i 0.815783 + 0.454233i
\(322\) 10.2924 + 5.57072i 0.573572 + 0.310444i
\(323\) 7.11299i 0.395777i
\(324\) −2.61734 + 1.14147i −0.145408 + 0.0634148i
\(325\) −6.99982 + 4.04135i −0.388280 + 0.224174i
\(326\) −4.09890 + 11.2616i −0.227017 + 0.623724i
\(327\) −3.22424 5.38929i −0.178301 0.298029i
\(328\) −21.5782 3.80482i −1.19146 0.210086i
\(329\) 7.54419 22.6466i 0.415924 1.24855i
\(330\) 1.64324 + 8.54067i 0.0904572 + 0.470148i
\(331\) −0.198398 0.0722111i −0.0109050 0.00396908i 0.336562 0.941661i \(-0.390736\pi\)
−0.347467 + 0.937692i \(0.612958\pi\)
\(332\) −0.0355482 + 0.0615713i −0.00195096 + 0.00337916i
\(333\) −10.2610 16.5614i −0.562301 0.907556i
\(334\) −22.2788 + 12.8627i −1.21904 + 0.703816i
\(335\) −2.47592 0.901162i −0.135274 0.0492358i
\(336\) −10.1012 11.0365i −0.551064 0.602090i
\(337\) −10.4352 8.75621i −0.568444 0.476981i 0.312685 0.949857i \(-0.398771\pi\)
−0.881129 + 0.472876i \(0.843216\pi\)
\(338\) −3.70162 10.1701i −0.201342 0.553182i
\(339\) 0.419905 + 1.10016i 0.0228061 + 0.0597523i
\(340\) 0.191656 + 1.08694i 0.0103940 + 0.0589474i
\(341\) 13.9660 + 24.1899i 0.756304 + 1.30996i
\(342\) 1.81969 + 8.72450i 0.0983975 + 0.471767i
\(343\) −1.52624 18.4573i −0.0824090 0.996599i
\(344\) −18.1548 + 3.20119i −0.978844 + 0.172597i
\(345\) 4.33042 + 5.00081i 0.233142 + 0.269235i
\(346\) 16.5663 19.7429i 0.890608 1.06139i
\(347\) 8.71822 + 23.9531i 0.468019 + 1.28587i 0.919324 + 0.393501i \(0.128736\pi\)
−0.451305 + 0.892370i \(0.649042\pi\)
\(348\) 4.15403 + 2.31299i 0.222679 + 0.123989i
\(349\) 9.80955 + 11.6906i 0.525093 + 0.625782i 0.961777 0.273833i \(-0.0882916\pi\)
−0.436684 + 0.899615i \(0.643847\pi\)
\(350\) 1.88328 12.7162i 0.100666 0.679710i
\(351\) −6.79935 + 8.91641i −0.362922 + 0.475923i
\(352\) −3.07043 + 5.31815i −0.163655 + 0.283458i
\(353\) −26.3417 9.58759i −1.40203 0.510296i −0.473248 0.880929i \(-0.656918\pi\)
−0.928779 + 0.370633i \(0.879141\pi\)
\(354\) 9.06169 + 5.04560i 0.481623 + 0.268171i
\(355\) 6.25439 7.45369i 0.331949 0.395601i
\(356\) 0.0610800 0.0222313i 0.00323723 0.00117826i
\(357\) 0.612502 + 14.2200i 0.0324170 + 0.752604i
\(358\) −0.722896 4.09975i −0.0382062 0.216678i
\(359\) 27.0056i 1.42530i 0.701520 + 0.712650i \(0.252505\pi\)
−0.701520 + 0.712650i \(0.747495\pi\)
\(360\) −3.74790 9.37925i −0.197532 0.494330i
\(361\) 13.7553 0.723965
\(362\) 11.7898 9.89284i 0.619660 0.519956i
\(363\) 1.52854 0.583409i 0.0802277 0.0306211i
\(364\) 1.71857 + 0.572503i 0.0900777 + 0.0300073i
\(365\) 0.639250 0.761829i 0.0334599 0.0398759i
\(366\) 1.71937 10.7232i 0.0898728 0.560512i
\(367\) 27.1129 4.78074i 1.41528 0.249552i 0.586874 0.809678i \(-0.300358\pi\)
0.828408 + 0.560126i \(0.189247\pi\)
\(368\) 11.1329i 0.580341i
\(369\) −17.1804 13.5287i −0.894377 0.704276i
\(370\) 8.17132 4.71772i 0.424807 0.245262i
\(371\) −2.50014 4.06779i −0.129801 0.211189i
\(372\) −2.90733 3.35741i −0.150738 0.174074i
\(373\) −2.77059 + 15.7128i −0.143456 + 0.813577i 0.825139 + 0.564930i \(0.191097\pi\)
−0.968594 + 0.248647i \(0.920014\pi\)
\(374\) −13.0850 + 4.76254i −0.676607 + 0.246265i
\(375\) 8.25354 14.8230i 0.426211 0.765458i
\(376\) −26.7079 + 4.70933i −1.37736 + 0.242865i
\(377\) 18.6709 0.961602
\(378\) −4.38912 17.2850i −0.225752 0.889045i
\(379\) −0.969547 −0.0498023 −0.0249011 0.999690i \(-0.507927\pi\)
−0.0249011 + 0.999690i \(0.507927\pi\)
\(380\) 0.801436 0.141315i 0.0411128 0.00724930i
\(381\) 18.8777 + 31.5540i 0.967135 + 1.61656i
\(382\) −13.7084 + 4.98945i −0.701383 + 0.255283i
\(383\) −1.11578 + 6.32791i −0.0570138 + 0.323341i −0.999954 0.00962161i \(-0.996937\pi\)
0.942940 + 0.332963i \(0.108048\pi\)
\(384\) −4.48316 + 12.9398i −0.228780 + 0.660332i
\(385\) 10.2377 0.281616i 0.521761 0.0143525i
\(386\) −21.6269 + 12.4863i −1.10078 + 0.635536i
\(387\) −17.4760 5.75212i −0.888357 0.292397i
\(388\) 5.25162i 0.266611i
\(389\) 8.31583 1.46630i 0.421629 0.0743446i 0.0411917 0.999151i \(-0.486885\pi\)
0.380437 + 0.924807i \(0.375773\pi\)
\(390\) −4.21379 3.42559i −0.213374 0.173462i
\(391\) −6.80787 + 8.11330i −0.344289 + 0.410307i
\(392\) −17.6168 + 11.5067i −0.889781 + 0.581178i
\(393\) −10.0682 8.18490i −0.507873 0.412874i
\(394\) 7.06473 5.92801i 0.355916 0.298649i
\(395\) −15.1538 −0.762470
\(396\) −2.79631 + 1.73253i −0.140520 + 0.0870630i
\(397\) 0.764587i 0.0383735i 0.999816 + 0.0191868i \(0.00610771\pi\)
−0.999816 + 0.0191868i \(0.993892\pi\)
\(398\) −1.25887 7.13940i −0.0631014 0.357866i
\(399\) 10.4849 0.451619i 0.524903 0.0226092i
\(400\) −11.4909 + 4.18236i −0.574547 + 0.209118i
\(401\) 22.8564 27.2392i 1.14139 1.36026i 0.218209 0.975902i \(-0.429978\pi\)
0.923184 0.384358i \(-0.125577\pi\)
\(402\) 0.0821637 + 5.28489i 0.00409796 + 0.263586i
\(403\) −16.3888 5.96503i −0.816384 0.297139i
\(404\) 1.54000 2.66736i 0.0766180 0.132706i
\(405\) 1.13014 10.0168i 0.0561573 0.497737i
\(406\) −18.4547 + 23.2637i −0.915890 + 1.15456i
\(407\) −14.4270 17.1934i −0.715120 0.852247i
\(408\) 13.8772 8.30224i 0.687021 0.411022i
\(409\) 4.68797 + 12.8801i 0.231805 + 0.636880i 0.999994 0.00334320i \(-0.00106418\pi\)
−0.768189 + 0.640223i \(0.778842\pi\)
\(410\) 6.80748 8.11284i 0.336198 0.400665i
\(411\) 4.71814 13.6180i 0.232729 0.671727i
\(412\) −5.79174 + 1.02124i −0.285339 + 0.0503129i
\(413\) 7.59029 9.56822i 0.373494 0.470821i
\(414\) 6.27465 11.6931i 0.308382 0.574683i
\(415\) −0.125494 0.217361i −0.00616024 0.0106698i
\(416\) −0.665821 3.77606i −0.0326446 0.185137i
\(417\) −28.8780 4.63032i −1.41416 0.226748i
\(418\) 3.51159 + 9.64801i 0.171757 + 0.471899i
\(419\) 18.4427 + 15.4753i 0.900986 + 0.756017i 0.970383 0.241572i \(-0.0776630\pi\)
−0.0693968 + 0.997589i \(0.522107\pi\)
\(420\) −1.59003 + 0.351523i −0.0775857 + 0.0171526i
\(421\) 27.3264 + 9.94600i 1.33181 + 0.484738i 0.907223 0.420650i \(-0.138198\pi\)
0.424585 + 0.905388i \(0.360420\pi\)
\(422\) −17.7691 + 10.2590i −0.864986 + 0.499400i
\(423\) −25.7093 8.46205i −1.25003 0.411439i
\(424\) −2.71237 + 4.69797i −0.131724 + 0.228153i
\(425\) 10.9318 + 3.97885i 0.530270 + 0.193003i
\(426\) −18.4433 6.38991i −0.893580 0.309592i
\(427\) −12.1330 4.04182i −0.587155 0.195597i
\(428\) −3.01777 0.532115i −0.145870 0.0257207i
\(429\) −6.28424 + 11.2862i −0.303406 + 0.544904i
\(430\) 3.04753 8.37302i 0.146965 0.403783i
\(431\) −22.3052 + 12.8779i −1.07440 + 0.620307i −0.929381 0.369121i \(-0.879659\pi\)
−0.145022 + 0.989428i \(0.546325\pi\)
\(432\) −12.4730 + 11.4985i −0.600107 + 0.553222i
\(433\) 2.53370i 0.121762i 0.998145 + 0.0608809i \(0.0193910\pi\)
−0.998145 + 0.0608809i \(0.980609\pi\)
\(434\) 23.6313 14.5243i 1.13434 0.697187i
\(435\) −14.4038 + 8.61731i −0.690609 + 0.413169i
\(436\) 0.881232 + 0.739441i 0.0422033 + 0.0354128i
\(437\) 5.98222 + 5.01968i 0.286168 + 0.240124i
\(438\) −1.88506 0.653101i −0.0900714 0.0312064i
\(439\) −7.93921 + 21.8128i −0.378918 + 1.04107i 0.592888 + 0.805285i \(0.297988\pi\)
−0.971806 + 0.235783i \(0.924235\pi\)
\(440\) −5.81796 10.0770i −0.277360 0.480402i
\(441\) −20.9222 + 1.80572i −0.996296 + 0.0859868i
\(442\) 4.34725 7.52966i 0.206778 0.358149i
\(443\) 11.7631 + 14.0187i 0.558882 + 0.666050i 0.969310 0.245843i \(-0.0790649\pi\)
−0.410427 + 0.911893i \(0.634620\pi\)
\(444\) 2.76912 + 2.25115i 0.131417 + 0.106835i
\(445\) −0.0398462 + 0.225979i −0.00188889 + 0.0107124i
\(446\) −11.1208 + 4.04763i −0.526583 + 0.191661i
\(447\) −13.4812 35.3211i −0.637640 1.67063i
\(448\) 20.5561 + 11.1259i 0.971184 + 0.525650i
\(449\) 8.49565 + 4.90497i 0.400934 + 0.231480i 0.686887 0.726764i \(-0.258977\pi\)
−0.285953 + 0.958244i \(0.592310\pi\)
\(450\) −14.4264 2.08365i −0.680067 0.0982244i
\(451\) −21.8171 12.5961i −1.02733 0.593127i
\(452\) −0.138650 0.165237i −0.00652155 0.00777208i
\(453\) −4.99285 25.9502i −0.234584 1.21925i
\(454\) −0.0792866 0.217838i −0.00372111 0.0102237i
\(455\) −4.78379 + 4.24362i −0.224267 + 0.198944i
\(456\) −6.12154 10.2321i −0.286667 0.479163i
\(457\) 0.594728 + 3.37287i 0.0278202 + 0.157776i 0.995553 0.0942020i \(-0.0300300\pi\)
−0.967733 + 0.251978i \(0.918919\pi\)
\(458\) 2.16339 + 3.74709i 0.101088 + 0.175090i
\(459\) 16.1214 0.752400i 0.752483 0.0351190i
\(460\) −1.04940 0.605869i −0.0489283 0.0282488i
\(461\) −4.27404 + 3.58634i −0.199062 + 0.167033i −0.736870 0.676035i \(-0.763697\pi\)
0.537808 + 0.843067i \(0.319252\pi\)
\(462\) −7.85103 18.9856i −0.365263 0.883289i
\(463\) 3.21696 18.2443i 0.149505 0.847884i −0.814134 0.580677i \(-0.802788\pi\)
0.963639 0.267207i \(-0.0861008\pi\)
\(464\) 27.8183 + 4.90512i 1.29143 + 0.227714i
\(465\) 15.3963 2.96227i 0.713986 0.137372i
\(466\) 24.7818 20.7944i 1.14800 0.963284i
\(467\) 32.9348 1.52404 0.762021 0.647552i \(-0.224207\pi\)
0.762021 + 0.647552i \(0.224207\pi\)
\(468\) 0.642157 1.95100i 0.0296837 0.0901849i
\(469\) 6.15684 + 0.911833i 0.284296 + 0.0421045i
\(470\) 4.48328 12.3177i 0.206798 0.568173i
\(471\) −7.01283 + 8.62642i −0.323134 + 0.397485i
\(472\) −13.6652 2.40955i −0.628994 0.110909i
\(473\) −20.8735 3.68056i −0.959763 0.169232i
\(474\) 10.8398 + 28.4006i 0.497890 + 1.30448i
\(475\) 2.93375 8.06041i 0.134610 0.369837i
\(476\) −0.958736 2.42450i −0.0439436 0.111127i
\(477\) −4.60223 + 2.85143i −0.210722 + 0.130558i
\(478\) −0.975339 −0.0446110
\(479\) 1.78160 1.49494i 0.0814034 0.0683056i −0.601178 0.799115i \(-0.705302\pi\)
0.682581 + 0.730810i \(0.260857\pi\)
\(480\) 2.25644 + 2.60576i 0.102992 + 0.118936i
\(481\) 13.8012 + 2.43353i 0.629282 + 0.110959i
\(482\) 0.751137 4.25991i 0.0342133 0.194034i
\(483\) −12.3917 9.52004i −0.563841 0.433177i
\(484\) −0.229578 + 0.192638i −0.0104353 + 0.00875629i
\(485\) 16.0556 + 9.26973i 0.729049 + 0.420917i
\(486\) −19.5814 + 5.04714i −0.888229 + 0.228943i
\(487\) 5.28386 + 9.15192i 0.239435 + 0.414713i 0.960552 0.278100i \(-0.0897046\pi\)
−0.721118 + 0.692813i \(0.756371\pi\)
\(488\) 2.52304 + 14.3088i 0.114212 + 0.647731i
\(489\) 7.78451 13.9807i 0.352028 0.632227i
\(490\) −0.559106 10.1550i −0.0252578 0.458756i
\(491\) 7.28058 + 20.0032i 0.328568 + 0.902733i 0.988475 + 0.151386i \(0.0483735\pi\)
−0.659907 + 0.751347i \(0.729404\pi\)
\(492\) 3.78488 + 1.31132i 0.170636 + 0.0591189i
\(493\) −17.2736 20.5859i −0.777965 0.927143i
\(494\) −5.55188 3.20538i −0.249791 0.144217i
\(495\) −0.361001 11.6072i −0.0162258 0.521706i
\(496\) −22.8510 13.1930i −1.02604 0.592385i
\(497\) −10.9406 + 20.2136i −0.490752 + 0.906706i
\(498\) −0.317600 + 0.390678i −0.0142320 + 0.0175067i
\(499\) 21.9746 7.99812i 0.983720 0.358045i 0.200435 0.979707i \(-0.435765\pi\)
0.783285 + 0.621662i \(0.213542\pi\)
\(500\) −0.539653 + 3.06053i −0.0241340 + 0.136871i
\(501\) 32.0911 12.2484i 1.43372 0.547219i
\(502\) 12.0476 + 14.3577i 0.537710 + 0.640817i
\(503\) −19.0227 + 32.9482i −0.848178 + 1.46909i 0.0346537 + 0.999399i \(0.488967\pi\)
−0.882832 + 0.469689i \(0.844366\pi\)
\(504\) 13.1191 + 19.9286i 0.584369 + 0.887688i
\(505\) 5.43657 + 9.41642i 0.241924 + 0.419025i
\(506\) 5.22871 14.3658i 0.232445 0.638636i
\(507\) 2.73029 + 14.1906i 0.121256 + 0.630226i
\(508\) −5.15956 4.32939i −0.228918 0.192085i
\(509\) 0.331292 + 0.277987i 0.0146843 + 0.0123216i 0.650100 0.759848i \(-0.274727\pi\)
−0.635416 + 0.772170i \(0.719171\pi\)
\(510\) 0.121502 + 7.81521i 0.00538022 + 0.346063i
\(511\) −1.11822 + 2.06600i −0.0494670 + 0.0913945i
\(512\) 25.4287i 1.12380i
\(513\) −0.554771 11.8869i −0.0244938 0.524819i
\(514\) 11.3059 6.52745i 0.498681 0.287914i
\(515\) 7.10090 19.5096i 0.312903 0.859694i
\(516\) 3.36971 0.0523887i 0.148343 0.00230628i
\(517\) −30.7074 5.41454i −1.35051 0.238131i
\(518\) −16.6735 + 14.7908i −0.732592 + 0.649870i
\(519\) −26.0141 + 22.5267i −1.14189 + 0.988814i
\(520\) 6.82723 + 2.48491i 0.299394 + 0.108970i
\(521\) 2.58992 4.48588i 0.113467 0.196530i −0.803699 0.595036i \(-0.797138\pi\)
0.917166 + 0.398506i \(0.130471\pi\)
\(522\) 26.4535 + 20.8308i 1.15784 + 0.911738i
\(523\) 25.6172 14.7901i 1.12016 0.646726i 0.178720 0.983900i \(-0.442804\pi\)
0.941442 + 0.337174i \(0.109471\pi\)
\(524\) 2.23344 + 0.812904i 0.0975681 + 0.0355119i
\(525\) −5.17096 + 16.3667i −0.225679 + 0.714301i
\(526\) 1.44853 + 1.21546i 0.0631587 + 0.0529964i
\(527\) 8.58545 + 23.5883i 0.373988 + 1.02752i
\(528\) −12.3281 + 15.1647i −0.536512 + 0.659959i
\(529\) 1.97475 + 11.1994i 0.0858587 + 0.486929i
\(530\) −1.31100 2.27073i −0.0569464 0.0986340i
\(531\) −10.8802 8.56757i −0.472159 0.371801i
\(532\) −1.78767 + 0.706910i −0.0775052 + 0.0306484i
\(533\) 15.4908 2.73145i 0.670983 0.118312i
\(534\) 0.452023 0.0869698i 0.0195609 0.00376355i
\(535\) 6.95355 8.28692i 0.300628 0.358275i
\(536\) −2.41855 6.64492i −0.104466 0.287017i
\(537\) 0.0864074 + 5.55785i 0.00372876 + 0.239839i
\(538\) 2.08077 + 2.47977i 0.0897084 + 0.106910i
\(539\) −23.5582 + 5.50442i −1.01472 + 0.237092i
\(540\) 0.405061 + 1.80149i 0.0174310 + 0.0775236i
\(541\) 15.8468 27.4474i 0.681306 1.18006i −0.293277 0.956028i \(-0.594746\pi\)
0.974583 0.224029i \(-0.0719209\pi\)
\(542\) 35.4934 + 12.9185i 1.52457 + 0.554899i
\(543\) −17.6347 + 10.5503i −0.756779 + 0.452756i
\(544\) −3.54736 + 4.22758i −0.152092 + 0.181256i
\(545\) −3.81615 + 1.38897i −0.163466 + 0.0594968i
\(546\) 11.3751 + 5.93001i 0.486811 + 0.253781i
\(547\) −4.74502 26.9103i −0.202882 1.15060i −0.900738 0.434364i \(-0.856973\pi\)
0.697855 0.716239i \(-0.254138\pi\)
\(548\) 2.63996i 0.112773i
\(549\) −4.53356 + 13.7738i −0.193488 + 0.587853i
\(550\) −16.7921 −0.716019
\(551\) −15.1787 + 12.7365i −0.646635 + 0.542591i
\(552\) −2.81077 + 17.5300i −0.119634 + 0.746127i
\(553\) 35.0683 7.18298i 1.49126 0.305451i
\(554\) −6.04418 + 7.20318i −0.256793 + 0.306034i
\(555\) −11.7702 + 4.49241i −0.499617 + 0.190692i
\(556\) 5.27592 0.930287i 0.223749 0.0394530i
\(557\) 14.0128i 0.593742i −0.954918 0.296871i \(-0.904057\pi\)
0.954918 0.296871i \(-0.0959431\pi\)
\(558\) −16.5651 26.7361i −0.701255 1.13183i
\(559\) 11.4612 6.61715i 0.484759 0.279876i
\(560\) −8.24235 + 5.06591i −0.348303 + 0.214074i
\(561\) 18.2577 3.51281i 0.770842 0.148311i
\(562\) −3.92106 + 22.2374i −0.165400 + 0.938029i
\(563\) 1.23719 0.450301i 0.0521414 0.0189779i −0.315818 0.948820i \(-0.602279\pi\)
0.367959 + 0.929842i \(0.380057\pi\)
\(564\) 4.95725 0.0770700i 0.208738 0.00324523i
\(565\) 0.749908 0.132229i 0.0315489 0.00556292i
\(566\) 22.9374 0.964130
\(567\) 2.13266 + 23.7161i 0.0895634 + 0.995981i
\(568\) 26.1138 1.09571
\(569\) −31.7868 + 5.60486i −1.33257 + 0.234968i −0.794157 0.607713i \(-0.792087\pi\)
−0.538413 + 0.842681i \(0.680976\pi\)
\(570\) 5.76243 0.0895881i 0.241362 0.00375243i
\(571\) 7.21456 2.62588i 0.301920 0.109890i −0.186618 0.982433i \(-0.559753\pi\)
0.488538 + 0.872543i \(0.337530\pi\)
\(572\) 0.410891 2.33028i 0.0171802 0.0974339i
\(573\) 19.1276 3.68018i 0.799069 0.153742i
\(574\) −11.9081 + 22.0012i −0.497033 + 0.918312i
\(575\) −11.0610 + 6.38605i −0.461274 + 0.266317i
\(576\) 12.5318 23.3536i 0.522160 0.973065i
\(577\) 6.45958i 0.268916i −0.990919 0.134458i \(-0.957071\pi\)
0.990919 0.134458i \(-0.0429293\pi\)
\(578\) 9.39356 1.65634i 0.390721 0.0688946i
\(579\) 31.1520 11.8900i 1.29463 0.494132i
\(580\) 1.97628 2.35524i 0.0820606 0.0977960i
\(581\) 0.393442 + 0.443524i 0.0163227 + 0.0184005i
\(582\) 5.88796 36.7216i 0.244064 1.52216i
\(583\) −4.77788 + 4.00912i −0.197880 + 0.166041i
\(584\) 2.66905 0.110446
\(585\) 4.83125 + 5.40699i 0.199748 + 0.223552i
\(586\) 24.8901i 1.02820i
\(587\) 2.50894 + 14.2289i 0.103555 + 0.587290i 0.991788 + 0.127896i \(0.0408223\pi\)
−0.888233 + 0.459394i \(0.848067\pi\)
\(588\) 3.51297 1.56717i 0.144872 0.0646288i
\(589\) 17.3925 6.33035i 0.716646 0.260838i
\(590\) 4.31110 5.13777i 0.177485 0.211519i
\(591\) −10.5671 + 6.32197i −0.434674 + 0.260051i
\(592\) 19.9235 + 7.25156i 0.818851 + 0.298037i
\(593\) −15.9550 + 27.6348i −0.655192 + 1.13483i 0.326654 + 0.945144i \(0.394079\pi\)
−0.981846 + 0.189681i \(0.939255\pi\)
\(594\) −21.4955 + 8.97947i −0.881971 + 0.368432i
\(595\) 9.10464 + 1.34840i 0.373254 + 0.0552792i
\(596\) 4.45143 + 5.30500i 0.182338 + 0.217301i
\(597\) 0.150472 + 9.67856i 0.00615841 + 0.396117i
\(598\) 3.26477 + 8.96988i 0.133506 + 0.366806i
\(599\) −12.5492 + 14.9556i −0.512746 + 0.611067i −0.958850 0.283914i \(-0.908367\pi\)
0.446103 + 0.894982i \(0.352811\pi\)
\(600\) 19.1498 3.68444i 0.781786 0.150417i
\(601\) 9.77516 1.72362i 0.398737 0.0703081i 0.0293159 0.999570i \(-0.490667\pi\)
0.369421 + 0.929262i \(0.379556\pi\)
\(602\) −3.08361 + 20.8210i −0.125679 + 0.848602i
\(603\) 1.00885 6.98486i 0.0410835 0.284446i
\(604\) 2.42031 + 4.19209i 0.0984808 + 0.170574i
\(605\) −0.183717 1.04191i −0.00746916 0.0423597i
\(606\) 13.7589 16.9248i 0.558919 0.687521i
\(607\) −12.0056 32.9852i −0.487293 1.33883i −0.903122 0.429384i \(-0.858731\pi\)
0.415829 0.909443i \(-0.363491\pi\)
\(608\) 3.11714 + 2.61559i 0.126417 + 0.106076i
\(609\) 29.2480 26.7693i 1.18519 1.08475i
\(610\) −6.59924 2.40193i −0.267195 0.0972512i
\(611\) 16.8608 9.73461i 0.682117 0.393820i
\(612\) −2.74520 + 1.09697i −0.110968 + 0.0443423i
\(613\) 4.78308 8.28454i 0.193187 0.334610i −0.753118 0.657886i \(-0.771451\pi\)
0.946305 + 0.323276i \(0.104784\pi\)
\(614\) −30.1735 10.9823i −1.21770 0.443208i
\(615\) −10.6898 + 9.25679i −0.431056 + 0.373270i
\(616\) 18.2402 + 20.5621i 0.734921 + 0.828469i
\(617\) 10.4083 + 1.83526i 0.419022 + 0.0738849i 0.379184 0.925321i \(-0.376205\pi\)
0.0398381 + 0.999206i \(0.487316\pi\)
\(618\) −41.6434 + 0.647427i −1.67514 + 0.0260433i
\(619\) −4.37134 + 12.0102i −0.175699 + 0.482729i −0.996015 0.0891810i \(-0.971575\pi\)
0.820317 + 0.571910i \(0.193797\pi\)
\(620\) −2.48718 + 1.43597i −0.0998875 + 0.0576701i
\(621\) −10.7442 + 14.0895i −0.431149 + 0.565393i
\(622\) 2.22228i 0.0891053i
\(623\) −0.0149048 0.541839i −0.000597148 0.0217083i
\(624\) −0.189694 12.2014i −0.00759383 0.488446i
\(625\) 5.94187 + 4.98582i 0.237675 + 0.199433i
\(626\) −18.0358 15.1339i −0.720856 0.604870i
\(627\) −2.59012 13.4621i −0.103439 0.537623i
\(628\) 0.696496 1.91361i 0.0277932 0.0763613i
\(629\) −10.0852 17.4682i −0.402125 0.696501i
\(630\) −11.5123 + 0.675306i −0.458662 + 0.0269048i
\(631\) −1.50899 + 2.61364i −0.0600719 + 0.104048i −0.894497 0.447073i \(-0.852466\pi\)
0.834425 + 0.551121i \(0.185800\pi\)
\(632\) −26.1421 31.1550i −1.03988 1.23928i
\(633\) 25.5951 9.76906i 1.01731 0.388285i
\(634\) −6.00844 + 34.0756i −0.238626 + 1.35331i
\(635\) 22.3434 8.13232i 0.886669 0.322721i
\(636\) 0.625571 0.769509i 0.0248055 0.0305130i
\(637\) 9.05895 12.0879i 0.358929 0.478942i
\(638\) 33.5928 + 19.3948i 1.32995 + 0.767848i
\(639\) 22.9645 + 12.3231i 0.908462 + 0.487493i
\(640\) 7.66912 + 4.42777i 0.303148 + 0.175023i
\(641\) 10.8521 + 12.9331i 0.428633 + 0.510825i 0.936527 0.350594i \(-0.114020\pi\)
−0.507894 + 0.861419i \(0.669576\pi\)
\(642\) −20.5050 7.10422i −0.809268 0.280381i
\(643\) −4.79477 13.1735i −0.189087 0.519513i 0.808534 0.588450i \(-0.200262\pi\)
−0.997621 + 0.0689368i \(0.978039\pi\)
\(644\) 2.71565 + 0.904658i 0.107012 + 0.0356485i
\(645\) −5.78778 + 10.3946i −0.227894 + 0.409288i
\(646\) 1.60225 + 9.08680i 0.0630396 + 0.357515i
\(647\) 13.1044 + 22.6975i 0.515187 + 0.892329i 0.999845 + 0.0176256i \(0.00561069\pi\)
−0.484658 + 0.874704i \(0.661056\pi\)
\(648\) 22.5433 14.9566i 0.885584 0.587553i
\(649\) −13.8165 7.97697i −0.542346 0.313123i
\(650\) 8.03188 6.73955i 0.315036 0.264347i
\(651\) −34.2254 + 14.1531i −1.34140 + 0.554703i
\(652\) −0.508986 + 2.88660i −0.0199334 + 0.113048i
\(653\) 7.44330 + 1.31245i 0.291279 + 0.0513603i 0.317378 0.948299i \(-0.397198\pi\)
−0.0260995 + 0.999659i \(0.508309\pi\)
\(654\) 5.33292 + 6.15851i 0.208534 + 0.240817i
\(655\) −6.42755 + 5.39335i −0.251145 + 0.210736i
\(656\) 23.7978 0.929149
\(657\) 2.34716 + 1.25952i 0.0915716 + 0.0491385i
\(658\) −4.53636 + 30.6302i −0.176846 + 1.19409i
\(659\) −3.28023 + 9.01236i −0.127780 + 0.351072i −0.987042 0.160464i \(-0.948701\pi\)
0.859262 + 0.511536i \(0.170923\pi\)
\(660\) 0.758525 + 1.98735i 0.0295255 + 0.0773574i
\(661\) −28.8610 5.08896i −1.12256 0.197938i −0.418596 0.908173i \(-0.637478\pi\)
−0.703965 + 0.710235i \(0.748589\pi\)
\(662\) 0.269719 + 0.0475587i 0.0104829 + 0.00184842i
\(663\) −7.32303 + 9.00799i −0.284403 + 0.349842i
\(664\) 0.230386 0.632979i 0.00894070 0.0245644i
\(665\) 0.994226 6.71317i 0.0385544 0.260326i
\(666\) 16.8390 + 18.8457i 0.652496 + 0.730254i
\(667\) 29.5034 1.14238
\(668\) −4.81988 + 4.04436i −0.186487 + 0.156481i
\(669\) 15.5170 2.98550i 0.599923 0.115426i
\(670\) 3.36597 + 0.593511i 0.130039 + 0.0229293i
\(671\) −2.90085 + 16.4515i −0.111986 + 0.635105i
\(672\) −6.45691 4.96058i −0.249081 0.191359i
\(673\) −12.7878 + 10.7303i −0.492935 + 0.413622i −0.855077 0.518501i \(-0.826490\pi\)
0.362142 + 0.932123i \(0.382046\pi\)
\(674\) 15.3034 + 8.83539i 0.589463 + 0.340327i
\(675\) 18.5790 + 5.79665i 0.715107 + 0.223113i
\(676\) −1.32352 2.29240i −0.0509046 0.0881694i
\(677\) 6.72751 + 38.1536i 0.258559 + 1.46636i 0.786769 + 0.617248i \(0.211752\pi\)
−0.528210 + 0.849114i \(0.677136\pi\)
\(678\) −0.784243 1.31086i −0.0301187 0.0503432i
\(679\) −41.5492 13.8412i −1.59451 0.531176i
\(680\) −3.57652 9.82640i −0.137153 0.376825i
\(681\) 0.0584812 + 0.303954i 0.00224100 + 0.0116476i
\(682\) −23.2905 27.7565i −0.891838 1.06285i
\(683\) −24.5269 14.1606i −0.938496 0.541841i −0.0490077 0.998798i \(-0.515606\pi\)
−0.889489 + 0.456957i \(0.848939\pi\)
\(684\) 0.808833 + 2.02413i 0.0309265 + 0.0773946i
\(685\) −8.07108 4.65984i −0.308380 0.178043i
\(686\) 6.10738 + 23.2352i 0.233181 + 0.887126i
\(687\) −2.06007 5.39742i −0.0785966 0.205924i
\(688\) 18.8148 6.84804i 0.717308 0.261079i
\(689\) 0.676253 3.83522i 0.0257632 0.146110i
\(690\) −6.65855 5.41305i −0.253487 0.206071i
\(691\) −11.1245 13.2577i −0.423198 0.504347i 0.511749 0.859135i \(-0.328998\pi\)
−0.934947 + 0.354788i \(0.884553\pi\)
\(692\) 3.15172 5.45893i 0.119810 0.207518i
\(693\) 6.33730 + 26.6899i 0.240734 + 1.01386i
\(694\) −16.5331 28.6361i −0.627587 1.08701i
\(695\) −6.46848 + 17.7720i −0.245363 + 0.674131i
\(696\) −42.5648 14.7471i −1.61342 0.558988i
\(697\) −17.3431 14.5526i −0.656918 0.551220i
\(698\) −15.1650 12.7250i −0.574005 0.481647i
\(699\) −37.0677 + 22.1764i −1.40203 + 0.838787i
\(700\) −0.0864531 3.14286i −0.00326762 0.118789i
\(701\) 27.9266i 1.05477i −0.849625 0.527387i \(-0.823172\pi\)
0.849625 0.527387i \(-0.176828\pi\)
\(702\) 6.67764 12.9223i 0.252031 0.487719i
\(703\) −12.8799 + 7.43621i −0.485774 + 0.280462i
\(704\) 10.4429 28.6915i 0.393580 1.08135i
\(705\) −8.51451 + 15.2917i −0.320675 + 0.575919i
\(706\) 35.8110 + 6.31445i 1.34777 + 0.237647i
\(707\) −17.0445 19.2141i −0.641026 0.722622i
\(708\) 2.39692 + 0.830445i 0.0900819 + 0.0312100i
\(709\) −42.3620 15.4185i −1.59094 0.579055i −0.613393 0.789777i \(-0.710196\pi\)
−0.977546 + 0.210723i \(0.932418\pi\)
\(710\) −6.31095 + 10.9309i −0.236846 + 0.410229i
\(711\) −8.28745 39.7342i −0.310804 1.49015i
\(712\) −0.533335 + 0.307921i −0.0199876 + 0.0115398i
\(713\) −25.8972 9.42582i −0.969859 0.353000i
\(714\) −3.98563 18.0280i −0.149158 0.674682i
\(715\) 6.39904 + 5.36943i 0.239310 + 0.200805i
\(716\) −0.348239 0.956779i −0.0130143 0.0357565i
\(717\) 1.28587 + 0.206177i 0.0480217 + 0.00769982i
\(718\) −6.08318 34.4994i −0.227022 1.28751i
\(719\) −15.9704 27.6615i −0.595594 1.03160i −0.993463 0.114157i \(-0.963583\pi\)
0.397868 0.917442i \(-0.369750\pi\)
\(720\) 5.77772 + 9.32526i 0.215323 + 0.347532i
\(721\) −7.18498 + 48.5141i −0.267583 + 1.80676i
\(722\) −17.5724 + 3.09848i −0.653976 + 0.115314i
\(723\) −1.89079 + 5.45740i −0.0703191 + 0.202963i
\(724\) 2.41959 2.88355i 0.0899232 0.107166i
\(725\) −11.0837 30.4523i −0.411640 1.13097i
\(726\) −1.82129 + 1.08962i −0.0675943 + 0.0404395i
\(727\) −12.2324 14.5780i −0.453674 0.540668i 0.489922 0.871766i \(-0.337025\pi\)
−0.943596 + 0.331098i \(0.892581\pi\)
\(728\) −16.9772 2.51433i −0.629215 0.0931873i
\(729\) 26.8826 2.51475i 0.995653 0.0931389i
\(730\) −0.645031 + 1.11723i −0.0238737 + 0.0413504i
\(731\) −17.8993 6.51482i −0.662031 0.240959i
\(732\) −0.0412905 2.65586i −0.00152614 0.0981634i
\(733\) 32.5485 38.7897i 1.20220 1.43273i 0.329728 0.944076i \(-0.393043\pi\)
0.872477 0.488656i \(-0.162513\pi\)
\(734\) −33.5597 + 12.2147i −1.23871 + 0.450854i
\(735\) −1.40955 + 13.5063i −0.0519920 + 0.498189i
\(736\) −1.05212 5.96685i −0.0387815 0.219941i
\(737\) 8.13029i 0.299483i
\(738\) 24.9953 + 13.4128i 0.920090 + 0.493733i
\(739\) −7.04032 −0.258983 −0.129491 0.991581i \(-0.541334\pi\)
−0.129491 + 0.991581i \(0.541334\pi\)
\(740\) 1.76781 1.48337i 0.0649860 0.0545297i
\(741\) 6.64191 + 5.39953i 0.243997 + 0.198357i
\(742\) 4.11021 + 4.63340i 0.150891 + 0.170097i
\(743\) 16.6806 19.8792i 0.611952 0.729296i −0.367712 0.929940i \(-0.619859\pi\)
0.979664 + 0.200644i \(0.0643034\pi\)
\(744\) 32.6507 + 26.5433i 1.19703 + 0.973125i
\(745\) −24.0762 + 4.24528i −0.882082 + 0.155535i
\(746\) 20.6971i 0.757773i
\(747\) 0.501304 0.447925i 0.0183417 0.0163887i
\(748\) −2.94943 + 1.70285i −0.107842 + 0.0622624i
\(749\) −12.1636 + 22.4733i −0.444448 + 0.821155i
\(750\) −7.20486 + 20.7955i −0.263084 + 0.759344i
\(751\) −5.52319 + 31.3236i −0.201544 + 1.14301i 0.701242 + 0.712923i \(0.252629\pi\)
−0.902786 + 0.430090i \(0.858482\pi\)
\(752\) 27.6788 10.0743i 1.00934 0.367371i
\(753\) −12.8482 21.4757i −0.468215 0.782619i
\(754\) −23.8520 + 4.20575i −0.868639 + 0.153164i
\(755\) −17.0885 −0.621914
\(756\) −1.79129 3.97692i −0.0651486 0.144639i
\(757\) −21.2865 −0.773671 −0.386835 0.922149i \(-0.626432\pi\)
−0.386835 + 0.922149i \(0.626432\pi\)
\(758\) 1.23859 0.218397i 0.0449876 0.00793253i
\(759\) −9.93022 + 17.8343i −0.360444 + 0.647343i
\(760\) −7.24535 + 2.63709i −0.262817 + 0.0956574i
\(761\) 5.70401 32.3491i 0.206770 1.17265i −0.687859 0.725844i \(-0.741449\pi\)
0.894630 0.446809i \(-0.147440\pi\)
\(762\) −31.2239 36.0577i −1.13112 1.30623i
\(763\) 8.17281 5.02317i 0.295876 0.181851i
\(764\) −3.08995 + 1.78399i −0.111791 + 0.0645423i
\(765\) 1.49187 10.3291i 0.0539387 0.373450i
\(766\) 8.33521i 0.301163i
\(767\) 9.81018 1.72980i 0.354225