Properties

Label 189.2.ba.a.5.10
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.10
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.408566 + 0.0720413i) q^{2} +(1.12900 - 1.31353i) q^{3} +(-1.71765 + 0.625173i) q^{4} +(0.0312679 - 0.177329i) q^{5} +(-0.366645 + 0.617997i) q^{6} +(1.82229 - 1.91814i) q^{7} +(1.37531 - 0.794036i) q^{8} +(-0.450699 - 2.96595i) q^{9} +O(q^{10})\) \(q+(-0.408566 + 0.0720413i) q^{2} +(1.12900 - 1.31353i) q^{3} +(-1.71765 + 0.625173i) q^{4} +(0.0312679 - 0.177329i) q^{5} +(-0.366645 + 0.617997i) q^{6} +(1.82229 - 1.91814i) q^{7} +(1.37531 - 0.794036i) q^{8} +(-0.450699 - 2.96595i) q^{9} +0.0747032i q^{10} +(1.56303 - 0.275605i) q^{11} +(-1.11805 + 2.96200i) q^{12} +(3.21910 - 3.83638i) q^{13} +(-0.606342 + 0.914967i) q^{14} +(-0.197625 - 0.241276i) q^{15} +(2.29578 - 1.92639i) q^{16} -7.76129 q^{17} +(0.397812 + 1.17932i) q^{18} +4.34679i q^{19} +(0.0571540 + 0.324137i) q^{20} +(-0.462149 - 4.55921i) q^{21} +(-0.618747 + 0.225206i) q^{22} +(-1.56305 + 1.86277i) q^{23} +(0.509745 - 2.70297i) q^{24} +(4.66800 + 1.69901i) q^{25} +(-1.03884 + 1.79932i) q^{26} +(-4.40469 - 2.75657i) q^{27} +(-1.93089 + 4.43393i) q^{28} +(2.81590 + 3.35586i) q^{29} +(0.0981246 + 0.0843403i) q^{30} +(0.459948 + 1.26370i) q^{31} +(-2.84078 + 3.38551i) q^{32} +(1.40266 - 2.36424i) q^{33} +(3.17100 - 0.559134i) q^{34} +(-0.283162 - 0.383121i) q^{35} +(2.62838 + 4.81270i) q^{36} +(2.09041 + 3.62070i) q^{37} +(-0.313148 - 1.77595i) q^{38} +(-1.40480 - 8.55966i) q^{39} +(-0.0978025 - 0.268710i) q^{40} +(8.48927 + 7.12335i) q^{41} +(0.517270 + 1.82945i) q^{42} +(-0.714703 - 0.260131i) q^{43} +(-2.51244 + 1.45056i) q^{44} +(-0.540041 - 0.0128170i) q^{45} +(0.504413 - 0.873669i) q^{46} +(-8.67893 - 3.15887i) q^{47} +(0.0615850 - 5.19046i) q^{48} +(-0.358507 - 6.99081i) q^{49} +(-2.02959 - 0.357871i) q^{50} +(-8.76253 + 10.1947i) q^{51} +(-3.13089 + 8.60205i) q^{52} +(-8.42703 + 4.86535i) q^{53} +(1.99820 + 0.808921i) q^{54} -0.285788i q^{55} +(0.983146 - 4.08500i) q^{56} +(5.70962 + 4.90754i) q^{57} +(-1.39224 - 1.16823i) q^{58} +(1.51017 + 1.26718i) q^{59} +(0.490289 + 0.290878i) q^{60} +(-0.916897 + 2.51916i) q^{61} +(-0.278957 - 0.483169i) q^{62} +(-6.51041 - 4.54033i) q^{63} +(-2.08017 + 3.60297i) q^{64} +(-0.579646 - 0.690796i) q^{65} +(-0.402755 + 1.06700i) q^{66} +(-0.722307 + 4.09641i) q^{67} +(13.3312 - 4.85215i) q^{68} +(0.682106 + 4.15618i) q^{69} +(0.143291 + 0.136131i) q^{70} +(5.04844 + 2.91472i) q^{71} +(-2.97492 - 3.72123i) q^{72} +(-7.42228 - 4.28526i) q^{73} +(-1.11491 - 1.32870i) q^{74} +(7.50188 - 4.21334i) q^{75} +(-2.71749 - 7.46625i) q^{76} +(2.31965 - 3.50034i) q^{77} +(1.19060 + 3.39599i) q^{78} +(-0.884454 - 5.01599i) q^{79} +(-0.269820 - 0.467342i) q^{80} +(-8.59374 + 2.67350i) q^{81} +(-3.98161 - 2.29878i) q^{82} +(10.1615 - 8.52653i) q^{83} +(3.64411 + 7.54220i) q^{84} +(-0.242679 + 1.37630i) q^{85} +(0.310744 + 0.0547926i) q^{86} +(7.58716 + 0.0900220i) q^{87} +(1.93081 - 1.62014i) q^{88} +8.19131 q^{89} +(0.221566 - 0.0336687i) q^{90} +(-1.49256 - 13.1657i) q^{91} +(1.52022 - 4.17676i) q^{92} +(2.17918 + 0.822565i) q^{93} +(3.77349 + 0.665368i) q^{94} +(0.770811 + 0.135915i) q^{95} +(1.23970 + 7.55370i) q^{96} +(1.63818 - 4.50085i) q^{97} +(0.650101 + 2.83038i) q^{98} +(-1.52189 - 4.51166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.408566 + 0.0720413i −0.288900 + 0.0509409i −0.316220 0.948686i \(-0.602414\pi\)
0.0273200 + 0.999627i \(0.491303\pi\)
\(3\) 1.12900 1.31353i 0.651831 0.758364i
\(4\) −1.71765 + 0.625173i −0.858824 + 0.312586i
\(5\) 0.0312679 0.177329i 0.0139834 0.0793039i −0.977017 0.213159i \(-0.931625\pi\)
0.991001 + 0.133855i \(0.0427358\pi\)
\(6\) −0.366645 + 0.617997i −0.149682 + 0.252296i
\(7\) 1.82229 1.91814i 0.688761 0.724988i
\(8\) 1.37531 0.794036i 0.486246 0.280734i
\(9\) −0.450699 2.96595i −0.150233 0.988651i
\(10\) 0.0747032i 0.0236232i
\(11\) 1.56303 0.275605i 0.471272 0.0830979i 0.0670317 0.997751i \(-0.478647\pi\)
0.404240 + 0.914653i \(0.367536\pi\)
\(12\) −1.11805 + 2.96200i −0.322754 + 0.855055i
\(13\) 3.21910 3.83638i 0.892819 1.06402i −0.104761 0.994497i \(-0.533408\pi\)
0.997580 0.0695228i \(-0.0221477\pi\)
\(14\) −0.606342 + 0.914967i −0.162052 + 0.244535i
\(15\) −0.197625 0.241276i −0.0510264 0.0622973i
\(16\) 2.29578 1.92639i 0.573944 0.481597i
\(17\) −7.76129 −1.88239 −0.941195 0.337864i \(-0.890296\pi\)
−0.941195 + 0.337864i \(0.890296\pi\)
\(18\) 0.397812 + 1.17932i 0.0937651 + 0.277968i
\(19\) 4.34679i 0.997221i 0.866826 + 0.498611i \(0.166156\pi\)
−0.866826 + 0.498611i \(0.833844\pi\)
\(20\) 0.0571540 + 0.324137i 0.0127800 + 0.0724791i
\(21\) −0.462149 4.55921i −0.100849 0.994902i
\(22\) −0.618747 + 0.225206i −0.131917 + 0.0480140i
\(23\) −1.56305 + 1.86277i −0.325918 + 0.388414i −0.903977 0.427581i \(-0.859366\pi\)
0.578059 + 0.815995i \(0.303810\pi\)
\(24\) 0.509745 2.70297i 0.104051 0.551742i
\(25\) 4.66800 + 1.69901i 0.933599 + 0.339802i
\(26\) −1.03884 + 1.79932i −0.203733 + 0.352877i
\(27\) −4.40469 2.75657i −0.847684 0.530502i
\(28\) −1.93089 + 4.43393i −0.364904 + 0.837935i
\(29\) 2.81590 + 3.35586i 0.522899 + 0.623167i 0.961264 0.275630i \(-0.0888866\pi\)
−0.438365 + 0.898797i \(0.644442\pi\)
\(30\) 0.0981246 + 0.0843403i 0.0179150 + 0.0153984i
\(31\) 0.459948 + 1.26370i 0.0826090 + 0.226966i 0.974119 0.226034i \(-0.0725759\pi\)
−0.891510 + 0.453000i \(0.850354\pi\)
\(32\) −2.84078 + 3.38551i −0.502184 + 0.598480i
\(33\) 1.40266 2.36424i 0.244171 0.411562i
\(34\) 3.17100 0.559134i 0.543823 0.0958906i
\(35\) −0.283162 0.383121i −0.0478631 0.0647593i
\(36\) 2.62838 + 4.81270i 0.438063 + 0.802116i
\(37\) 2.09041 + 3.62070i 0.343662 + 0.595240i 0.985110 0.171927i \(-0.0549992\pi\)
−0.641448 + 0.767167i \(0.721666\pi\)
\(38\) −0.313148 1.77595i −0.0507993 0.288097i
\(39\) −1.40480 8.55966i −0.224948 1.37064i
\(40\) −0.0978025 0.268710i −0.0154639 0.0424868i
\(41\) 8.48927 + 7.12335i 1.32580 + 1.11248i 0.985039 + 0.172331i \(0.0551297\pi\)
0.340763 + 0.940149i \(0.389315\pi\)
\(42\) 0.517270 + 1.82945i 0.0798165 + 0.282290i
\(43\) −0.714703 0.260131i −0.108991 0.0396696i 0.286949 0.957946i \(-0.407359\pi\)
−0.395940 + 0.918276i \(0.629581\pi\)
\(44\) −2.51244 + 1.45056i −0.378764 + 0.218680i
\(45\) −0.540041 0.0128170i −0.0805046 0.00191065i
\(46\) 0.504413 0.873669i 0.0743716 0.128815i
\(47\) −8.67893 3.15887i −1.26595 0.460769i −0.380190 0.924908i \(-0.624141\pi\)
−0.885762 + 0.464139i \(0.846364\pi\)
\(48\) 0.0615850 5.19046i 0.00888903 0.749179i
\(49\) −0.358507 6.99081i −0.0512153 0.998688i
\(50\) −2.02959 0.357871i −0.287027 0.0506106i
\(51\) −8.76253 + 10.1947i −1.22700 + 1.42754i
\(52\) −3.13089 + 8.60205i −0.434176 + 1.19289i
\(53\) −8.42703 + 4.86535i −1.15754 + 0.668307i −0.950714 0.310071i \(-0.899647\pi\)
−0.206828 + 0.978377i \(0.566314\pi\)
\(54\) 1.99820 + 0.808921i 0.271920 + 0.110080i
\(55\) 0.285788i 0.0385357i
\(56\) 0.983146 4.08500i 0.131378 0.545881i
\(57\) 5.70962 + 4.90754i 0.756257 + 0.650020i
\(58\) −1.39224 1.16823i −0.182810 0.153396i
\(59\) 1.51017 + 1.26718i 0.196608 + 0.164973i 0.735777 0.677224i \(-0.236817\pi\)
−0.539169 + 0.842197i \(0.681262\pi\)
\(60\) 0.490289 + 0.290878i 0.0632960 + 0.0375522i
\(61\) −0.916897 + 2.51916i −0.117397 + 0.322545i −0.984449 0.175673i \(-0.943790\pi\)
0.867052 + 0.498218i \(0.166012\pi\)
\(62\) −0.278957 0.483169i −0.0354276 0.0613625i
\(63\) −6.51041 4.54033i −0.820235 0.572027i
\(64\) −2.08017 + 3.60297i −0.260022 + 0.450371i
\(65\) −0.579646 0.690796i −0.0718963 0.0856827i
\(66\) −0.402755 + 1.06700i −0.0495757 + 0.131338i
\(67\) −0.722307 + 4.09641i −0.0882438 + 0.500456i 0.908366 + 0.418177i \(0.137331\pi\)
−0.996609 + 0.0822786i \(0.973780\pi\)
\(68\) 13.3312 4.85215i 1.61664 0.588410i
\(69\) 0.682106 + 4.15618i 0.0821159 + 0.500345i
\(70\) 0.143291 + 0.136131i 0.0171266 + 0.0162708i
\(71\) 5.04844 + 2.91472i 0.599139 + 0.345913i 0.768703 0.639606i \(-0.220903\pi\)
−0.169564 + 0.985519i \(0.554236\pi\)
\(72\) −2.97492 3.72123i −0.350598 0.438551i
\(73\) −7.42228 4.28526i −0.868712 0.501551i −0.00179209 0.999998i \(-0.500570\pi\)
−0.866920 + 0.498447i \(0.833904\pi\)
\(74\) −1.11491 1.32870i −0.129606 0.154458i
\(75\) 7.50188 4.21334i 0.866243 0.486515i
\(76\) −2.71749 7.46625i −0.311718 0.856438i
\(77\) 2.31965 3.50034i 0.264349 0.398901i
\(78\) 1.19060 + 3.39599i 0.134809 + 0.384520i
\(79\) −0.884454 5.01599i −0.0995088 0.564343i −0.993272 0.115804i \(-0.963056\pi\)
0.893763 0.448539i \(-0.148055\pi\)
\(80\) −0.269820 0.467342i −0.0301668 0.0522504i
\(81\) −8.59374 + 2.67350i −0.954860 + 0.297056i
\(82\) −3.98161 2.29878i −0.439695 0.253858i
\(83\) 10.1615 8.52653i 1.11537 0.935909i 0.117011 0.993131i \(-0.462669\pi\)
0.998361 + 0.0572219i \(0.0182242\pi\)
\(84\) 3.64411 + 7.54220i 0.397605 + 0.822922i
\(85\) −0.242679 + 1.37630i −0.0263222 + 0.149281i
\(86\) 0.310744 + 0.0547926i 0.0335084 + 0.00590843i
\(87\) 7.58716 + 0.0900220i 0.813429 + 0.00965137i
\(88\) 1.93081 1.62014i 0.205825 0.172708i
\(89\) 8.19131 0.868278 0.434139 0.900846i \(-0.357053\pi\)
0.434139 + 0.900846i \(0.357053\pi\)
\(90\) 0.221566 0.0336687i 0.0233551 0.00354899i
\(91\) −1.49256 13.1657i −0.156463 1.38014i
\(92\) 1.52022 4.17676i 0.158493 0.435457i
\(93\) 2.17918 + 0.822565i 0.225970 + 0.0852960i
\(94\) 3.77349 + 0.665368i 0.389206 + 0.0686275i
\(95\) 0.770811 + 0.135915i 0.0790835 + 0.0139446i
\(96\) 1.23970 + 7.55370i 0.126527 + 0.770946i
\(97\) 1.63818 4.50085i 0.166332 0.456993i −0.828323 0.560251i \(-0.810705\pi\)
0.994655 + 0.103258i \(0.0329269\pi\)
\(98\) 0.650101 + 2.83038i 0.0656701 + 0.285912i
\(99\) −1.52189 4.51166i −0.152955 0.453439i
\(100\) −9.08015 −0.908015
\(101\) 9.59097 8.04778i 0.954337 0.800784i −0.0256856 0.999670i \(-0.508177\pi\)
0.980023 + 0.198886i \(0.0637324\pi\)
\(102\) 2.84564 4.79646i 0.281760 0.474920i
\(103\) 2.76125 + 0.486882i 0.272074 + 0.0479739i 0.308020 0.951380i \(-0.400334\pi\)
−0.0359467 + 0.999354i \(0.511445\pi\)
\(104\) 1.38104 7.83229i 0.135423 0.768020i
\(105\) −0.822931 0.0606045i −0.0803098 0.00591440i
\(106\) 3.09250 2.59491i 0.300370 0.252040i
\(107\) −6.82463 3.94020i −0.659762 0.380913i 0.132425 0.991193i \(-0.457724\pi\)
−0.792186 + 0.610280i \(0.791057\pi\)
\(108\) 9.28905 + 1.98112i 0.893839 + 0.190633i
\(109\) 8.69846 + 15.0662i 0.833161 + 1.44308i 0.895519 + 0.445024i \(0.146805\pi\)
−0.0623578 + 0.998054i \(0.519862\pi\)
\(110\) 0.0205886 + 0.116764i 0.00196304 + 0.0111330i
\(111\) 7.11597 + 1.34198i 0.675418 + 0.127375i
\(112\) 0.488502 7.91406i 0.0461591 0.747808i
\(113\) 1.02719 + 2.82219i 0.0966304 + 0.265490i 0.978585 0.205845i \(-0.0659944\pi\)
−0.881954 + 0.471335i \(0.843772\pi\)
\(114\) −2.68630 1.59373i −0.251595 0.149266i
\(115\) 0.281450 + 0.335419i 0.0262453 + 0.0312779i
\(116\) −6.93471 4.00376i −0.643872 0.371740i
\(117\) −12.8294 7.81866i −1.18608 0.722835i
\(118\) −0.708295 0.408934i −0.0652038 0.0376455i
\(119\) −14.1433 + 14.8872i −1.29652 + 1.36471i
\(120\) −0.463377 0.174909i −0.0423003 0.0159669i
\(121\) −7.96951 + 2.90066i −0.724501 + 0.263697i
\(122\) 0.193130 1.09530i 0.0174852 0.0991635i
\(123\) 18.9411 3.10859i 1.70786 0.280292i
\(124\) −1.58006 1.88304i −0.141893 0.169102i
\(125\) 0.897403 1.55435i 0.0802662 0.139025i
\(126\) 2.98703 + 1.38601i 0.266105 + 0.123475i
\(127\) 5.25357 + 9.09945i 0.466179 + 0.807446i 0.999254 0.0386222i \(-0.0122969\pi\)
−0.533075 + 0.846068i \(0.678964\pi\)
\(128\) 3.61343 9.92780i 0.319385 0.877502i
\(129\) −1.14859 + 0.645092i −0.101128 + 0.0567972i
\(130\) 0.286590 + 0.240477i 0.0251356 + 0.0210913i
\(131\) −11.1700 9.37272i −0.975925 0.818898i 0.00754465 0.999972i \(-0.497598\pi\)
−0.983470 + 0.181073i \(0.942043\pi\)
\(132\) −0.931210 + 4.93784i −0.0810514 + 0.429784i
\(133\) 8.33774 + 7.92111i 0.722973 + 0.686848i
\(134\) 1.72569i 0.149077i
\(135\) −0.626545 + 0.694888i −0.0539244 + 0.0598064i
\(136\) −10.6742 + 6.16274i −0.915304 + 0.528451i
\(137\) −2.17300 + 5.97027i −0.185652 + 0.510075i −0.997247 0.0741452i \(-0.976377\pi\)
0.811595 + 0.584220i \(0.198599\pi\)
\(138\) −0.578102 1.64894i −0.0492113 0.140367i
\(139\) −15.1483 2.67106i −1.28487 0.226556i −0.510821 0.859687i \(-0.670658\pi\)
−0.774045 + 0.633131i \(0.781769\pi\)
\(140\) 0.725890 + 0.481042i 0.0613489 + 0.0406555i
\(141\) −13.9478 + 7.83362i −1.17462 + 0.659710i
\(142\) −2.27260 0.827159i −0.190713 0.0694137i
\(143\) 3.97424 6.88358i 0.332343 0.575634i
\(144\) −6.74827 5.94095i −0.562356 0.495079i
\(145\) 0.683138 0.394410i 0.0567315 0.0327539i
\(146\) 3.34121 + 1.21610i 0.276521 + 0.100645i
\(147\) −9.58737 7.42175i −0.790753 0.612136i
\(148\) −5.85416 4.91223i −0.481209 0.403783i
\(149\) 5.96220 + 16.3810i 0.488442 + 1.34198i 0.902090 + 0.431547i \(0.142032\pi\)
−0.413648 + 0.910437i \(0.635746\pi\)
\(150\) −2.76148 + 2.26187i −0.225474 + 0.184681i
\(151\) 0.399188 + 2.26391i 0.0324854 + 0.184234i 0.996733 0.0807699i \(-0.0257379\pi\)
−0.964247 + 0.265004i \(0.914627\pi\)
\(152\) 3.45150 + 5.97818i 0.279954 + 0.484894i
\(153\) 3.49801 + 23.0196i 0.282797 + 1.86103i
\(154\) −0.695563 + 1.59723i −0.0560500 + 0.128709i
\(155\) 0.238471 0.0420489i 0.0191545 0.00337745i
\(156\) 7.76422 + 13.8243i 0.621635 + 1.10683i
\(157\) −3.60935 + 4.30145i −0.288057 + 0.343293i −0.890595 0.454797i \(-0.849712\pi\)
0.602538 + 0.798090i \(0.294156\pi\)
\(158\) 0.722716 + 1.98565i 0.0574962 + 0.157970i
\(159\) −3.12339 + 16.5621i −0.247701 + 1.31346i
\(160\) 0.511524 + 0.609611i 0.0404395 + 0.0481940i
\(161\) 0.724718 + 6.39265i 0.0571157 + 0.503811i
\(162\) 3.31851 1.71141i 0.260727 0.134461i
\(163\) 9.58450 16.6008i 0.750716 1.30028i −0.196760 0.980452i \(-0.563042\pi\)
0.947476 0.319827i \(-0.103625\pi\)
\(164\) −19.0349 6.92814i −1.48638 0.540997i
\(165\) −0.375390 0.322656i −0.0292241 0.0251188i
\(166\) −3.53740 + 4.21571i −0.274555 + 0.327202i
\(167\) −8.84469 + 3.21920i −0.684422 + 0.249109i −0.660745 0.750610i \(-0.729760\pi\)
−0.0236772 + 0.999720i \(0.507537\pi\)
\(168\) −4.25577 5.90337i −0.328340 0.455455i
\(169\) −2.09775 11.8969i −0.161365 0.915147i
\(170\) 0.579794i 0.0444681i
\(171\) 12.8924 1.95909i 0.985903 0.149816i
\(172\) 1.39024 0.106005
\(173\) 4.11126 3.44976i 0.312573 0.262280i −0.472981 0.881072i \(-0.656822\pi\)
0.785555 + 0.618792i \(0.212378\pi\)
\(174\) −3.10635 + 0.509809i −0.235492 + 0.0386485i
\(175\) 11.7654 5.85777i 0.889380 0.442805i
\(176\) 3.05745 3.64373i 0.230464 0.274656i
\(177\) 3.36947 0.552992i 0.253265 0.0415655i
\(178\) −3.34670 + 0.590113i −0.250846 + 0.0442308i
\(179\) 14.8693i 1.11138i −0.831389 0.555691i \(-0.812454\pi\)
0.831389 0.555691i \(-0.187546\pi\)
\(180\) 0.935614 0.315604i 0.0697366 0.0235237i
\(181\) −5.48950 + 3.16937i −0.408031 + 0.235577i −0.689944 0.723863i \(-0.742365\pi\)
0.281912 + 0.959440i \(0.409031\pi\)
\(182\) 1.55828 + 5.27153i 0.115508 + 0.390752i
\(183\) 2.27379 + 4.04851i 0.168084 + 0.299274i
\(184\) −0.670572 + 3.80300i −0.0494352 + 0.280361i
\(185\) 0.707418 0.257479i 0.0520104 0.0189302i
\(186\) −0.949598 0.179082i −0.0696279 0.0131309i
\(187\) −12.1311 + 2.13905i −0.887117 + 0.156423i
\(188\) 16.8822 1.23126
\(189\) −13.3141 + 3.42554i −0.968459 + 0.249172i
\(190\) −0.324719 −0.0235576
\(191\) 16.6883 2.94260i 1.20752 0.212919i 0.466575 0.884482i \(-0.345488\pi\)
0.740947 + 0.671563i \(0.234377\pi\)
\(192\) 2.38406 + 6.80012i 0.172055 + 0.490757i
\(193\) 11.5156 4.19135i 0.828915 0.301700i 0.107501 0.994205i \(-0.465715\pi\)
0.721413 + 0.692505i \(0.243493\pi\)
\(194\) −0.345057 + 1.95691i −0.0247736 + 0.140498i
\(195\) −1.56180 0.0185308i −0.111843 0.00132702i
\(196\) 4.98626 + 11.7836i 0.356161 + 0.841688i
\(197\) −11.7644 + 6.79216i −0.838176 + 0.483921i −0.856644 0.515908i \(-0.827455\pi\)
0.0184676 + 0.999829i \(0.494121\pi\)
\(198\) 0.946818 + 1.73368i 0.0672874 + 0.123207i
\(199\) 7.03966i 0.499028i 0.968371 + 0.249514i \(0.0802709\pi\)
−0.968371 + 0.249514i \(0.919729\pi\)
\(200\) 7.76902 1.36989i 0.549352 0.0968657i
\(201\) 4.56525 + 5.57363i 0.322008 + 0.393133i
\(202\) −3.33878 + 3.97900i −0.234915 + 0.279961i
\(203\) 11.5684 + 0.714068i 0.811941 + 0.0501177i
\(204\) 8.67753 22.9889i 0.607548 1.60955i
\(205\) 1.52862 1.28266i 0.106763 0.0895850i
\(206\) −1.16323 −0.0810459
\(207\) 6.22935 + 3.79638i 0.432970 + 0.263867i
\(208\) 15.0087i 1.04067i
\(209\) 1.19799 + 6.79417i 0.0828670 + 0.469962i
\(210\) 0.340588 0.0345240i 0.0235028 0.00238238i
\(211\) −12.4387 + 4.52733i −0.856318 + 0.311674i −0.732613 0.680645i \(-0.761700\pi\)
−0.123704 + 0.992319i \(0.539477\pi\)
\(212\) 11.4330 13.6253i 0.785221 0.935790i
\(213\) 9.52826 3.34052i 0.652866 0.228889i
\(214\) 3.07217 + 1.11818i 0.210009 + 0.0764371i
\(215\) −0.0684760 + 0.118604i −0.00467002 + 0.00808871i
\(216\) −8.24663 0.293650i −0.561112 0.0199804i
\(217\) 3.26210 + 1.42058i 0.221446 + 0.0964352i
\(218\) −4.63928 5.52888i −0.314212 0.374463i
\(219\) −14.0086 + 4.91128i −0.946612 + 0.331874i
\(220\) 0.178667 + 0.490884i 0.0120457 + 0.0330954i
\(221\) −24.9844 + 29.7753i −1.68063 + 2.00290i
\(222\) −3.00403 0.0356429i −0.201617 0.00239219i
\(223\) −12.9495 + 2.28334i −0.867162 + 0.152904i −0.589494 0.807773i \(-0.700673\pi\)
−0.277668 + 0.960677i \(0.589562\pi\)
\(224\) 1.31715 + 11.6184i 0.0880056 + 0.776288i
\(225\) 2.93532 14.6108i 0.195688 0.974053i
\(226\) −0.622992 1.07905i −0.0414408 0.0717776i
\(227\) −1.26546 7.17680i −0.0839918 0.476341i −0.997570 0.0696770i \(-0.977803\pi\)
0.913578 0.406664i \(-0.133308\pi\)
\(228\) −12.8752 4.85993i −0.852679 0.321857i
\(229\) 1.41178 + 3.87883i 0.0932930 + 0.256321i 0.977559 0.210664i \(-0.0675626\pi\)
−0.884265 + 0.466985i \(0.845340\pi\)
\(230\) −0.139155 0.116765i −0.00917560 0.00769924i
\(231\) −1.97889 6.99882i −0.130202 0.460489i
\(232\) 6.53740 + 2.37942i 0.429202 + 0.156217i
\(233\) −12.6906 + 7.32691i −0.831388 + 0.480002i −0.854328 0.519735i \(-0.826031\pi\)
0.0229398 + 0.999737i \(0.492697\pi\)
\(234\) 5.80491 + 2.27020i 0.379479 + 0.148407i
\(235\) −0.831531 + 1.44025i −0.0542431 + 0.0939518i
\(236\) −3.38615 1.23246i −0.220420 0.0802262i
\(237\) −7.58718 4.50132i −0.492840 0.292392i
\(238\) 4.70600 7.10133i 0.305045 0.460311i
\(239\) −22.4643 3.96107i −1.45310 0.256220i −0.609324 0.792921i \(-0.708559\pi\)
−0.843773 + 0.536701i \(0.819670\pi\)
\(240\) −0.918493 0.173215i −0.0592885 0.0111810i
\(241\) 0.269437 0.740271i 0.0173559 0.0476851i −0.930712 0.365753i \(-0.880812\pi\)
0.948068 + 0.318068i \(0.103034\pi\)
\(242\) 3.04711 1.75925i 0.195875 0.113089i
\(243\) −6.19065 + 14.3065i −0.397131 + 0.917762i
\(244\) 4.90024i 0.313706i
\(245\) −1.25088 0.155014i −0.0799160 0.00990349i
\(246\) −7.51476 + 2.63461i −0.479124 + 0.167977i
\(247\) 16.6759 + 13.9928i 1.06106 + 0.890338i
\(248\) 1.63599 + 1.37276i 0.103885 + 0.0871703i
\(249\) 0.272586 22.9739i 0.0172745 1.45591i
\(250\) −0.254672 + 0.699705i −0.0161069 + 0.0442532i
\(251\) −5.78209 10.0149i −0.364962 0.632133i 0.623808 0.781578i \(-0.285585\pi\)
−0.988770 + 0.149444i \(0.952251\pi\)
\(252\) 14.0211 + 3.72855i 0.883245 + 0.234877i
\(253\) −1.92971 + 3.34235i −0.121320 + 0.210132i
\(254\) −2.80197 3.33926i −0.175811 0.209524i
\(255\) 1.53382 + 1.87262i 0.0960516 + 0.117268i
\(256\) 0.683760 3.87780i 0.0427350 0.242362i
\(257\) 9.55906 3.47921i 0.596278 0.217027i −0.0262107 0.999656i \(-0.508344\pi\)
0.622488 + 0.782629i \(0.286122\pi\)
\(258\) 0.422803 0.346309i 0.0263225 0.0215603i
\(259\) 10.7544 + 2.58827i 0.668243 + 0.160828i
\(260\) 1.42750 + 0.824165i 0.0885295 + 0.0511125i
\(261\) 8.68419 9.86430i 0.537538 0.610585i
\(262\) 5.23890 + 3.02468i 0.323660 + 0.186865i
\(263\) 11.0604 + 13.1813i 0.682014 + 0.812793i 0.990365 0.138480i \(-0.0442216\pi\)
−0.308351 + 0.951273i \(0.599777\pi\)
\(264\) 0.0517947 4.36532i 0.00318774 0.268667i
\(265\) 0.599271 + 1.64648i 0.0368129 + 0.101143i
\(266\) −3.97717 2.63564i −0.243856 0.161601i
\(267\) 9.24803 10.7595i 0.565970 0.658471i
\(268\) −1.32029 7.48775i −0.0806497 0.457387i
\(269\) −5.09560 8.82584i −0.310684 0.538121i 0.667826 0.744317i \(-0.267225\pi\)
−0.978511 + 0.206196i \(0.933891\pi\)
\(270\) 0.205924 0.329045i 0.0125322 0.0200250i
\(271\) −6.85061 3.95520i −0.416145 0.240261i 0.277282 0.960789i \(-0.410566\pi\)
−0.693426 + 0.720527i \(0.743900\pi\)
\(272\) −17.8182 + 14.9512i −1.08039 + 0.906552i
\(273\) −18.9786 12.9036i −1.14864 0.780962i
\(274\) 0.457709 2.59580i 0.0276512 0.156818i
\(275\) 7.76448 + 1.36909i 0.468216 + 0.0825591i
\(276\) −3.76995 6.71242i −0.226924 0.404040i
\(277\) 10.5255 8.83194i 0.632416 0.530660i −0.269263 0.963067i \(-0.586780\pi\)
0.901679 + 0.432407i \(0.142336\pi\)
\(278\) 6.38153 0.382739
\(279\) 3.54076 1.93373i 0.211980 0.115769i
\(280\) −0.693648 0.302069i −0.0414534 0.0180521i
\(281\) 0.953112 2.61865i 0.0568579 0.156216i −0.908012 0.418944i \(-0.862400\pi\)
0.964870 + 0.262729i \(0.0846224\pi\)
\(282\) 5.13426 4.20537i 0.305741 0.250426i
\(283\) −16.1660 2.85051i −0.960972 0.169445i −0.328908 0.944362i \(-0.606681\pi\)
−0.632063 + 0.774917i \(0.717792\pi\)
\(284\) −10.4936 1.85031i −0.622683 0.109796i
\(285\) 1.04878 0.859032i 0.0621241 0.0508846i
\(286\) −1.12784 + 3.09871i −0.0666905 + 0.183231i
\(287\) 29.1335 3.30279i 1.71970 0.194957i
\(288\) 11.3216 + 6.89978i 0.667132 + 0.406573i
\(289\) 43.2377 2.54339
\(290\) −0.250693 + 0.210357i −0.0147212 + 0.0123526i
\(291\) −4.06248 7.23327i −0.238147 0.424022i
\(292\) 15.4279 + 2.72035i 0.902849 + 0.159197i
\(293\) −0.270460 + 1.53385i −0.0158004 + 0.0896087i −0.991688 0.128664i \(-0.958931\pi\)
0.975888 + 0.218273i \(0.0700422\pi\)
\(294\) 4.45175 + 2.34159i 0.259631 + 0.136564i
\(295\) 0.271928 0.228175i 0.0158323 0.0132849i
\(296\) 5.74994 + 3.31973i 0.334208 + 0.192955i
\(297\) −7.64440 3.09465i −0.443573 0.179570i
\(298\) −3.61606 6.26320i −0.209473 0.362818i
\(299\) 2.11467 + 11.9929i 0.122295 + 0.693567i
\(300\) −10.2515 + 11.9270i −0.591872 + 0.688606i
\(301\) −1.80136 + 0.896866i −0.103829 + 0.0516945i
\(302\) −0.326189 0.896198i −0.0187701 0.0515704i
\(303\) 0.257281 21.6840i 0.0147804 1.24571i
\(304\) 8.37359 + 9.97926i 0.480258 + 0.572350i
\(305\) 0.418050 + 0.241361i 0.0239375 + 0.0138203i
\(306\) −3.08753 9.15304i −0.176502 0.523245i
\(307\) 1.41615 + 0.817613i 0.0808238 + 0.0466637i 0.539867 0.841750i \(-0.318474\pi\)
−0.459043 + 0.888414i \(0.651808\pi\)
\(308\) −1.79603 + 7.46254i −0.102338 + 0.425218i
\(309\) 3.75699 3.07727i 0.213728 0.175060i
\(310\) −0.0944022 + 0.0343596i −0.00536168 + 0.00195149i
\(311\) 2.06271 11.6982i 0.116965 0.663344i −0.868793 0.495176i \(-0.835104\pi\)
0.985758 0.168168i \(-0.0537852\pi\)
\(312\) −8.72871 10.6567i −0.494166 0.603319i
\(313\) −1.19230 1.42093i −0.0673929 0.0803157i 0.731295 0.682062i \(-0.238916\pi\)
−0.798688 + 0.601746i \(0.794472\pi\)
\(314\) 1.16478 2.01745i 0.0657321 0.113851i
\(315\) −1.00870 + 1.01252i −0.0568337 + 0.0570489i
\(316\) 4.65504 + 8.06276i 0.261866 + 0.453566i
\(317\) −7.22432 + 19.8487i −0.405758 + 1.11481i 0.553640 + 0.832756i \(0.313238\pi\)
−0.959398 + 0.282055i \(0.908984\pi\)
\(318\) 0.0829572 6.99174i 0.00465201 0.392077i
\(319\) 5.32623 + 4.46924i 0.298212 + 0.250229i
\(320\) 0.573867 + 0.481532i 0.0320802 + 0.0269184i
\(321\) −12.8806 + 4.51582i −0.718924 + 0.252048i
\(322\) −0.756630 2.55961i −0.0421653 0.142642i
\(323\) 33.7367i 1.87716i
\(324\) 13.0896 9.96471i 0.727201 0.553595i
\(325\) 21.5448 12.4389i 1.19509 0.689986i
\(326\) −2.71996 + 7.47303i −0.150645 + 0.413893i
\(327\) 29.6104 + 5.58412i 1.63746 + 0.308803i
\(328\) 17.3316 + 3.05602i 0.956976 + 0.168741i
\(329\) −21.8747 + 10.8910i −1.20599 + 0.600440i
\(330\) 0.176616 + 0.104783i 0.00972242 + 0.00576811i
\(331\) −23.4181 8.52351i −1.28718 0.468494i −0.394378 0.918948i \(-0.629040\pi\)
−0.892800 + 0.450454i \(0.851262\pi\)
\(332\) −12.1234 + 20.9983i −0.665357 + 1.15243i
\(333\) 9.79669 7.83192i 0.536855 0.429186i
\(334\) 3.38173 1.95244i 0.185040 0.106833i
\(335\) 0.703826 + 0.256172i 0.0384541 + 0.0139962i
\(336\) −9.84380 9.57666i −0.537023 0.522450i
\(337\) 4.61488 + 3.87234i 0.251388 + 0.210940i 0.759770 0.650192i \(-0.225312\pi\)
−0.508382 + 0.861132i \(0.669756\pi\)
\(338\) 1.71414 + 4.70955i 0.0932368 + 0.256166i
\(339\) 4.86673 + 1.83702i 0.264325 + 0.0997734i
\(340\) −0.443589 2.51572i −0.0240570 0.136434i
\(341\) 1.06719 + 1.84843i 0.0577918 + 0.100098i
\(342\) −5.12625 + 1.72920i −0.277196 + 0.0935045i
\(343\) −14.0627 12.0516i −0.759312 0.650727i
\(344\) −1.18949 + 0.209740i −0.0641331 + 0.0113084i
\(345\) 0.758339 + 0.00899772i 0.0408276 + 0.000484421i
\(346\) −1.43120 + 1.70563i −0.0769416 + 0.0916955i
\(347\) −11.1036 30.5068i −0.596071 1.63769i −0.759028 0.651057i \(-0.774326\pi\)
0.162958 0.986633i \(-0.447897\pi\)
\(348\) −13.0884 + 4.58866i −0.701610 + 0.245978i
\(349\) −6.71581 8.00359i −0.359489 0.428422i 0.555740 0.831356i \(-0.312435\pi\)
−0.915229 + 0.402934i \(0.867990\pi\)
\(350\) −4.38494 + 3.24088i −0.234385 + 0.173232i
\(351\) −24.7544 + 8.02440i −1.32129 + 0.428311i
\(352\) −3.50717 + 6.07460i −0.186933 + 0.323777i
\(353\) 4.68991 + 1.70699i 0.249618 + 0.0908537i 0.463799 0.885940i \(-0.346486\pi\)
−0.214181 + 0.976794i \(0.568708\pi\)
\(354\) −1.33681 + 0.468675i −0.0710508 + 0.0249098i
\(355\) 0.674717 0.804097i 0.0358103 0.0426770i
\(356\) −14.0698 + 5.12099i −0.745698 + 0.271412i
\(357\) 3.58687 + 35.3854i 0.189837 + 1.87279i
\(358\) 1.07120 + 6.07508i 0.0566148 + 0.321078i
\(359\) 16.1906i 0.854506i 0.904132 + 0.427253i \(0.140519\pi\)
−0.904132 + 0.427253i \(0.859481\pi\)
\(360\) −0.752902 + 0.411185i −0.0396814 + 0.0216713i
\(361\) 0.105445 0.00554976
\(362\) 2.01450 1.69037i 0.105880 0.0888437i
\(363\) −5.18751 + 13.7430i −0.272274 + 0.721321i
\(364\) 10.7945 + 21.6809i 0.565787 + 1.13639i
\(365\) −0.991979 + 1.18219i −0.0519225 + 0.0618789i
\(366\) −1.22066 1.49028i −0.0638047 0.0778980i
\(367\) −11.3391 + 1.99938i −0.591895 + 0.104367i −0.461569 0.887104i \(-0.652713\pi\)
−0.130326 + 0.991471i \(0.541602\pi\)
\(368\) 7.28754i 0.379889i
\(369\) 17.3014 28.3893i 0.900675 1.47789i
\(370\) −0.270478 + 0.156161i −0.0140615 + 0.00811841i
\(371\) −6.02409 + 25.0303i −0.312755 + 1.29951i
\(372\) −4.25731 0.0505132i −0.220731 0.00261898i
\(373\) −5.79313 + 32.8545i −0.299957 + 1.70114i 0.346386 + 0.938092i \(0.387409\pi\)
−0.646343 + 0.763047i \(0.723702\pi\)
\(374\) 4.80228 1.74789i 0.248320 0.0903811i
\(375\) −1.02850 2.93363i −0.0531117 0.151492i
\(376\) −14.4445 + 2.54695i −0.744917 + 0.131349i
\(377\) 21.9390 1.12992
\(378\) 5.19292 2.35873i 0.267095 0.121320i
\(379\) −12.4601 −0.640032 −0.320016 0.947412i \(-0.603688\pi\)
−0.320016 + 0.947412i \(0.603688\pi\)
\(380\) −1.40895 + 0.248436i −0.0722777 + 0.0127445i
\(381\) 17.8837 + 3.37262i 0.916208 + 0.172785i
\(382\) −6.60629 + 2.40449i −0.338007 + 0.123024i
\(383\) 5.05101 28.6457i 0.258094 1.46373i −0.529908 0.848055i \(-0.677774\pi\)
0.788003 0.615672i \(-0.211115\pi\)
\(384\) −8.96085 15.9549i −0.457282 0.814193i
\(385\) −0.548181 0.520790i −0.0279379 0.0265419i
\(386\) −4.40296 + 2.54205i −0.224105 + 0.129387i
\(387\) −0.449419 + 2.23702i −0.0228453 + 0.113714i
\(388\) 8.75503i 0.444469i
\(389\) 10.6003 1.86913i 0.537459 0.0947685i 0.101671 0.994818i \(-0.467581\pi\)
0.435788 + 0.900050i \(0.356470\pi\)
\(390\) 0.639435 0.104943i 0.0323790 0.00531400i
\(391\) 12.1313 14.4575i 0.613505 0.731147i
\(392\) −6.04401 9.32987i −0.305269 0.471230i
\(393\) −24.9223 + 4.09020i −1.25716 + 0.206324i
\(394\) 4.31721 3.62257i 0.217498 0.182502i
\(395\) −0.917134 −0.0461460
\(396\) 5.43464 + 6.79801i 0.273101 + 0.341613i
\(397\) 39.1821i 1.96650i −0.182275 0.983248i \(-0.558346\pi\)
0.182275 0.983248i \(-0.441654\pi\)
\(398\) −0.507146 2.87617i −0.0254209 0.144169i
\(399\) 19.8179 2.00886i 0.992137 0.100569i
\(400\) 13.9896 5.09181i 0.699482 0.254590i
\(401\) 6.65975 7.93679i 0.332572 0.396344i −0.573681 0.819079i \(-0.694485\pi\)
0.906254 + 0.422734i \(0.138930\pi\)
\(402\) −2.26674 1.94831i −0.113055 0.0971729i
\(403\) 6.32864 + 2.30344i 0.315252 + 0.114742i
\(404\) −11.4427 + 19.8193i −0.569294 + 0.986045i
\(405\) 0.205381 + 1.60751i 0.0102055 + 0.0798780i
\(406\) −4.77790 + 0.541657i −0.237123 + 0.0268820i
\(407\) 4.26527 + 5.08315i 0.211421 + 0.251962i
\(408\) −3.95628 + 20.9786i −0.195865 + 1.03859i
\(409\) 8.09126 + 22.2306i 0.400087 + 1.09923i 0.962241 + 0.272198i \(0.0877506\pi\)
−0.562154 + 0.827033i \(0.690027\pi\)
\(410\) −0.532137 + 0.634176i −0.0262804 + 0.0313197i
\(411\) 5.38878 + 9.59475i 0.265809 + 0.473274i
\(412\) −5.04723 + 0.889964i −0.248659 + 0.0438454i
\(413\) 5.18261 0.587538i 0.255019 0.0289109i
\(414\) −2.81860 1.10230i −0.138527 0.0541752i
\(415\) −1.19427 2.06854i −0.0586245 0.101541i
\(416\) 3.84334 + 21.7966i 0.188435 + 1.06867i
\(417\) −20.6110 + 16.8821i −1.00933 + 0.826720i
\(418\) −0.978921 2.68956i −0.0478806 0.131551i
\(419\) 0.297747 + 0.249839i 0.0145459 + 0.0122054i 0.650032 0.759907i \(-0.274756\pi\)
−0.635486 + 0.772113i \(0.719200\pi\)
\(420\) 1.45139 0.410377i 0.0708208 0.0200243i
\(421\) −29.2829 10.6581i −1.42716 0.519444i −0.491044 0.871135i \(-0.663385\pi\)
−0.936116 + 0.351691i \(0.885607\pi\)
\(422\) 4.75590 2.74582i 0.231513 0.133664i
\(423\) −5.45748 + 27.1650i −0.265352 + 1.32081i
\(424\) −7.72652 + 13.3827i −0.375233 + 0.649922i
\(425\) −36.2297 13.1865i −1.75740 0.639640i
\(426\) −3.65227 + 2.05125i −0.176953 + 0.0993836i
\(427\) 3.16123 + 6.34937i 0.152983 + 0.307268i
\(428\) 14.1856 + 2.50131i 0.685688 + 0.120905i
\(429\) −4.55483 12.9919i −0.219909 0.627253i
\(430\) 0.0194326 0.0533907i 0.000937124 0.00257473i
\(431\) 20.9763 12.1107i 1.01039 0.583352i 0.0990874 0.995079i \(-0.468408\pi\)
0.911307 + 0.411727i \(0.135074\pi\)
\(432\) −15.4224 + 2.15668i −0.742011 + 0.103763i
\(433\) 10.0296i 0.481991i −0.970526 0.240995i \(-0.922526\pi\)
0.970526 0.240995i \(-0.0774739\pi\)
\(434\) −1.43513 0.345395i −0.0688882 0.0165795i
\(435\) 0.253198 1.34261i 0.0121399 0.0643732i
\(436\) −24.3599 20.4403i −1.16663 0.978915i
\(437\) −8.09706 6.79424i −0.387335 0.325013i
\(438\) 5.36962 3.01578i 0.256570 0.144100i
\(439\) −14.0388 + 38.5712i −0.670034 + 1.84090i −0.145834 + 0.989309i \(0.546587\pi\)
−0.524200 + 0.851595i \(0.675636\pi\)
\(440\) −0.226926 0.393048i −0.0108183 0.0187378i
\(441\) −20.5728 + 4.21407i −0.979659 + 0.200670i
\(442\) 8.06274 13.9651i 0.383506 0.664251i
\(443\) −22.4132 26.7110i −1.06488 1.26908i −0.961609 0.274424i \(-0.911513\pi\)
−0.103273 0.994653i \(-0.532932\pi\)
\(444\) −13.0617 + 2.14367i −0.619881 + 0.101734i
\(445\) 0.256125 1.45256i 0.0121415 0.0688578i
\(446\) 5.12623 1.86580i 0.242734 0.0883480i
\(447\) 28.2482 + 10.6627i 1.33609 + 0.504329i
\(448\) 3.12030 + 10.5557i 0.147420 + 0.498711i
\(449\) 0.655683 + 0.378559i 0.0309436 + 0.0178653i 0.515392 0.856955i \(-0.327646\pi\)
−0.484448 + 0.874820i \(0.660980\pi\)
\(450\) −0.146695 + 6.18094i −0.00691527 + 0.291373i
\(451\) 15.2322 + 8.79433i 0.717258 + 0.414109i
\(452\) −3.52872 4.20536i −0.165977 0.197804i
\(453\) 3.42438 + 2.03162i 0.160891 + 0.0954536i
\(454\) 1.03405 + 2.84103i 0.0485305 + 0.133336i
\(455\) −2.38133 0.146989i −0.111638 0.00689096i
\(456\) 11.7493 + 2.21575i 0.550209 + 0.103762i
\(457\) −5.45161 30.9176i −0.255015 1.44626i −0.796033 0.605253i \(-0.793072\pi\)
0.541018 0.841011i \(-0.318039\pi\)
\(458\) −0.856242 1.48305i −0.0400096 0.0692986i
\(459\) 34.1861 + 21.3945i 1.59567 + 0.998611i
\(460\) −0.693126 0.400177i −0.0323172 0.0186583i
\(461\) −8.35408 + 7.00990i −0.389088 + 0.326484i −0.816258 0.577688i \(-0.803955\pi\)
0.427170 + 0.904171i \(0.359511\pi\)
\(462\) 1.31271 + 2.71692i 0.0610730 + 0.126403i
\(463\) 1.23596 7.00945i 0.0574397 0.325757i −0.942525 0.334135i \(-0.891556\pi\)
0.999965 + 0.00837823i \(0.00266690\pi\)
\(464\) 12.9294 + 2.27979i 0.600230 + 0.105837i
\(465\) 0.214003 0.360712i 0.00992414 0.0167276i
\(466\) 4.65711 3.90778i 0.215736 0.181024i
\(467\) 13.2274 0.612090 0.306045 0.952017i \(-0.400994\pi\)
0.306045 + 0.952017i \(0.400994\pi\)
\(468\) 26.9244 + 5.40913i 1.24458 + 0.250037i
\(469\) 6.54122 + 8.85033i 0.302045 + 0.408670i
\(470\) 0.235978 0.648344i 0.0108849 0.0299059i
\(471\) 1.57510 + 9.59733i 0.0725768 + 0.442222i
\(472\) 3.08314 + 0.543641i 0.141913 + 0.0250231i
\(473\) −1.18880 0.209617i −0.0546610 0.00963820i
\(474\) 3.42415 + 1.29250i 0.157276 + 0.0593664i
\(475\) −7.38524 + 20.2908i −0.338858 + 0.931005i
\(476\) 14.9862 34.4131i 0.686891 1.57732i
\(477\) 18.2284 + 22.8014i 0.834623 + 1.04400i
\(478\) 9.46353 0.432852
\(479\) 1.52575 1.28025i 0.0697132 0.0584963i −0.607265 0.794499i \(-0.707733\pi\)
0.676978 + 0.736003i \(0.263289\pi\)
\(480\) 1.37825 + 0.0163530i 0.0629083 + 0.000746410i
\(481\) 20.6197 + 3.63580i 0.940175 + 0.165778i
\(482\) −0.0567527 + 0.321861i −0.00258501 + 0.0146603i
\(483\) 9.21512 + 6.26539i 0.419302 + 0.285085i
\(484\) 11.8754 9.96464i 0.539791 0.452938i
\(485\) −0.746909 0.431228i −0.0339154 0.0195811i
\(486\) 1.49864 6.29114i 0.0679795 0.285372i
\(487\) −7.16028 12.4020i −0.324463 0.561987i 0.656940 0.753943i \(-0.271850\pi\)
−0.981404 + 0.191956i \(0.938517\pi\)
\(488\) 0.739281 + 4.19267i 0.0334657 + 0.189793i
\(489\) −10.9847 31.3319i −0.496745 1.41688i
\(490\) 0.522236 0.0267816i 0.0235922 0.00120987i
\(491\) 9.11592 + 25.0458i 0.411396 + 1.13030i 0.956449 + 0.291899i \(0.0942871\pi\)
−0.545053 + 0.838401i \(0.683491\pi\)
\(492\) −30.5908 + 17.1809i −1.37914 + 0.774577i
\(493\) −21.8550 26.0458i −0.984300 1.17304i
\(494\) −7.82128 4.51562i −0.351896 0.203167i
\(495\) −0.847634 + 0.128805i −0.0380983 + 0.00578933i
\(496\) 3.49030 + 2.01513i 0.156719 + 0.0904819i
\(497\) 14.7906 4.37214i 0.663447 0.196117i
\(498\) 1.54370 + 9.40601i 0.0691749 + 0.421493i
\(499\) −20.0327 + 7.29129i −0.896785 + 0.326403i −0.748964 0.662611i \(-0.769448\pi\)
−0.147821 + 0.989014i \(0.547226\pi\)
\(500\) −0.569687 + 3.23086i −0.0254772 + 0.144488i
\(501\) −5.75718 + 15.2522i −0.257212 + 0.681419i
\(502\) 3.08385 + 3.67519i 0.137639 + 0.164032i
\(503\) −6.74300 + 11.6792i −0.300655 + 0.520751i −0.976285 0.216491i \(-0.930539\pi\)
0.675629 + 0.737242i \(0.263872\pi\)
\(504\) −12.5590 1.07486i −0.559423 0.0478780i
\(505\) −1.12721 1.95239i −0.0501604 0.0868803i
\(506\) 0.547626 1.50459i 0.0243450 0.0668872i
\(507\) −17.9953 10.6762i −0.799198 0.474147i
\(508\) −14.7125 12.3453i −0.652763 0.547733i
\(509\) −6.79910 5.70512i −0.301365 0.252875i 0.479547 0.877516i \(-0.340801\pi\)
−0.780912 + 0.624641i \(0.785245\pi\)
\(510\) −0.761574 0.654589i −0.0337231 0.0289857i
\(511\) −21.7453 + 6.42797i −0.961954 + 0.284357i
\(512\) 22.7635i 1.00601i
\(513\) 11.9822 19.1463i 0.529028 0.845328i
\(514\) −3.65486 + 2.11014i −0.161209 + 0.0930741i
\(515\) 0.172677 0.474425i 0.00760904 0.0209057i
\(516\) 1.56958 1.82611i 0.0690970 0.0803900i
\(517\) −14.4360 2.54546i −0.634897 0.111949i
\(518\) −4.58033 0.282725i −0.201248 0.0124222i
\(519\) 0.110286 9.29503i 0.00484101 0.408007i
\(520\) −1.34571 0.489798i −0.0590133 0.0214791i
\(521\) 21.3144 36.9177i 0.933802 1.61739i 0.157046 0.987591i \(-0.449803\pi\)
0.776756 0.629802i \(-0.216864\pi\)
\(522\) −2.83743 + 4.65584i −0.124191 + 0.203781i
\(523\) −19.7089 + 11.3789i −0.861809 + 0.497565i −0.864617 0.502431i \(-0.832439\pi\)
0.00280898 + 0.999996i \(0.499106\pi\)
\(524\) 25.0457 + 9.11587i 1.09412 + 0.398229i
\(525\) 5.58885 22.0676i 0.243917 0.963108i
\(526\) −5.46851 4.58862i −0.238438 0.200074i
\(527\) −3.56979 9.80791i −0.155502 0.427239i
\(528\) −1.33426 8.12983i −0.0580660 0.353805i
\(529\) 2.96712 + 16.8274i 0.129005 + 0.731625i
\(530\) −0.363457 0.629526i −0.0157876 0.0273449i
\(531\) 3.07777 5.05021i 0.133564 0.219161i
\(532\) −19.2734 8.39316i −0.835606 0.363890i
\(533\) 54.6557 9.63728i 2.36740 0.417437i
\(534\) −3.00331 + 5.06221i −0.129966 + 0.219063i
\(535\) −0.912103 + 1.08700i −0.0394336 + 0.0469952i
\(536\) 2.25930 + 6.20737i 0.0975867 + 0.268117i
\(537\) −19.5312 16.7875i −0.842832 0.724433i
\(538\) 2.71772 + 3.23885i 0.117169 + 0.139637i
\(539\) −2.48706 10.8281i −0.107125 0.466397i
\(540\) 0.641758 1.58527i 0.0276169 0.0682192i
\(541\) −1.69482 + 2.93552i −0.0728660 + 0.126208i −0.900156 0.435567i \(-0.856548\pi\)
0.827290 + 0.561775i \(0.189881\pi\)
\(542\) 3.08387 + 1.12244i 0.132463 + 0.0482127i
\(543\) −2.03463 + 10.7888i −0.0873142 + 0.462993i
\(544\) 22.0482 26.2760i 0.945307 1.12657i
\(545\) 2.94365 1.07140i 0.126092 0.0458938i
\(546\) 8.68360 + 3.90474i 0.371624 + 0.167107i
\(547\) −0.794100 4.50356i −0.0339532 0.192558i 0.963113 0.269096i \(-0.0867247\pi\)
−0.997067 + 0.0765371i \(0.975614\pi\)
\(548\) 11.6133i 0.496097i
\(549\) 7.88494 + 1.58409i 0.336521 + 0.0676074i
\(550\) −3.27094 −0.139473
\(551\) −14.5872 + 12.2401i −0.621435 + 0.521446i
\(552\) 4.23826 + 5.17442i 0.180392 + 0.220238i
\(553\) −11.2331 7.44408i −0.477679 0.316555i
\(554\) −3.66410 + 4.36671i −0.155673 + 0.185524i
\(555\) 0.460473 1.21991i 0.0195460 0.0517822i
\(556\) 27.6894 4.88239i 1.17429 0.207059i
\(557\) 28.3433i 1.20094i −0.799646 0.600472i \(-0.794979\pi\)
0.799646 0.600472i \(-0.205021\pi\)
\(558\) −1.30733 + 1.04514i −0.0553436 + 0.0442442i
\(559\) −3.29867 + 1.90449i −0.139519 + 0.0805511i
\(560\) −1.38812 0.334081i −0.0586586 0.0141175i
\(561\) −10.8864 + 18.3496i −0.459625 + 0.774719i
\(562\) −0.200758 + 1.13856i −0.00846848 + 0.0480271i
\(563\) 4.56240 1.66058i 0.192282 0.0699851i −0.244084 0.969754i \(-0.578487\pi\)
0.436367 + 0.899769i \(0.356265\pi\)
\(564\) 19.0601 22.1752i 0.802574 0.933744i
\(565\) 0.532575 0.0939073i 0.0224056 0.00395071i
\(566\) 6.81026 0.286257
\(567\) −10.5322 + 21.3559i −0.442309 + 0.896863i
\(568\) 9.25755 0.388438
\(569\) 24.0084 4.23332i 1.00648 0.177470i 0.353978 0.935254i \(-0.384829\pi\)
0.652506 + 0.757784i \(0.273718\pi\)
\(570\) −0.366609 + 0.426527i −0.0153556 + 0.0178652i
\(571\) 6.78414 2.46923i 0.283908 0.103334i −0.196141 0.980576i \(-0.562841\pi\)
0.480049 + 0.877242i \(0.340619\pi\)
\(572\) −2.52292 + 14.3082i −0.105488 + 0.598254i
\(573\) 14.9760 25.2427i 0.625630 1.05453i
\(574\) −11.6650 + 3.44822i −0.486889 + 0.143926i
\(575\) −10.4612 + 6.03976i −0.436261 + 0.251875i
\(576\) 11.6238 + 4.54584i 0.484323 + 0.189410i
\(577\) 26.1510i 1.08868i −0.838864 0.544340i \(-0.816780\pi\)
0.838864 0.544340i \(-0.183220\pi\)
\(578\) −17.6655 + 3.11490i −0.734786 + 0.129563i
\(579\) 7.49577 19.8582i 0.311513 0.825277i
\(580\) −0.926816 + 1.10454i −0.0384839 + 0.0458634i
\(581\) 2.16220 35.0290i 0.0897030 1.45325i
\(582\) 2.18089 + 2.66261i 0.0904007 + 0.110369i
\(583\) −11.8308 + 9.92722i −0.489982 + 0.411143i
\(584\) −13.6106 −0.563210
\(585\) −1.78762 + 2.03054i −0.0739090 + 0.0839527i
\(586\) 0.646165i 0.0266928i
\(587\) −3.34943 18.9956i −0.138246 0.784031i −0.972544 0.232718i \(-0.925238\pi\)
0.834298 0.551313i \(-0.185873\pi\)
\(588\) 21.1076 + 6.75419i 0.870463 + 0.278538i
\(589\) −5.49302 + 1.99929i −0.226336 + 0.0823795i
\(590\) −0.0946628 + 0.112815i −0.00389720 + 0.00464451i
\(591\) −4.36034 + 23.1212i −0.179361 + 0.951078i
\(592\) 11.7740 + 4.28539i 0.483908 + 0.176128i
\(593\) −19.5311 + 33.8289i −0.802047 + 1.38919i 0.116219 + 0.993224i \(0.462922\pi\)
−0.918266 + 0.395963i \(0.870411\pi\)
\(594\) 3.34619 + 0.713657i 0.137296 + 0.0292817i
\(595\) 2.19770 + 2.97351i 0.0900971 + 0.121902i
\(596\) −20.4819 24.4094i −0.838972 0.999848i
\(597\) 9.24677 + 7.94781i 0.378445 + 0.325282i
\(598\) −1.72797 4.74755i −0.0706618 0.194142i
\(599\) 5.53430 6.59552i 0.226125 0.269486i −0.641038 0.767509i \(-0.721496\pi\)
0.867164 + 0.498023i \(0.165941\pi\)
\(600\) 6.97187 11.7514i 0.284625 0.479749i
\(601\) 41.3305 7.28768i 1.68591 0.297271i 0.753168 0.657828i \(-0.228525\pi\)
0.932737 + 0.360557i \(0.117413\pi\)
\(602\) 0.671366 0.496202i 0.0273628 0.0202237i
\(603\) 12.4753 + 0.296081i 0.508033 + 0.0120574i
\(604\) −2.10100 3.63903i −0.0854883 0.148070i
\(605\) 0.265182 + 1.50392i 0.0107812 + 0.0611431i
\(606\) 1.45702 + 8.87787i 0.0591875 + 0.360639i
\(607\) 15.1581 + 41.6466i 0.615249 + 1.69038i 0.718323 + 0.695710i \(0.244910\pi\)
−0.103073 + 0.994674i \(0.532868\pi\)
\(608\) −14.7161 12.3483i −0.596817 0.500789i
\(609\) 13.9987 14.3892i 0.567256 0.583079i
\(610\) −0.188189 0.0684952i −0.00761955 0.00277329i
\(611\) −40.0570 + 23.1269i −1.62053 + 0.935615i
\(612\) −20.3996 37.3528i −0.824605 1.50990i
\(613\) −22.3176 + 38.6553i −0.901401 + 1.56127i −0.0757236 + 0.997129i \(0.524127\pi\)
−0.825677 + 0.564143i \(0.809207\pi\)
\(614\) −0.637493 0.232028i −0.0257271 0.00936390i
\(615\) 0.0410057 3.45601i 0.00165351 0.139360i
\(616\) 0.410843 6.65594i 0.0165534 0.268176i
\(617\) 26.5556 + 4.68248i 1.06909 + 0.188509i 0.680386 0.732854i \(-0.261812\pi\)
0.388703 + 0.921363i \(0.372923\pi\)
\(618\) −1.31329 + 1.52793i −0.0528282 + 0.0614623i
\(619\) 13.2165 36.3120i 0.531215 1.45950i −0.326411 0.945228i \(-0.605839\pi\)
0.857626 0.514274i \(-0.171939\pi\)
\(620\) −0.383322 + 0.221311i −0.0153946 + 0.00888807i
\(621\) 12.0196 3.89628i 0.482330 0.156352i
\(622\) 4.92809i 0.197599i
\(623\) 14.9270 15.7121i 0.598036 0.629491i
\(624\) −19.7143 16.9449i −0.789205 0.678339i
\(625\) 18.7794 + 15.7577i 0.751174 + 0.630310i
\(626\) 0.589500 + 0.494650i 0.0235612 + 0.0197702i
\(627\) 10.2769 + 6.09705i 0.410418 + 0.243493i
\(628\) 3.51044 9.64485i 0.140082 0.384871i
\(629\) −16.2243 28.1013i −0.646906 1.12047i
\(630\) 0.339177 0.486349i 0.0135131 0.0193766i
\(631\) −5.01811 + 8.69163i −0.199768 + 0.346008i −0.948453 0.316917i \(-0.897352\pi\)
0.748685 + 0.662926i \(0.230686\pi\)
\(632\) −5.19927 6.19625i −0.206816 0.246474i
\(633\) −8.09662 + 21.4500i −0.321812 + 0.852560i
\(634\) 1.52169 8.62995i 0.0604341 0.342739i
\(635\) 1.77786 0.647090i 0.0705524 0.0256790i
\(636\) −4.98930 30.4006i −0.197838 1.20546i
\(637\) −27.9735 21.1288i −1.10835 0.837153i
\(638\) −2.49809 1.44227i −0.0989002 0.0571001i
\(639\) 6.36958 16.2871i 0.251977 0.644307i
\(640\) −1.64750 0.951186i −0.0651233 0.0375989i
\(641\) 20.4966 + 24.4269i 0.809567 + 0.964804i 0.999857 0.0169239i \(-0.00538730\pi\)
−0.190290 + 0.981728i \(0.560943\pi\)
\(642\) 4.93725 2.77295i 0.194858 0.109439i
\(643\) −4.12226 11.3258i −0.162566 0.446646i 0.831487 0.555544i \(-0.187490\pi\)
−0.994053 + 0.108898i \(0.965268\pi\)
\(644\) −5.24132 10.5273i −0.206537 0.414832i
\(645\) 0.0784795 + 0.223849i 0.00309013 + 0.00881405i
\(646\) 2.43043 + 13.7837i 0.0956242 + 0.542312i
\(647\) 21.3692 + 37.0126i 0.840111 + 1.45512i 0.889800 + 0.456351i \(0.150844\pi\)
−0.0496886 + 0.998765i \(0.515823\pi\)
\(648\) −9.69620 + 10.5006i −0.380903 + 0.412504i
\(649\) 2.70969 + 1.56444i 0.106365 + 0.0614096i
\(650\) −7.90637 + 6.63424i −0.310114 + 0.260216i
\(651\) 5.54889 2.68101i 0.217478 0.105077i
\(652\) −6.08441 + 34.5064i −0.238284 + 1.35137i
\(653\) 14.0027 + 2.46906i 0.547970 + 0.0966218i 0.440777 0.897616i \(-0.354703\pi\)
0.107192 + 0.994238i \(0.465814\pi\)
\(654\) −12.5001 0.148314i −0.488793 0.00579954i
\(655\) −2.01132 + 1.68769i −0.0785886 + 0.0659437i
\(656\) 33.2118 1.29670
\(657\) −9.36465 + 23.9455i −0.365350 + 0.934202i
\(658\) 8.15267 6.02558i 0.317824 0.234902i
\(659\) 0.747205 2.05293i 0.0291070 0.0799707i −0.924288 0.381696i \(-0.875340\pi\)
0.953395 + 0.301725i \(0.0975624\pi\)
\(660\) 0.846505 + 0.319526i 0.0329501 + 0.0124375i
\(661\) −19.1020 3.36819i −0.742980 0.131007i −0.210670 0.977557i \(-0.567565\pi\)
−0.532310 + 0.846550i \(0.678676\pi\)
\(662\) 10.1819 + 1.79535i 0.395731 + 0.0697781i
\(663\) 10.9031 + 66.4341i 0.423440 + 2.58008i
\(664\) 7.20488 19.7952i 0.279604 0.768204i
\(665\) 1.66535 1.23085i 0.0645793 0.0477301i
\(666\) −3.43838 + 3.90562i −0.133234 + 0.151340i
\(667\) −10.6526 −0.412469
\(668\) 13.1795 11.0589i 0.509930 0.427882i
\(669\) −11.6208 + 19.5874i −0.449286 + 0.757292i
\(670\) −0.306015 0.0539587i −0.0118224 0.00208460i
\(671\) −0.738849 + 4.19022i −0.0285229 + 0.161762i
\(672\) 16.7481 + 11.3871i 0.646074 + 0.439268i
\(673\) −8.85877 + 7.43339i −0.341480 + 0.286536i −0.797358 0.603506i \(-0.793770\pi\)
0.455878 + 0.890042i \(0.349325\pi\)
\(674\) −2.16445 1.24965i −0.0833716 0.0481346i
\(675\) −15.8777 20.3513i −0.611131 0.783321i
\(676\) 11.0408 + 19.1233i 0.424647 + 0.735510i
\(677\) −2.04862 11.6183i −0.0787348 0.446527i −0.998534 0.0541367i \(-0.982759\pi\)
0.919799 0.392390i \(-0.128352\pi\)
\(678\) −2.12073 0.399940i −0.0814460 0.0153596i
\(679\) −5.64802 11.3441i −0.216751 0.435347i
\(680\) 0.759073 + 2.08554i 0.0291091 + 0.0799767i
\(681\) −10.8556 6.44042i −0.415988 0.246797i
\(682\) −0.569183 0.678326i −0.0217951 0.0259744i
\(683\) 20.5498 + 11.8644i 0.786317 + 0.453980i 0.838664 0.544648i \(-0.183337\pi\)
−0.0523472 + 0.998629i \(0.516670\pi\)
\(684\) −20.9198 + 11.4250i −0.799888 + 0.436845i
\(685\) 0.990756 + 0.572013i 0.0378549 + 0.0218555i
\(686\) 6.61374 + 3.91080i 0.252514 + 0.149315i
\(687\) 6.68885 + 2.52481i 0.255196 + 0.0963275i
\(688\) −2.14191 + 0.779592i −0.0816596 + 0.0297217i
\(689\) −8.46217 + 47.9913i −0.322383 + 1.82832i
\(690\) −0.310480 + 0.0509555i −0.0118198 + 0.00193984i
\(691\) −4.08371 4.86678i −0.155352 0.185141i 0.682755 0.730648i \(-0.260782\pi\)
−0.838107 + 0.545507i \(0.816337\pi\)
\(692\) −4.90500 + 8.49571i −0.186460 + 0.322959i
\(693\) −11.4273 5.30237i −0.434088 0.201421i
\(694\) 6.73429 + 11.6641i 0.255630 + 0.442765i
\(695\) −0.947313 + 2.60272i −0.0359336 + 0.0987268i
\(696\) 10.5062 5.90067i 0.398236 0.223664i
\(697\) −65.8877 55.2864i −2.49568 2.09412i
\(698\) 3.32044 + 2.78618i 0.125681 + 0.105459i
\(699\) −4.70364 + 24.9415i −0.177908 + 0.943375i
\(700\) −16.5467 + 17.4170i −0.625406 + 0.658300i
\(701\) 30.6664i 1.15825i −0.815238 0.579126i \(-0.803394\pi\)
0.815238 0.579126i \(-0.196606\pi\)
\(702\) 9.53573 5.06184i 0.359903 0.191047i
\(703\) −15.7384 + 9.08659i −0.593586 + 0.342707i
\(704\) −2.25838 + 6.20485i −0.0851160 + 0.233854i
\(705\) 0.953009 + 2.71829i 0.0358924 + 0.102377i
\(706\) −2.03911 0.359550i −0.0767430 0.0135319i
\(707\) 2.04079 33.0622i 0.0767518 1.24343i
\(708\) −5.44185 + 3.05635i −0.204517 + 0.114865i
\(709\) 13.9023 + 5.06001i 0.522111 + 0.190033i 0.589612 0.807686i \(-0.299281\pi\)
−0.0675015 + 0.997719i \(0.521503\pi\)
\(710\) −0.217739 + 0.377134i −0.00817159 + 0.0141536i
\(711\) −14.4786 + 4.88395i −0.542988 + 0.183162i
\(712\) 11.2656 6.50420i 0.422196 0.243755i
\(713\) −3.07289 1.11844i −0.115081 0.0418860i
\(714\) −4.01468 14.1989i −0.150246 0.531380i
\(715\) −1.09639 0.919982i −0.0410027 0.0344054i
\(716\) 9.29587 + 25.5402i 0.347403 + 0.954481i
\(717\) −30.5653 + 25.0354i −1.14148 + 0.934965i
\(718\) −1.16639 6.61492i −0.0435293 0.246867i
\(719\) −4.89820 8.48393i −0.182672 0.316397i 0.760118 0.649786i \(-0.225141\pi\)
−0.942790 + 0.333388i \(0.891808\pi\)
\(720\) −1.26451 + 1.01090i −0.0471253 + 0.0376741i
\(721\) 5.96570 4.40921i 0.222174 0.164208i
\(722\) −0.0430815 + 0.00759643i −0.00160333 + 0.000282710i
\(723\) −0.668170 1.18968i −0.0248495 0.0442447i
\(724\) 7.44763 8.87574i 0.276789 0.329864i
\(725\) 7.44296 + 20.4494i 0.276425 + 0.759470i
\(726\) 1.12938 5.98865i 0.0419152 0.222260i
\(727\) 29.0898 + 34.6679i 1.07888 + 1.28576i 0.956009 + 0.293339i \(0.0947663\pi\)
0.122873 + 0.992422i \(0.460789\pi\)
\(728\) −12.5068 16.9218i −0.463531 0.627162i
\(729\) 11.8027 + 24.2837i 0.437136 + 0.899395i
\(730\) 0.320122 0.554468i 0.0118483 0.0205218i
\(731\) 5.54702 + 2.01895i 0.205164 + 0.0746736i
\(732\) −6.43659 5.53239i −0.237903 0.204483i
\(733\) −15.4136 + 18.3692i −0.569315 + 0.678483i −0.971490 0.237079i \(-0.923810\pi\)
0.402175 + 0.915563i \(0.368254\pi\)
\(734\) 4.48873 1.63376i 0.165682 0.0603033i
\(735\) −1.61587 + 1.46806i −0.0596022 + 0.0541500i
\(736\) −1.86615 10.5834i −0.0687871 0.390111i
\(737\) 6.60188i 0.243184i
\(738\) −5.02357 + 12.8453i −0.184920 + 0.472843i
\(739\) −22.3128 −0.820790 −0.410395 0.911908i \(-0.634609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(740\) −1.05413 + 0.884518i −0.0387505 + 0.0325155i
\(741\) 37.2070 6.10637i 1.36683 0.224323i
\(742\) 0.658029 10.6605i 0.0241570 0.391360i
\(743\) −28.1973 + 33.6043i −1.03446 + 1.23282i −0.0624085 + 0.998051i \(0.519878\pi\)
−0.972051 + 0.234770i \(0.924566\pi\)
\(744\) 3.65019 0.599065i 0.133823 0.0219628i
\(745\) 3.09125 0.545071i 0.113255 0.0199699i
\(746\) 13.8406i 0.506739i
\(747\) −29.8691 26.2957i −1.09285 0.962109i
\(748\) 19.4998 11.2582i 0.712982 0.411641i
\(749\) −19.9943 + 5.91038i −0.730576 + 0.215961i
\(750\) 0.631555 + 1.12449i 0.0230611 + 0.0410605i
\(751\) −3.23209 + 18.3301i −0.117941 + 0.668875i 0.867311 + 0.497766i \(0.165846\pi\)
−0.985252 + 0.171109i \(0.945265\pi\)
\(752\) −26.0101 + 9.46690i −0.948491 + 0.345222i
\(753\) −19.6828 3.71191i −0.717281 0.135270i
\(754\) −8.96354 + 1.58051i −0.326433 + 0.0575589i
\(755\) 0.413938 0.0150647
\(756\) 20.7274 14.2075i 0.753849 0.516722i
\(757\) 26.2705 0.954819 0.477410 0.878681i \(-0.341576\pi\)
0.477410 + 0.878681i \(0.341576\pi\)
\(758\) 5.09078 0.897641i 0.184905 0.0326038i
\(759\) 2.21162 + 6.30825i 0.0802766 + 0.228975i
\(760\) 1.16803 0.425126i 0.0423687 0.0154210i
\(761\) 2.11972 12.0216i 0.0768399 0.435781i −0.921981 0.387235i \(-0.873430\pi\)
0.998821 0.0485459i \(-0.0154587\pi\)
\(762\) −7.54964 0.0895767i −0.273494 0.00324502i
\(763\) 44.7501 + 10.7701i 1.62006 + 0.389904i
\(764\) −26.8250 + 15.4874i −0.970494 + 0.560315i
\(765\) 4.19142 + 0.0994767i 0.151541 + 0.00359659i
\(766\) 12.0676i 0.436018i
\(767\) 9.72280