Properties

Label 189.2.ba.a.5.13
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.13
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.357086 - 0.0629638i) q^{2} +(-1.26279 - 1.18548i) q^{3} +(-1.75584 + 0.639073i) q^{4} +(-0.363271 + 2.06021i) q^{5} +(-0.525567 - 0.343807i) q^{6} +(1.11830 + 2.39779i) q^{7} +(-1.21478 + 0.701352i) q^{8} +(0.189288 + 2.99402i) q^{9} +O(q^{10})\) \(q+(0.357086 - 0.0629638i) q^{2} +(-1.26279 - 1.18548i) q^{3} +(-1.75584 + 0.639073i) q^{4} +(-0.363271 + 2.06021i) q^{5} +(-0.525567 - 0.343807i) q^{6} +(1.11830 + 2.39779i) q^{7} +(-1.21478 + 0.701352i) q^{8} +(0.189288 + 2.99402i) q^{9} +0.758545i q^{10} +(1.41640 - 0.249750i) q^{11} +(2.97487 + 1.27449i) q^{12} +(-1.90689 + 2.27254i) q^{13} +(0.550303 + 0.785805i) q^{14} +(2.90107 - 2.17097i) q^{15} +(2.47313 - 2.07520i) q^{16} -4.77323 q^{17} +(0.256107 + 1.05720i) q^{18} +3.09743i q^{19} +(-0.678781 - 3.84956i) q^{20} +(1.43035 - 4.35363i) q^{21} +(0.490052 - 0.178364i) q^{22} +(-1.57013 + 1.87121i) q^{23} +(2.36545 + 0.554429i) q^{24} +(0.585952 + 0.213269i) q^{25} +(-0.537835 + 0.931558i) q^{26} +(3.31031 - 4.00522i) q^{27} +(-3.49592 - 3.49546i) q^{28} +(-4.37519 - 5.21415i) q^{29} +(0.899238 - 0.957885i) q^{30} +(-0.879617 - 2.41673i) q^{31} +(2.55574 - 3.04581i) q^{32} +(-2.08470 - 1.36373i) q^{33} +(-1.70445 + 0.300541i) q^{34} +(-5.34621 + 1.43289i) q^{35} +(-2.24576 - 5.13605i) q^{36} +(5.23320 + 9.06416i) q^{37} +(0.195026 + 1.10605i) q^{38} +(5.10206 - 0.609175i) q^{39} +(-1.00364 - 2.75748i) q^{40} +(-6.50393 - 5.45744i) q^{41} +(0.236635 - 1.64468i) q^{42} +(10.0808 + 3.66912i) q^{43} +(-2.32737 + 1.34371i) q^{44} +(-6.23709 - 0.697669i) q^{45} +(-0.442854 + 0.767045i) q^{46} +(0.563184 + 0.204982i) q^{47} +(-5.58315 - 0.311290i) q^{48} +(-4.49881 + 5.36290i) q^{49} +(0.222663 + 0.0392615i) q^{50} +(6.02759 + 5.65855i) q^{51} +(1.89587 - 5.20887i) q^{52} +(8.71769 - 5.03316i) q^{53} +(0.929881 - 1.63864i) q^{54} +3.00882i q^{55} +(-3.04018 - 2.12846i) q^{56} +(3.67194 - 3.91141i) q^{57} +(-1.89062 - 1.58642i) q^{58} +(11.0116 + 9.23981i) q^{59} +(-3.70641 + 5.66587i) q^{60} +(2.19799 - 6.03893i) q^{61} +(-0.466265 - 0.807595i) q^{62} +(-6.96736 + 3.80209i) q^{63} +(-2.50760 + 4.34329i) q^{64} +(-3.98921 - 4.75415i) q^{65} +(-0.830281 - 0.355709i) q^{66} +(0.588274 - 3.33627i) q^{67} +(8.38102 - 3.05044i) q^{68} +(4.20103 - 0.501595i) q^{69} +(-1.81883 + 0.848281i) q^{70} +(6.21996 + 3.59109i) q^{71} +(-2.32981 - 3.50432i) q^{72} +(1.53618 + 0.886916i) q^{73} +(2.43941 + 2.90718i) q^{74} +(-0.487110 - 0.963947i) q^{75} +(-1.97949 - 5.43860i) q^{76} +(2.18281 + 3.11695i) q^{77} +(1.78352 - 0.538773i) q^{78} +(-0.456953 - 2.59151i) q^{79} +(3.37694 + 5.84903i) q^{80} +(-8.92834 + 1.13346i) q^{81} +(-2.66608 - 1.53926i) q^{82} +(-5.95599 + 4.99767i) q^{83} +(0.270829 + 8.55838i) q^{84} +(1.73398 - 9.83386i) q^{85} +(3.83074 + 0.675463i) q^{86} +(-0.656298 + 11.7711i) q^{87} +(-1.54545 + 1.29679i) q^{88} -10.6703 q^{89} +(-2.27110 + 0.143583i) q^{90} +(-7.58157 - 2.03094i) q^{91} +(1.56106 - 4.28898i) q^{92} +(-1.75420 + 4.09459i) q^{93} +(0.214011 + 0.0377360i) q^{94} +(-6.38137 - 1.12521i) q^{95} +(-6.83810 + 0.816456i) q^{96} +(-2.10510 + 5.78373i) q^{97} +(-1.26879 + 2.19828i) q^{98} +(1.01587 + 4.19347i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.357086 0.0629638i 0.252498 0.0445221i −0.0459666 0.998943i \(-0.514637\pi\)
0.298464 + 0.954421i \(0.403526\pi\)
\(3\) −1.26279 1.18548i −0.729073 0.684436i
\(4\) −1.75584 + 0.639073i −0.877920 + 0.319537i
\(5\) −0.363271 + 2.06021i −0.162460 + 0.921355i 0.789185 + 0.614155i \(0.210503\pi\)
−0.951645 + 0.307200i \(0.900608\pi\)
\(6\) −0.525567 0.343807i −0.214562 0.140358i
\(7\) 1.11830 + 2.39779i 0.422678 + 0.906280i
\(8\) −1.21478 + 0.701352i −0.429489 + 0.247966i
\(9\) 0.189288 + 2.99402i 0.0630959 + 0.998007i
\(10\) 0.758545i 0.239873i
\(11\) 1.41640 0.249750i 0.427062 0.0753026i 0.0440139 0.999031i \(-0.485985\pi\)
0.383048 + 0.923728i \(0.374874\pi\)
\(12\) 2.97487 + 1.27449i 0.858770 + 0.367914i
\(13\) −1.90689 + 2.27254i −0.528877 + 0.630291i −0.962656 0.270729i \(-0.912735\pi\)
0.433779 + 0.901019i \(0.357180\pi\)
\(14\) 0.550303 + 0.785805i 0.147075 + 0.210015i
\(15\) 2.90107 2.17097i 0.749053 0.560542i
\(16\) 2.47313 2.07520i 0.618282 0.518800i
\(17\) −4.77323 −1.15768 −0.578839 0.815442i \(-0.696494\pi\)
−0.578839 + 0.815442i \(0.696494\pi\)
\(18\) 0.256107 + 1.05720i 0.0603650 + 0.249185i
\(19\) 3.09743i 0.710600i 0.934752 + 0.355300i \(0.115621\pi\)
−0.934752 + 0.355300i \(0.884379\pi\)
\(20\) −0.678781 3.84956i −0.151780 0.860788i
\(21\) 1.43035 4.35363i 0.312127 0.950040i
\(22\) 0.490052 0.178364i 0.104480 0.0380274i
\(23\) −1.57013 + 1.87121i −0.327396 + 0.390175i −0.904485 0.426506i \(-0.859744\pi\)
0.577089 + 0.816681i \(0.304189\pi\)
\(24\) 2.36545 + 0.554429i 0.482845 + 0.113172i
\(25\) 0.585952 + 0.213269i 0.117190 + 0.0426538i
\(26\) −0.537835 + 0.931558i −0.105478 + 0.182694i
\(27\) 3.31031 4.00522i 0.637070 0.770806i
\(28\) −3.49592 3.49546i −0.660667 0.660580i
\(29\) −4.37519 5.21415i −0.812452 0.968243i 0.187450 0.982274i \(-0.439978\pi\)
−0.999902 + 0.0140317i \(0.995533\pi\)
\(30\) 0.899238 0.957885i 0.164178 0.174885i
\(31\) −0.879617 2.41673i −0.157984 0.434057i 0.835295 0.549802i \(-0.185297\pi\)
−0.993279 + 0.115745i \(0.963075\pi\)
\(32\) 2.55574 3.04581i 0.451795 0.538428i
\(33\) −2.08470 1.36373i −0.362899 0.237395i
\(34\) −1.70445 + 0.300541i −0.292311 + 0.0515423i
\(35\) −5.34621 + 1.43289i −0.903674 + 0.242202i
\(36\) −2.24576 5.13605i −0.374293 0.856009i
\(37\) 5.23320 + 9.06416i 0.860332 + 1.49014i 0.871609 + 0.490202i \(0.163077\pi\)
−0.0112767 + 0.999936i \(0.503590\pi\)
\(38\) 0.195026 + 1.10605i 0.0316374 + 0.179425i
\(39\) 5.10206 0.609175i 0.816983 0.0975461i
\(40\) −1.00364 2.75748i −0.158690 0.435996i
\(41\) −6.50393 5.45744i −1.01574 0.852310i −0.0266565 0.999645i \(-0.508486\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(42\) 0.236635 1.64468i 0.0365136 0.253780i
\(43\) 10.0808 + 3.66912i 1.53731 + 0.559535i 0.965398 0.260779i \(-0.0839794\pi\)
0.571913 + 0.820315i \(0.306202\pi\)
\(44\) −2.32737 + 1.34371i −0.350864 + 0.202572i
\(45\) −6.23709 0.697669i −0.929770 0.104002i
\(46\) −0.442854 + 0.767045i −0.0652952 + 0.113095i
\(47\) 0.563184 + 0.204982i 0.0821488 + 0.0298997i 0.382768 0.923845i \(-0.374971\pi\)
−0.300619 + 0.953744i \(0.597193\pi\)
\(48\) −5.58315 0.311290i −0.805858 0.0449308i
\(49\) −4.49881 + 5.36290i −0.642687 + 0.766129i
\(50\) 0.222663 + 0.0392615i 0.0314893 + 0.00555242i
\(51\) 6.02759 + 5.65855i 0.844032 + 0.792356i
\(52\) 1.89587 5.20887i 0.262910 0.722340i
\(53\) 8.71769 5.03316i 1.19747 0.691358i 0.237477 0.971393i \(-0.423680\pi\)
0.959990 + 0.280036i \(0.0903462\pi\)
\(54\) 0.929881 1.63864i 0.126541 0.222990i
\(55\) 3.00882i 0.405709i
\(56\) −3.04018 2.12846i −0.406262 0.284428i
\(57\) 3.67194 3.91141i 0.486360 0.518079i
\(58\) −1.89062 1.58642i −0.248250 0.208307i
\(59\) 11.0116 + 9.23981i 1.43359 + 1.20292i 0.943555 + 0.331215i \(0.107459\pi\)
0.490030 + 0.871706i \(0.336986\pi\)
\(60\) −3.70641 + 5.66587i −0.478495 + 0.731461i
\(61\) 2.19799 6.03893i 0.281424 0.773206i −0.715769 0.698337i \(-0.753924\pi\)
0.997193 0.0748693i \(-0.0238540\pi\)
\(62\) −0.466265 0.807595i −0.0592157 0.102565i
\(63\) −6.96736 + 3.80209i −0.877805 + 0.479018i
\(64\) −2.50760 + 4.34329i −0.313450 + 0.542911i
\(65\) −3.98921 4.75415i −0.494800 0.589680i
\(66\) −0.830281 0.355709i −0.102201 0.0437847i
\(67\) 0.588274 3.33627i 0.0718691 0.407590i −0.927556 0.373684i \(-0.878094\pi\)
0.999425 0.0339055i \(-0.0107945\pi\)
\(68\) 8.38102 3.05044i 1.01635 0.369920i
\(69\) 4.20103 0.501595i 0.505745 0.0603849i
\(70\) −1.81883 + 0.848281i −0.217392 + 0.101389i
\(71\) 6.21996 + 3.59109i 0.738173 + 0.426184i 0.821405 0.570346i \(-0.193191\pi\)
−0.0832317 + 0.996530i \(0.526524\pi\)
\(72\) −2.32981 3.50432i −0.274570 0.412988i
\(73\) 1.53618 + 0.886916i 0.179797 + 0.103806i 0.587197 0.809444i \(-0.300231\pi\)
−0.407400 + 0.913250i \(0.633565\pi\)
\(74\) 2.43941 + 2.90718i 0.283576 + 0.337953i
\(75\) −0.487110 0.963947i −0.0562466 0.111307i
\(76\) −1.97949 5.43860i −0.227063 0.623850i
\(77\) 2.18281 + 3.11695i 0.248755 + 0.355209i
\(78\) 1.78352 0.538773i 0.201943 0.0610040i
\(79\) −0.456953 2.59151i −0.0514112 0.291568i 0.948252 0.317519i \(-0.102850\pi\)
−0.999663 + 0.0259512i \(0.991739\pi\)
\(80\) 3.37694 + 5.84903i 0.377553 + 0.653941i
\(81\) −8.92834 + 1.13346i −0.992038 + 0.125940i
\(82\) −2.66608 1.53926i −0.294419 0.169983i
\(83\) −5.95599 + 4.99767i −0.653754 + 0.548565i −0.908208 0.418520i \(-0.862549\pi\)
0.254453 + 0.967085i \(0.418105\pi\)
\(84\) 0.270829 + 8.55838i 0.0295498 + 0.933795i
\(85\) 1.73398 9.83386i 0.188076 1.06663i
\(86\) 3.83074 + 0.675463i 0.413079 + 0.0728370i
\(87\) −0.656298 + 11.7711i −0.0703626 + 1.26199i
\(88\) −1.54545 + 1.29679i −0.164746 + 0.138238i
\(89\) −10.6703 −1.13105 −0.565523 0.824733i \(-0.691326\pi\)
−0.565523 + 0.824733i \(0.691326\pi\)
\(90\) −2.27110 + 0.143583i −0.239395 + 0.0151350i
\(91\) −7.58157 2.03094i −0.794764 0.212901i
\(92\) 1.56106 4.28898i 0.162752 0.447157i
\(93\) −1.75420 + 4.09459i −0.181902 + 0.424589i
\(94\) 0.214011 + 0.0377360i 0.0220736 + 0.00389217i
\(95\) −6.38137 1.12521i −0.654715 0.115444i
\(96\) −6.83810 + 0.816456i −0.697911 + 0.0833291i
\(97\) −2.10510 + 5.78373i −0.213741 + 0.587249i −0.999511 0.0312702i \(-0.990045\pi\)
0.785770 + 0.618519i \(0.212267\pi\)
\(98\) −1.26879 + 2.19828i −0.128167 + 0.222059i
\(99\) 1.01587 + 4.19347i 0.102098 + 0.421460i
\(100\) −1.16513 −0.116513
\(101\) 6.27782 5.26772i 0.624666 0.524157i −0.274600 0.961558i \(-0.588545\pi\)
0.899266 + 0.437401i \(0.144101\pi\)
\(102\) 2.50865 + 1.64107i 0.248393 + 0.162490i
\(103\) 8.19725 + 1.44540i 0.807699 + 0.142419i 0.562225 0.826984i \(-0.309945\pi\)
0.245474 + 0.969403i \(0.421056\pi\)
\(104\) 0.722595 4.09804i 0.0708563 0.401846i
\(105\) 8.44980 + 4.52837i 0.824616 + 0.441924i
\(106\) 2.79605 2.34617i 0.271577 0.227880i
\(107\) −0.321004 0.185331i −0.0310326 0.0179167i 0.484403 0.874845i \(-0.339037\pi\)
−0.515436 + 0.856928i \(0.672370\pi\)
\(108\) −3.25275 + 9.14806i −0.312996 + 0.880273i
\(109\) −1.58351 2.74272i −0.151673 0.262705i 0.780170 0.625568i \(-0.215133\pi\)
−0.931843 + 0.362863i \(0.881799\pi\)
\(110\) 0.189447 + 1.07441i 0.0180631 + 0.102441i
\(111\) 4.13692 17.6500i 0.392659 1.67526i
\(112\) 7.74160 + 3.60935i 0.731512 + 0.341051i
\(113\) 4.79907 + 13.1853i 0.451459 + 1.24037i 0.931698 + 0.363235i \(0.118328\pi\)
−0.480239 + 0.877138i \(0.659450\pi\)
\(114\) 1.06492 1.62791i 0.0997387 0.152468i
\(115\) −3.28471 3.91457i −0.306301 0.365035i
\(116\) 11.0143 + 6.35914i 1.02266 + 0.590431i
\(117\) −7.16500 5.27911i −0.662405 0.488054i
\(118\) 4.51385 + 2.60607i 0.415533 + 0.239908i
\(119\) −5.33790 11.4452i −0.489324 1.04918i
\(120\) −2.00154 + 4.67192i −0.182715 + 0.426486i
\(121\) −8.39279 + 3.05473i −0.762981 + 0.277702i
\(122\) 0.404637 2.29481i 0.0366341 0.207762i
\(123\) 1.74343 + 14.6019i 0.157200 + 1.31661i
\(124\) 3.08893 + 3.68125i 0.277394 + 0.330586i
\(125\) −5.88223 + 10.1883i −0.526122 + 0.911271i
\(126\) −2.24855 + 1.79636i −0.200317 + 0.160033i
\(127\) −3.55817 6.16293i −0.315737 0.546872i 0.663857 0.747859i \(-0.268918\pi\)
−0.979594 + 0.200987i \(0.935585\pi\)
\(128\) −3.34172 + 9.18129i −0.295369 + 0.811519i
\(129\) −8.38033 16.5839i −0.737847 1.46013i
\(130\) −1.72383 1.44646i −0.151190 0.126863i
\(131\) 10.8232 + 9.08173i 0.945626 + 0.793475i 0.978556 0.205983i \(-0.0660392\pi\)
−0.0329293 + 0.999458i \(0.510484\pi\)
\(132\) 4.53192 + 1.06222i 0.394453 + 0.0924545i
\(133\) −7.42700 + 3.46386i −0.644003 + 0.300355i
\(134\) 1.22837i 0.106115i
\(135\) 7.04907 + 8.27493i 0.606688 + 0.712193i
\(136\) 5.79841 3.34771i 0.497210 0.287064i
\(137\) −1.33298 + 3.66233i −0.113884 + 0.312894i −0.983520 0.180800i \(-0.942131\pi\)
0.869636 + 0.493694i \(0.164354\pi\)
\(138\) 1.46855 0.443625i 0.125011 0.0377639i
\(139\) 1.21493 + 0.214226i 0.103049 + 0.0181704i 0.224935 0.974374i \(-0.427783\pi\)
−0.121886 + 0.992544i \(0.538894\pi\)
\(140\) 8.47136 5.93254i 0.715961 0.501391i
\(141\) −0.468182 0.926491i −0.0394281 0.0780246i
\(142\) 2.44717 + 0.890695i 0.205362 + 0.0747455i
\(143\) −2.13336 + 3.69509i −0.178401 + 0.308999i
\(144\) 6.68133 + 7.01179i 0.556777 + 0.584316i
\(145\) 12.3316 7.11967i 1.02409 0.591256i
\(146\) 0.604393 + 0.219981i 0.0500199 + 0.0182058i
\(147\) 12.0387 1.43899i 0.992932 0.118686i
\(148\) −14.9813 12.5708i −1.23146 1.03331i
\(149\) −4.67221 12.8368i −0.382763 1.05163i −0.970188 0.242353i \(-0.922081\pi\)
0.587425 0.809278i \(-0.300142\pi\)
\(150\) −0.234634 0.313541i −0.0191578 0.0256005i
\(151\) −2.96917 16.8390i −0.241628 1.37034i −0.828196 0.560439i \(-0.810632\pi\)
0.586568 0.809900i \(-0.300479\pi\)
\(152\) −2.17239 3.76269i −0.176204 0.305195i
\(153\) −0.903513 14.2911i −0.0730447 1.15537i
\(154\) 0.975706 + 0.975579i 0.0786247 + 0.0786144i
\(155\) 5.29851 0.934271i 0.425587 0.0750424i
\(156\) −8.56909 + 4.33020i −0.686076 + 0.346694i
\(157\) 0.430058 0.512523i 0.0343224 0.0409038i −0.748610 0.663010i \(-0.769279\pi\)
0.782933 + 0.622107i \(0.213723\pi\)
\(158\) −0.326343 0.896619i −0.0259624 0.0713312i
\(159\) −16.9753 3.97879i −1.34623 0.315538i
\(160\) 5.34659 + 6.37182i 0.422685 + 0.503737i
\(161\) −6.24266 1.67228i −0.491991 0.131794i
\(162\) −3.11681 + 0.966906i −0.244880 + 0.0759673i
\(163\) −8.63700 + 14.9597i −0.676502 + 1.17174i 0.299525 + 0.954088i \(0.403172\pi\)
−0.976027 + 0.217648i \(0.930162\pi\)
\(164\) 14.9076 + 5.42591i 1.16409 + 0.423692i
\(165\) 3.56689 3.79952i 0.277682 0.295792i
\(166\) −1.81212 + 2.15961i −0.140648 + 0.167618i
\(167\) 0.153614 0.0559108i 0.0118870 0.00432651i −0.336070 0.941837i \(-0.609098\pi\)
0.347957 + 0.937511i \(0.386876\pi\)
\(168\) 1.31587 + 6.29187i 0.101522 + 0.485429i
\(169\) 0.729201 + 4.13551i 0.0560924 + 0.318116i
\(170\) 3.62071i 0.277696i
\(171\) −9.27379 + 0.586306i −0.709184 + 0.0448359i
\(172\) −20.0451 −1.52843
\(173\) 10.0769 8.45551i 0.766131 0.642861i −0.173584 0.984819i \(-0.555535\pi\)
0.939715 + 0.341959i \(0.111090\pi\)
\(174\) 0.506797 + 4.24460i 0.0384202 + 0.321782i
\(175\) 0.143895 + 1.64349i 0.0108774 + 0.124236i
\(176\) 2.98467 3.55699i 0.224978 0.268118i
\(177\) −2.95175 24.7219i −0.221867 1.85821i
\(178\) −3.81020 + 0.671840i −0.285586 + 0.0503566i
\(179\) 20.5293i 1.53443i −0.641390 0.767215i \(-0.721642\pi\)
0.641390 0.767215i \(-0.278358\pi\)
\(180\) 11.3972 2.76096i 0.849496 0.205790i
\(181\) 12.6686 7.31419i 0.941646 0.543660i 0.0511701 0.998690i \(-0.483705\pi\)
0.890476 + 0.455030i \(0.150372\pi\)
\(182\) −2.83514 0.247856i −0.210155 0.0183723i
\(183\) −9.93462 + 5.02025i −0.734388 + 0.371107i
\(184\) 0.594985 3.37433i 0.0438629 0.248759i
\(185\) −20.5752 + 7.48875i −1.51272 + 0.550584i
\(186\) −0.368589 + 1.57257i −0.0270263 + 0.115306i
\(187\) −6.76082 + 1.19212i −0.494400 + 0.0871761i
\(188\) −1.11986 −0.0816741
\(189\) 13.3056 + 3.45840i 0.967841 + 0.251562i
\(190\) −2.34954 −0.170454
\(191\) 22.3928 3.94845i 1.62029 0.285700i 0.711413 0.702774i \(-0.248055\pi\)
0.908873 + 0.417074i \(0.136944\pi\)
\(192\) 8.31544 2.51197i 0.600115 0.181286i
\(193\) −3.63612 + 1.32344i −0.261734 + 0.0952633i −0.469554 0.882904i \(-0.655585\pi\)
0.207820 + 0.978167i \(0.433363\pi\)
\(194\) −0.387537 + 2.19783i −0.0278235 + 0.157795i
\(195\) −0.598400 + 10.7326i −0.0428523 + 0.768579i
\(196\) 4.47191 12.2915i 0.319422 0.877962i
\(197\) 1.51459 0.874452i 0.107910 0.0623021i −0.445073 0.895494i \(-0.646822\pi\)
0.552984 + 0.833192i \(0.313489\pi\)
\(198\) 0.626788 + 1.43347i 0.0445439 + 0.101872i
\(199\) 10.4887i 0.743522i −0.928329 0.371761i \(-0.878754\pi\)
0.928329 0.371761i \(-0.121246\pi\)
\(200\) −0.861379 + 0.151884i −0.0609087 + 0.0107398i
\(201\) −4.69793 + 3.51563i −0.331367 + 0.247973i
\(202\) 1.91004 2.27630i 0.134390 0.160160i
\(203\) 7.60967 16.3218i 0.534094 1.14556i
\(204\) −14.1997 6.08344i −0.994179 0.425926i
\(205\) 13.6062 11.4169i 0.950297 0.797394i
\(206\) 3.01813 0.210283
\(207\) −5.89966 4.34682i −0.410055 0.302125i
\(208\) 9.57747i 0.664078i
\(209\) 0.773585 + 4.38722i 0.0535100 + 0.303470i
\(210\) 3.30243 + 1.08498i 0.227889 + 0.0748710i
\(211\) −1.23759 + 0.450445i −0.0851990 + 0.0310099i −0.384268 0.923222i \(-0.625546\pi\)
0.299069 + 0.954231i \(0.403324\pi\)
\(212\) −12.0903 + 14.4087i −0.830365 + 0.989591i
\(213\) −3.59735 11.9084i −0.246486 0.815951i
\(214\) −0.126295 0.0459676i −0.00863334 0.00314228i
\(215\) −11.2212 + 19.4358i −0.765282 + 1.32551i
\(216\) −1.21222 + 7.18716i −0.0824814 + 0.489024i
\(217\) 4.81113 4.81176i 0.326601 0.326644i
\(218\) −0.738141 0.879683i −0.0499932 0.0595796i
\(219\) −0.888462 2.94110i −0.0600367 0.198741i
\(220\) −1.92286 5.28301i −0.129639 0.356180i
\(221\) 9.10203 10.8474i 0.612269 0.729673i
\(222\) 0.365923 6.56303i 0.0245592 0.440482i
\(223\) 7.05477 1.24395i 0.472422 0.0833008i 0.0676319 0.997710i \(-0.478456\pi\)
0.404790 + 0.914410i \(0.367345\pi\)
\(224\) 10.1613 + 2.72200i 0.678930 + 0.181871i
\(225\) −0.527619 + 1.79472i −0.0351746 + 0.119648i
\(226\) 2.54388 + 4.40613i 0.169216 + 0.293091i
\(227\) 3.71230 + 21.0535i 0.246394 + 1.39737i 0.817233 + 0.576308i \(0.195507\pi\)
−0.570839 + 0.821062i \(0.693382\pi\)
\(228\) −3.94765 + 9.21445i −0.261440 + 0.610242i
\(229\) 8.14786 + 22.3861i 0.538426 + 1.47931i 0.848808 + 0.528701i \(0.177321\pi\)
−0.310382 + 0.950612i \(0.600457\pi\)
\(230\) −1.41940 1.19102i −0.0935925 0.0785334i
\(231\) 0.938630 6.52373i 0.0617573 0.429230i
\(232\) 8.97184 + 3.26548i 0.589030 + 0.214389i
\(233\) −1.02981 + 0.594562i −0.0674652 + 0.0389511i −0.533353 0.845893i \(-0.679068\pi\)
0.465888 + 0.884844i \(0.345735\pi\)
\(234\) −2.89091 1.43396i −0.188985 0.0937408i
\(235\) −0.626895 + 1.08581i −0.0408941 + 0.0708307i
\(236\) −25.2395 9.18642i −1.64295 0.597985i
\(237\) −2.49514 + 3.81424i −0.162077 + 0.247762i
\(238\) −2.62672 3.75082i −0.170265 0.243130i
\(239\) −19.6976 3.47322i −1.27413 0.224664i −0.504646 0.863327i \(-0.668377\pi\)
−0.769487 + 0.638663i \(0.779488\pi\)
\(240\) 2.66952 11.3894i 0.172317 0.735182i
\(241\) 6.53121 17.9443i 0.420712 1.15590i −0.530588 0.847630i \(-0.678029\pi\)
0.951300 0.308267i \(-0.0997491\pi\)
\(242\) −2.80461 + 1.61924i −0.180287 + 0.104089i
\(243\) 12.6183 + 9.15302i 0.809466 + 0.587166i
\(244\) 12.0081i 0.768738i
\(245\) −9.41443 11.2167i −0.601466 0.716608i
\(246\) 1.54195 + 5.10435i 0.0983108 + 0.325441i
\(247\) −7.03906 5.90647i −0.447884 0.375820i
\(248\) 2.76352 + 2.31887i 0.175484 + 0.147248i
\(249\) 13.4458 + 0.749673i 0.852092 + 0.0475086i
\(250\) −1.45896 + 4.00847i −0.0922729 + 0.253518i
\(251\) −3.32201 5.75389i −0.209683 0.363182i 0.741931 0.670476i \(-0.233910\pi\)
−0.951615 + 0.307293i \(0.900577\pi\)
\(252\) 9.80376 11.1285i 0.617579 0.701030i
\(253\) −1.75661 + 3.04254i −0.110437 + 0.191283i
\(254\) −1.65861 1.97666i −0.104071 0.124027i
\(255\) −13.8475 + 10.3625i −0.867162 + 0.648927i
\(256\) 1.12657 6.38909i 0.0704105 0.399318i
\(257\) −2.77291 + 1.00925i −0.172969 + 0.0629556i −0.427053 0.904227i \(-0.640448\pi\)
0.254084 + 0.967182i \(0.418226\pi\)
\(258\) −4.03668 5.39422i −0.251313 0.335830i
\(259\) −15.8817 + 22.6846i −0.986840 + 1.40955i
\(260\) 10.0427 + 5.79813i 0.622819 + 0.359585i
\(261\) 14.7831 14.0864i 0.915051 0.871925i
\(262\) 4.43662 + 2.56149i 0.274096 + 0.158249i
\(263\) 7.05911 + 8.41272i 0.435283 + 0.518750i 0.938439 0.345445i \(-0.112272\pi\)
−0.503156 + 0.864196i \(0.667828\pi\)
\(264\) 3.48890 + 0.194525i 0.214727 + 0.0119722i
\(265\) 7.20250 + 19.7887i 0.442446 + 1.21561i
\(266\) −2.43398 + 1.70453i −0.149237 + 0.104511i
\(267\) 13.4743 + 12.6493i 0.824615 + 0.774128i
\(268\) 1.09920 + 6.23390i 0.0671446 + 0.380796i
\(269\) −4.61707 7.99700i −0.281508 0.487586i 0.690249 0.723572i \(-0.257501\pi\)
−0.971756 + 0.235987i \(0.924168\pi\)
\(270\) 3.03814 + 2.51102i 0.184896 + 0.152816i
\(271\) 16.1261 + 9.31044i 0.979594 + 0.565569i 0.902147 0.431428i \(-0.141990\pi\)
0.0774463 + 0.996997i \(0.475323\pi\)
\(272\) −11.8048 + 9.90540i −0.715771 + 0.600603i
\(273\) 7.16630 + 11.5524i 0.433724 + 0.699185i
\(274\) −0.245393 + 1.39169i −0.0148248 + 0.0840754i
\(275\) 0.883209 + 0.155734i 0.0532595 + 0.00939109i
\(276\) −7.05579 + 3.56549i −0.424708 + 0.214617i
\(277\) −17.0077 + 14.2711i −1.02189 + 0.857469i −0.989864 0.142018i \(-0.954641\pi\)
−0.0320277 + 0.999487i \(0.510196\pi\)
\(278\) 0.447324 0.0268287
\(279\) 7.06924 3.09105i 0.423224 0.185056i
\(280\) 5.48950 5.49022i 0.328060 0.328103i
\(281\) −10.7163 + 29.4429i −0.639283 + 1.75642i 0.0146842 + 0.999892i \(0.495326\pi\)
−0.653967 + 0.756523i \(0.726897\pi\)
\(282\) −0.225517 0.301358i −0.0134293 0.0179456i
\(283\) 23.4060 + 4.12710i 1.39134 + 0.245331i 0.818580 0.574393i \(-0.194762\pi\)
0.572760 + 0.819723i \(0.305873\pi\)
\(284\) −13.2162 2.33038i −0.784238 0.138282i
\(285\) 6.72444 + 8.98588i 0.398321 + 0.532277i
\(286\) −0.529136 + 1.45379i −0.0312884 + 0.0859643i
\(287\) 5.81248 21.6981i 0.343100 1.28080i
\(288\) 9.60299 + 7.07540i 0.565862 + 0.416922i
\(289\) 5.78370 0.340218
\(290\) 3.95517 3.31878i 0.232255 0.194885i
\(291\) 9.51479 4.80809i 0.557767 0.281855i
\(292\) −3.26410 0.575548i −0.191017 0.0336814i
\(293\) −4.09795 + 23.2406i −0.239405 + 1.35773i 0.593731 + 0.804663i \(0.297654\pi\)
−0.833136 + 0.553068i \(0.813457\pi\)
\(294\) 4.20823 1.27184i 0.245429 0.0741753i
\(295\) −23.0362 + 19.3296i −1.34122 + 1.12541i
\(296\) −12.7143 7.34063i −0.739006 0.426665i
\(297\) 3.68844 6.49977i 0.214025 0.377155i
\(298\) −2.47663 4.28966i −0.143468 0.248493i
\(299\) −1.25834 7.13640i −0.0727717 0.412709i
\(300\) 1.47132 + 1.38124i 0.0849467 + 0.0797458i
\(301\) 2.47560 + 28.2749i 0.142691 + 1.62974i
\(302\) −2.12050 5.82602i −0.122021 0.335250i
\(303\) −14.1723 0.790182i −0.814179 0.0453948i
\(304\) 6.42779 + 7.66035i 0.368659 + 0.439351i
\(305\) 11.6430 + 6.72210i 0.666677 + 0.384906i
\(306\) −1.22246 5.04627i −0.0698832 0.288476i
\(307\) −10.8453 6.26156i −0.618976 0.357366i 0.157494 0.987520i \(-0.449659\pi\)
−0.776470 + 0.630154i \(0.782992\pi\)
\(308\) −5.82463 4.07788i −0.331889 0.232359i
\(309\) −8.63794 11.5429i −0.491395 0.656652i
\(310\) 1.83320 0.667229i 0.104119 0.0378961i
\(311\) −0.350083 + 1.98542i −0.0198514 + 0.112583i −0.993123 0.117073i \(-0.962649\pi\)
0.973272 + 0.229656i \(0.0737600\pi\)
\(312\) −5.77062 + 4.31835i −0.326697 + 0.244479i
\(313\) −19.9312 23.7531i −1.12658 1.34260i −0.932312 0.361655i \(-0.882212\pi\)
−0.194266 0.980949i \(-0.562232\pi\)
\(314\) 0.121297 0.210093i 0.00684519 0.0118562i
\(315\) −5.30207 15.7354i −0.298738 0.886591i
\(316\) 2.45850 + 4.25825i 0.138301 + 0.239545i
\(317\) 2.59245 7.12271i 0.145607 0.400051i −0.845354 0.534207i \(-0.820610\pi\)
0.990960 + 0.134156i \(0.0428324\pi\)
\(318\) −6.31216 0.351936i −0.353969 0.0197356i
\(319\) −7.49927 6.29264i −0.419879 0.352320i
\(320\) −8.03715 6.74397i −0.449291 0.377000i
\(321\) 0.185654 + 0.614577i 0.0103622 + 0.0343024i
\(322\) −2.33446 0.204085i −0.130094 0.0113732i
\(323\) 14.7848i 0.822646i
\(324\) 14.9524 7.69604i 0.830687 0.427558i
\(325\) −1.60201 + 0.924921i −0.0888636 + 0.0513054i
\(326\) −2.14223 + 5.88572i −0.118647 + 0.325980i
\(327\) −1.25179 + 5.34071i −0.0692241 + 0.295342i
\(328\) 11.7284 + 2.06804i 0.647594 + 0.114188i
\(329\) 0.138304 + 1.57963i 0.00762493 + 0.0870877i
\(330\) 1.03445 1.58134i 0.0569448 0.0870498i
\(331\) −0.982278 0.357520i −0.0539909 0.0196511i 0.314884 0.949130i \(-0.398035\pi\)
−0.368874 + 0.929479i \(0.620257\pi\)
\(332\) 7.26388 12.5814i 0.398657 0.690495i
\(333\) −26.1477 + 17.3840i −1.43289 + 0.952639i
\(334\) 0.0513329 0.0296371i 0.00280881 0.00162167i
\(335\) 6.65972 + 2.42394i 0.363859 + 0.132434i
\(336\) −5.49722 13.7353i −0.299898 0.749324i
\(337\) 18.8812 + 15.8432i 1.02852 + 0.863035i 0.990675 0.136249i \(-0.0435046\pi\)
0.0378500 + 0.999283i \(0.487949\pi\)
\(338\) 0.520775 + 1.43082i 0.0283264 + 0.0778262i
\(339\) 9.57069 22.3395i 0.519809 1.21332i
\(340\) 3.23998 + 18.3748i 0.175712 + 0.996515i
\(341\) −1.84947 3.20338i −0.100155 0.173473i
\(342\) −3.27462 + 0.793274i −0.177071 + 0.0428954i
\(343\) −17.8901 4.78989i −0.965977 0.258630i
\(344\) −14.8193 + 2.61304i −0.799004 + 0.140886i
\(345\) −0.492722 + 8.83724i −0.0265273 + 0.475781i
\(346\) 3.06592 3.65382i 0.164825 0.196431i
\(347\) −7.85434 21.5796i −0.421643 1.15845i −0.950766 0.309909i \(-0.899701\pi\)
0.529123 0.848545i \(-0.322521\pi\)
\(348\) −6.37022 21.0875i −0.341480 1.13041i
\(349\) 11.7725 + 14.0299i 0.630166 + 0.751003i 0.982783 0.184765i \(-0.0591524\pi\)
−0.352616 + 0.935768i \(0.614708\pi\)
\(350\) 0.154863 + 0.577806i 0.00827779 + 0.0308850i
\(351\) 2.78964 + 15.1604i 0.148900 + 0.809200i
\(352\) 2.85927 4.95240i 0.152399 0.263964i
\(353\) −21.2563 7.73666i −1.13136 0.411781i −0.292574 0.956243i \(-0.594512\pi\)
−0.838786 + 0.544462i \(0.816734\pi\)
\(354\) −2.61061 8.64199i −0.138753 0.459317i
\(355\) −9.65795 + 11.5099i −0.512591 + 0.610882i
\(356\) 18.7353 6.81908i 0.992967 0.361410i
\(357\) −6.82737 + 20.7809i −0.361343 + 1.09984i
\(358\) −1.29260 7.33071i −0.0683161 0.387440i
\(359\) 27.3052i 1.44111i −0.693397 0.720556i \(-0.743887\pi\)
0.693397 0.720556i \(-0.256113\pi\)
\(360\) 8.06599 3.52688i 0.425115 0.185883i
\(361\) 9.40591 0.495048
\(362\) 4.06323 3.40945i 0.213559 0.179197i
\(363\) 14.2197 + 6.09198i 0.746339 + 0.319746i
\(364\) 14.6099 1.27917i 0.765769 0.0670465i
\(365\) −2.38529 + 2.84267i −0.124852 + 0.148792i
\(366\) −3.23142 + 2.41818i −0.168909 + 0.126400i
\(367\) −11.5182 + 2.03097i −0.601244 + 0.106016i −0.465982 0.884794i \(-0.654299\pi\)
−0.135262 + 0.990810i \(0.543188\pi\)
\(368\) 7.88609i 0.411091i
\(369\) 15.1086 20.5059i 0.786522 1.06750i
\(370\) −6.87558 + 3.96962i −0.357444 + 0.206370i
\(371\) 21.8175 + 15.2746i 1.13271 + 0.793019i
\(372\) 0.463354 8.31051i 0.0240238 0.430880i
\(373\) 1.50182 8.51724i 0.0777613 0.441006i −0.920924 0.389743i \(-0.872564\pi\)
0.998685 0.0512637i \(-0.0163249\pi\)
\(374\) −2.33913 + 0.851374i −0.120954 + 0.0440235i
\(375\) 19.5060 5.89248i 1.00729 0.304286i
\(376\) −0.827908 + 0.145983i −0.0426961 + 0.00752847i
\(377\) 20.1924 1.03996
\(378\) 4.96900 + 0.397174i 0.255578 + 0.0204284i
\(379\) 7.21949 0.370840 0.185420 0.982659i \(-0.440635\pi\)
0.185420 + 0.982659i \(0.440635\pi\)
\(380\) 11.9238 2.10248i 0.611676 0.107855i
\(381\) −2.81279 + 12.0006i −0.144103 + 0.614811i
\(382\) 7.74754 2.81987i 0.396398 0.144277i
\(383\) −3.18408 + 18.0578i −0.162699 + 0.922711i 0.788707 + 0.614770i \(0.210751\pi\)
−0.951405 + 0.307941i \(0.900360\pi\)
\(384\) 15.1041 7.63253i 0.770778 0.389496i
\(385\) −7.21453 + 3.36476i −0.367686 + 0.171484i
\(386\) −1.21508 + 0.701526i −0.0618458 + 0.0357067i
\(387\) −9.07725 + 30.8767i −0.461423 + 1.56955i
\(388\) 11.5006i 0.583855i
\(389\) −2.39377 + 0.422085i −0.121369 + 0.0214006i −0.234003 0.972236i \(-0.575182\pi\)
0.112634 + 0.993637i \(0.464071\pi\)
\(390\) 0.462087 + 3.87014i 0.0233987 + 0.195972i
\(391\) 7.49461 8.93173i 0.379019 0.451697i
\(392\) 1.70378 9.66999i 0.0860537 0.488408i
\(393\) −2.90125 24.2990i −0.146349 1.22572i
\(394\) 0.485781 0.407619i 0.0244733 0.0205355i
\(395\) 5.50506 0.276990
\(396\) −4.46363 6.71385i −0.224306 0.337384i
\(397\) 36.9399i 1.85396i −0.375112 0.926979i \(-0.622396\pi\)
0.375112 0.926979i \(-0.377604\pi\)
\(398\) −0.660406 3.74535i −0.0331032 0.187737i
\(399\) 13.4851 + 4.43041i 0.675099 + 0.221798i
\(400\) 1.89171 0.688526i 0.0945855 0.0344263i
\(401\) −20.0275 + 23.8679i −1.00013 + 1.19190i −0.0187479 + 0.999824i \(0.505968\pi\)
−0.981379 + 0.192081i \(0.938476\pi\)
\(402\) −1.45621 + 1.55118i −0.0726290 + 0.0773658i
\(403\) 7.16946 + 2.60947i 0.357136 + 0.129987i
\(404\) −7.65639 + 13.2612i −0.380919 + 0.659772i
\(405\) 0.908234 18.8060i 0.0451305 0.934479i
\(406\) 1.68962 6.30740i 0.0838545 0.313031i
\(407\) 9.67610 + 11.5315i 0.479626 + 0.571597i
\(408\) −11.2908 2.64642i −0.558979 0.131017i
\(409\) −0.147979 0.406570i −0.00731710 0.0201036i 0.935980 0.352052i \(-0.114516\pi\)
−0.943297 + 0.331949i \(0.892294\pi\)
\(410\) 4.13972 4.93352i 0.204446 0.243649i
\(411\) 6.02488 3.04455i 0.297186 0.150176i
\(412\) −15.3168 + 2.70076i −0.754603 + 0.133057i
\(413\) −9.84090 + 36.7363i −0.484239 + 1.80768i
\(414\) −2.38038 1.18072i −0.116989 0.0580293i
\(415\) −8.13262 14.0861i −0.399215 0.691460i
\(416\) 2.04822 + 11.6161i 0.100422 + 0.569524i
\(417\) −1.28025 1.71080i −0.0626941 0.0837782i
\(418\) 0.552472 + 1.51790i 0.0270223 + 0.0742432i
\(419\) −13.0454 10.9464i −0.637310 0.534766i 0.265881 0.964006i \(-0.414337\pi\)
−0.903191 + 0.429239i \(0.858782\pi\)
\(420\) −17.7305 2.55105i −0.865158 0.124478i
\(421\) −10.9652 3.99100i −0.534410 0.194509i 0.0606961 0.998156i \(-0.480668\pi\)
−0.595107 + 0.803647i \(0.702890\pi\)
\(422\) −0.413563 + 0.238771i −0.0201319 + 0.0116232i
\(423\) −0.507117 + 1.72499i −0.0246569 + 0.0838716i
\(424\) −7.06004 + 12.2283i −0.342866 + 0.593861i
\(425\) −2.79688 1.01798i −0.135669 0.0493794i
\(426\) −2.03436 4.02582i −0.0985652 0.195052i
\(427\) 16.9381 1.48301i 0.819693 0.0717678i
\(428\) 0.682071 + 0.120268i 0.0329692 + 0.00581335i
\(429\) 7.07444 2.13708i 0.341557 0.103179i
\(430\) −2.78319 + 7.64676i −0.134217 + 0.368760i
\(431\) 20.6932 11.9473i 0.996759 0.575479i 0.0894710 0.995989i \(-0.471482\pi\)
0.907288 + 0.420511i \(0.138149\pi\)
\(432\) −0.124813 16.7750i −0.00600505 0.807087i
\(433\) 32.9313i 1.58258i −0.611442 0.791289i \(-0.709410\pi\)
0.611442 0.791289i \(-0.290590\pi\)
\(434\) 1.41502 2.02114i 0.0679231 0.0970178i
\(435\) −24.0125 5.62820i −1.15131 0.269852i
\(436\) 4.53319 + 3.80380i 0.217101 + 0.182169i
\(437\) −5.79596 4.86339i −0.277258 0.232647i
\(438\) −0.502440 0.994284i −0.0240075 0.0475087i
\(439\) 10.3614 28.4677i 0.494522 1.35869i −0.401979 0.915649i \(-0.631678\pi\)
0.896502 0.443040i \(-0.146100\pi\)
\(440\) −2.11024 3.65505i −0.100602 0.174248i
\(441\) −16.9082 12.4544i −0.805153 0.593067i
\(442\) 2.56721 4.44654i 0.122110 0.211500i
\(443\) 12.1741 + 14.5086i 0.578410 + 0.689322i 0.973334 0.229392i \(-0.0736736\pi\)
−0.394924 + 0.918714i \(0.629229\pi\)
\(444\) 4.01587 + 33.6343i 0.190585 + 1.59621i
\(445\) 3.87620 21.9830i 0.183749 1.04209i
\(446\) 2.44083 0.888390i 0.115577 0.0420665i
\(447\) −9.31770 + 21.7490i −0.440712 + 1.02869i
\(448\) −13.2185 1.15560i −0.624517 0.0545970i
\(449\) −0.762216 0.440066i −0.0359712 0.0207680i 0.481907 0.876223i \(-0.339944\pi\)
−0.517878 + 0.855455i \(0.673278\pi\)
\(450\) −0.0754025 + 0.674091i −0.00355451 + 0.0317769i
\(451\) −10.5752 6.10559i −0.497966 0.287501i
\(452\) −16.8528 20.0844i −0.792689 0.944690i
\(453\) −16.2128 + 24.7840i −0.761744 + 1.16446i
\(454\) 2.65122 + 7.28416i 0.124428 + 0.341863i
\(455\) 6.93834 14.8819i 0.325274 0.697672i
\(456\) −1.71731 + 7.32682i −0.0804203 + 0.343110i
\(457\) −2.38512 13.5267i −0.111571 0.632751i −0.988391 0.151932i \(-0.951451\pi\)
0.876820 0.480819i \(-0.159661\pi\)
\(458\) 4.31900 + 7.48072i 0.201813 + 0.349551i
\(459\) −15.8009 + 19.1178i −0.737522 + 0.892345i
\(460\) 8.26913 + 4.77418i 0.385550 + 0.222597i
\(461\) −0.487527 + 0.409083i −0.0227064 + 0.0190529i −0.654070 0.756434i \(-0.726940\pi\)
0.631364 + 0.775487i \(0.282495\pi\)
\(462\) −0.0755879 2.38863i −0.00351667 0.111129i
\(463\) −0.609420 + 3.45619i −0.0283221 + 0.160623i −0.995689 0.0927584i \(-0.970432\pi\)
0.967367 + 0.253381i \(0.0815427\pi\)
\(464\) −21.6408 3.81586i −1.00465 0.177147i
\(465\) −7.79848 5.10148i −0.361646 0.236575i
\(466\) −0.330295 + 0.277150i −0.0153006 + 0.0128387i
\(467\) 34.1128 1.57855 0.789276 0.614039i \(-0.210456\pi\)
0.789276 + 0.614039i \(0.210456\pi\)
\(468\) 15.9543 + 4.69031i 0.737489 + 0.216810i
\(469\) 8.65754 2.32039i 0.399768 0.107146i
\(470\) −0.155488 + 0.427200i −0.00717214 + 0.0197053i
\(471\) −1.15066 + 0.137386i −0.0530195 + 0.00633042i
\(472\) −19.8570 3.50132i −0.913992 0.161161i
\(473\) 15.1949 + 2.67927i 0.698662 + 0.123193i
\(474\) −0.650819 + 1.51912i −0.0298931 + 0.0697753i
\(475\) −0.660587 + 1.81495i −0.0303098 + 0.0832755i
\(476\) 16.6868 + 16.6846i 0.764839 + 0.764739i
\(477\) 16.7195 + 25.1482i 0.765535 + 1.15146i
\(478\) −7.25242 −0.331718
\(479\) 2.11224 1.77238i 0.0965108 0.0809821i −0.593256 0.805014i \(-0.702158\pi\)
0.689766 + 0.724032i \(0.257713\pi\)
\(480\) 0.802014 14.3845i 0.0366067 0.656562i
\(481\) −30.5778 5.39170i −1.39423 0.245840i
\(482\) 1.20236 6.81890i 0.0547658 0.310592i
\(483\) 5.90073 + 9.51227i 0.268493 + 0.432823i
\(484\) 12.7842 10.7272i 0.581100 0.487601i
\(485\) −11.1510 6.43803i −0.506340 0.292336i
\(486\) 5.08213 + 2.47391i 0.230530 + 0.112219i
\(487\) −13.8571 24.0013i −0.627927 1.08760i −0.987967 0.154664i \(-0.950570\pi\)
0.360040 0.932937i \(-0.382763\pi\)
\(488\) 1.56535 + 8.87753i 0.0708600 + 0.401867i
\(489\) 28.6412 8.65206i 1.29520 0.391259i
\(490\) −4.06800 3.41255i −0.183774 0.154163i
\(491\) −6.42037 17.6398i −0.289747 0.796074i −0.996101 0.0882154i \(-0.971884\pi\)
0.706354 0.707859i \(-0.250339\pi\)
\(492\) −12.3929 24.5244i −0.558713 1.10564i
\(493\) 20.8838 + 24.8883i 0.940558 + 1.12091i
\(494\) −2.88544 1.66591i −0.129822 0.0749528i
\(495\) −9.00848 + 0.569533i −0.404901 + 0.0255986i
\(496\) −7.19060 4.15149i −0.322867 0.186408i
\(497\) −1.65492 + 18.9301i −0.0742333 + 0.849130i
\(498\) 4.84850 0.578901i 0.217267 0.0259412i
\(499\) −32.7122 + 11.9063i −1.46440 + 0.532998i −0.946573 0.322489i \(-0.895481\pi\)
−0.517825 + 0.855486i \(0.673258\pi\)
\(500\) 3.81717 21.6482i 0.170709 0.968138i
\(501\) −0.260263 0.111502i −0.0116277 0.00498154i
\(502\) −1.54853 1.84547i −0.0691142 0.0823671i
\(503\) 3.38336 5.86014i 0.150856 0.261291i −0.780686 0.624923i \(-0.785130\pi\)
0.931543 + 0.363632i \(0.118464\pi\)
\(504\) 5.79720 9.50527i 0.258228 0.423398i
\(505\) 8.57206 + 14.8473i 0.381452 + 0.660694i
\(506\) −0.435690 + 1.19705i −0.0193688 + 0.0532153i
\(507\) 3.98172 6.08674i 0.176834 0.270321i
\(508\) 10.1861 + 8.54719i 0.451937 + 0.379220i
\(509\) 23.2453 + 19.5051i 1.03033 + 0.864549i 0.990890 0.134673i \(-0.0429983\pi\)
0.0394394 + 0.999222i \(0.487443\pi\)
\(510\) −4.29227 + 4.57220i −0.190065 + 0.202461i
\(511\) −0.408727 + 4.67529i −0.0180810 + 0.206823i
\(512\) 21.8934i 0.967562i
\(513\) 12.4059 + 10.2535i 0.547735 + 0.452702i
\(514\) −0.926618 + 0.534983i −0.0408714 + 0.0235971i
\(515\) −5.95565 + 16.3630i −0.262437 + 0.721040i
\(516\) 25.3128 + 23.7631i 1.11434 + 1.04611i
\(517\) 0.848890 + 0.149682i 0.0373342 + 0.00658302i
\(518\) −4.24282 + 9.10030i −0.186419 + 0.399844i
\(519\) −22.7488 1.26837i −0.998563 0.0556751i
\(520\) 8.18034 + 2.97740i 0.358732 + 0.130568i
\(521\) 10.2997 17.8395i 0.451237 0.781565i −0.547227 0.836985i \(-0.684316\pi\)
0.998463 + 0.0554198i \(0.0176497\pi\)
\(522\) 4.39190 5.96084i 0.192228 0.260899i
\(523\) 28.1811 16.2704i 1.23228 0.711454i 0.264771 0.964311i \(-0.414704\pi\)
0.967504 + 0.252857i \(0.0813702\pi\)
\(524\) −24.8077 9.02925i −1.08373 0.394445i
\(525\) 1.76661 2.24597i 0.0771012 0.0980222i
\(526\) 3.05040 + 2.55959i 0.133004 + 0.111604i
\(527\) 4.19861 + 11.5356i 0.182894 + 0.502498i
\(528\) −7.98574 + 0.953481i −0.347535 + 0.0414949i
\(529\) 2.95779 + 16.7745i 0.128600 + 0.729325i
\(530\) 3.81788 + 6.61276i 0.165838 + 0.287240i
\(531\) −25.5798 + 34.7179i −1.11007 + 1.50663i
\(532\) 10.8270 10.8284i 0.469408 0.469470i
\(533\) 24.8046 4.37372i 1.07441 0.189447i
\(534\) 5.60794 + 3.66851i 0.242679 + 0.158752i
\(535\) 0.498434 0.594010i 0.0215492 0.0256813i
\(536\) 1.62528 + 4.46541i 0.0702012 + 0.192876i
\(537\) −24.3370 + 25.9242i −1.05022 + 1.11871i
\(538\) −2.15221 2.56490i −0.0927884 0.110581i
\(539\) −5.03275 + 8.71962i −0.216776 + 0.375580i
\(540\) −17.6653 10.0246i −0.760195 0.431389i
\(541\) −11.9337 + 20.6698i −0.513071 + 0.888665i 0.486814 + 0.873506i \(0.338159\pi\)
−0.999885 + 0.0151593i \(0.995174\pi\)
\(542\) 6.34464 + 2.30926i 0.272525 + 0.0991912i
\(543\) −24.6686 5.78198i −1.05863 0.248128i
\(544\) −12.1991 + 14.5383i −0.523033 + 0.623326i
\(545\) 6.22584 2.26602i 0.266686 0.0970656i
\(546\) 3.28637 + 3.67399i 0.140644 + 0.157232i
\(547\) −2.89649 16.4268i −0.123845 0.702359i −0.981987 0.188947i \(-0.939492\pi\)
0.858142 0.513412i \(-0.171619\pi\)
\(548\) 7.28234i 0.311086i
\(549\) 18.4968 + 5.43774i 0.789422 + 0.232077i
\(550\) 0.325187 0.0138660
\(551\) 16.1505 13.5519i 0.688033 0.577328i
\(552\) −4.75153 + 3.55573i −0.202239 + 0.151342i
\(553\) 5.70289 3.99376i 0.242512 0.169832i
\(554\) −5.17463 + 6.16688i −0.219849 + 0.262006i
\(555\) 34.8599 + 14.9347i 1.47972 + 0.633941i
\(556\) −2.27014 + 0.400286i −0.0962752 + 0.0169759i
\(557\) 31.3610i 1.32881i 0.747374 + 0.664403i \(0.231314\pi\)
−0.747374 + 0.664403i \(0.768686\pi\)
\(558\) 2.32970 1.54888i 0.0986240 0.0655691i
\(559\) −27.5613 + 15.9125i −1.16572 + 0.673027i
\(560\) −10.2483 + 14.6382i −0.433071 + 0.618575i
\(561\) 9.95074 + 6.50941i 0.420120 + 0.274827i
\(562\) −1.97281 + 11.1884i −0.0832180 + 0.471953i
\(563\) 15.2963 5.56740i 0.644662 0.234638i 0.00106174 0.999999i \(-0.499662\pi\)
0.643601 + 0.765362i \(0.277440\pi\)
\(564\) 1.41415 + 1.32757i 0.0595464 + 0.0559007i
\(565\) −28.9080 + 5.09726i −1.21617 + 0.214443i
\(566\) 8.61779 0.362233
\(567\) −12.7024 20.1408i −0.533449 0.845832i
\(568\) −10.0745 −0.422716
\(569\) 41.6897 7.35102i 1.74772 0.308171i 0.793790 0.608192i \(-0.208105\pi\)
0.953932 + 0.300022i \(0.0969939\pi\)
\(570\) 2.96698 + 2.78533i 0.124273 + 0.116665i
\(571\) 30.1954 10.9902i 1.26364 0.459926i 0.378649 0.925540i \(-0.376389\pi\)
0.884988 + 0.465614i \(0.154167\pi\)
\(572\) 1.38441 7.85136i 0.0578849 0.328282i
\(573\) −32.9583 21.5601i −1.37685 0.900685i
\(574\) 0.709354 8.11406i 0.0296079 0.338675i
\(575\) −1.31910 + 0.761580i −0.0550101 + 0.0317601i
\(576\) −13.4785 6.68567i −0.561606 0.278570i
\(577\) 33.3564i 1.38865i 0.719663 + 0.694323i \(0.244296\pi\)
−0.719663 + 0.694323i \(0.755704\pi\)
\(578\) 2.06528 0.364164i 0.0859041 0.0151472i
\(579\) 6.16058 + 2.63931i 0.256025 + 0.109686i
\(580\) −17.1024 + 20.3818i −0.710137 + 0.846309i
\(581\) −18.6439 8.69233i −0.773481 0.360619i
\(582\) 3.09486 2.31599i 0.128286 0.0960008i
\(583\) 11.0907 9.30624i 0.459332 0.385425i
\(584\) −2.48816 −0.102961
\(585\) 13.4789 12.8437i 0.557285 0.531021i
\(586\) 8.55691i 0.353483i
\(587\) 1.67617 + 9.50604i 0.0691830 + 0.392356i 0.999662 + 0.0260103i \(0.00828026\pi\)
−0.930479 + 0.366346i \(0.880609\pi\)
\(588\) −20.2183 + 10.2202i −0.833790 + 0.421475i
\(589\) 7.48565 2.72455i 0.308441 0.112263i
\(590\) −7.00881 + 8.35278i −0.288548 + 0.343878i
\(591\) −2.94926 0.691267i −0.121316 0.0284349i
\(592\) 31.7523 + 11.5569i 1.30501 + 0.474985i
\(593\) −12.2780 + 21.2661i −0.504196 + 0.873293i 0.495793 + 0.868441i \(0.334878\pi\)
−0.999988 + 0.00485158i \(0.998456\pi\)
\(594\) 0.907838 2.55321i 0.0372490 0.104760i
\(595\) 25.5187 6.83949i 1.04616 0.280392i
\(596\) 16.4073 + 19.5535i 0.672070 + 0.800942i
\(597\) −12.4341 + 13.2450i −0.508893 + 0.542082i
\(598\) −0.898670 2.46908i −0.0367494 0.100968i
\(599\) −20.6509 + 24.6108i −0.843773 + 1.00557i 0.156068 + 0.987746i \(0.450118\pi\)
−0.999841 + 0.0178236i \(0.994326\pi\)
\(600\) 1.26780 + 0.829346i 0.0517576 + 0.0338579i
\(601\) 8.38253 1.47807i 0.341931 0.0602916i −4.61367e−5 1.00000i \(-0.500015\pi\)
0.341977 + 0.939708i \(0.388904\pi\)
\(602\) 2.66429 + 9.94068i 0.108589 + 0.405152i
\(603\) 10.1002 + 1.12979i 0.411312 + 0.0460086i
\(604\) 15.9747 + 27.6691i 0.650003 + 1.12584i
\(605\) −3.24453 18.4006i −0.131909 0.748092i
\(606\) −5.11049 + 0.610182i −0.207599 + 0.0247869i
\(607\) −0.457171 1.25607i −0.0185560 0.0509822i 0.930069 0.367385i \(-0.119747\pi\)
−0.948625 + 0.316403i \(0.897525\pi\)
\(608\) 9.43419 + 7.91623i 0.382607 + 0.321045i
\(609\) −28.9585 + 11.5899i −1.17346 + 0.469647i
\(610\) 4.58080 + 1.66728i 0.185471 + 0.0675060i
\(611\) −1.53976 + 0.888982i −0.0622921 + 0.0359643i
\(612\) 10.7195 + 24.5156i 0.433311 + 0.990983i
\(613\) 7.78963 13.4920i 0.314620 0.544938i −0.664737 0.747078i \(-0.731456\pi\)
0.979357 + 0.202140i \(0.0647896\pi\)
\(614\) −4.26697 1.55305i −0.172201 0.0626760i
\(615\) −30.7163 1.71260i −1.23860 0.0690585i
\(616\) −4.83771 2.25548i −0.194917 0.0908758i
\(617\) −7.82014 1.37890i −0.314827 0.0555125i 0.0140019 0.999902i \(-0.495543\pi\)
−0.328829 + 0.944389i \(0.606654\pi\)
\(618\) −3.81127 3.57792i −0.153312 0.143925i
\(619\) 4.65611 12.7926i 0.187145 0.514177i −0.810268 0.586059i \(-0.800678\pi\)
0.997413 + 0.0718827i \(0.0229007\pi\)
\(620\) −8.70627 + 5.02657i −0.349652 + 0.201872i
\(621\) 2.29699 + 12.4830i 0.0921750 + 0.500927i
\(622\) 0.731007i 0.0293107i
\(623\) −11.9325 25.5851i −0.478067 1.02504i
\(624\) 11.3539 12.0944i 0.454519 0.484162i
\(625\) −16.4649 13.8157i −0.658596 0.552627i
\(626\) −8.61273 7.22694i −0.344234 0.288847i
\(627\) 4.22407 6.45721i 0.168693 0.257876i
\(628\) −0.427573 + 1.17475i −0.0170620 + 0.0468775i
\(629\) −24.9792 43.2653i −0.995987 1.72510i
\(630\) −2.88405 5.28506i −0.114903 0.210562i
\(631\) −2.91637 + 5.05129i −0.116099 + 0.201089i −0.918218 0.396074i \(-0.870372\pi\)
0.802120 + 0.597163i \(0.203706\pi\)
\(632\) 2.37266 + 2.82762i 0.0943793 + 0.112477i
\(633\) 2.09681 + 0.898313i 0.0833406 + 0.0357047i
\(634\) 0.477255 2.70665i 0.0189542 0.107495i
\(635\) 13.9895 5.09177i 0.555158 0.202061i
\(636\) 32.3487 3.86237i 1.28271 0.153153i
\(637\) −3.60868 20.4502i −0.142981 0.810267i
\(638\) −3.07409 1.77483i −0.121704 0.0702661i
\(639\) −9.57445 + 19.3024i −0.378759 + 0.763593i
\(640\) −17.7015 10.2199i −0.699712 0.403979i
\(641\) 2.54635 + 3.03462i 0.100575 + 0.119860i 0.813984 0.580887i \(-0.197294\pi\)
−0.713409 + 0.700748i \(0.752850\pi\)
\(642\) 0.104991 + 0.207767i 0.00414365 + 0.00819992i
\(643\) −16.5501 45.4710i −0.652672 1.79320i −0.607636 0.794215i \(-0.707882\pi\)
−0.0450352 0.998985i \(-0.514340\pi\)
\(644\) 12.0298 1.05327i 0.474041 0.0415045i
\(645\) 37.2107 11.2408i 1.46517 0.442606i
\(646\) −0.930905 5.27942i −0.0366260 0.207716i
\(647\) 10.0033 + 17.3262i 0.393270 + 0.681163i 0.992879 0.119130i \(-0.0380106\pi\)
−0.599609 + 0.800293i \(0.704677\pi\)
\(648\) 10.0510 7.63882i 0.394840 0.300081i
\(649\) 17.9045 + 10.3372i 0.702813 + 0.405769i
\(650\) −0.513818 + 0.431145i −0.0201536 + 0.0169109i
\(651\) −11.7797 + 0.372767i −0.461683 + 0.0146099i
\(652\) 5.60483 31.7866i 0.219502 1.24486i
\(653\) 27.6858 + 4.88176i 1.08343 + 0.191038i 0.686732 0.726911i \(-0.259045\pi\)
0.396699 + 0.917949i \(0.370156\pi\)
\(654\) −0.110725 + 1.98591i −0.00432968 + 0.0776551i
\(655\) −22.6421 + 18.9989i −0.884698 + 0.742350i
\(656\) −27.4103 −1.07019
\(657\) −2.36467 + 4.76725i −0.0922544 + 0.185988i
\(658\) 0.148846 + 0.555355i 0.00580261 + 0.0216500i
\(659\) 5.63224 15.4744i 0.219401 0.602799i −0.780345 0.625349i \(-0.784957\pi\)
0.999746 + 0.0225507i \(0.00717872\pi\)
\(660\) −3.83472 + 8.95085i −0.149266 + 0.348411i
\(661\) −21.4195 3.77683i −0.833121 0.146902i −0.259212 0.965821i \(-0.583463\pi\)
−0.573909 + 0.818919i \(0.694574\pi\)
\(662\) −0.373268 0.0658172i −0.0145075 0.00255806i
\(663\) −24.3533 + 2.90773i −0.945803 + 0.112927i
\(664\) 3.73008 10.2483i 0.144755 0.397711i
\(665\) −4.43827 16.5595i −0.172109 0.642151i
\(666\) −8.24241 + 7.85395i −0.319387 + 0.304334i
\(667\) 16.6264 0.643777
\(668\) −0.233990 + 0.196341i −0.00905335 + 0.00759666i
\(669\) −10.3834 6.79242i −0.401444 0.262610i
\(670\) 2.53071 + 0.446232i 0.0977698 + 0.0172395i
\(671\) 1.60502 9.10252i 0.0619611 0.351399i
\(672\) −9.60474 15.4833i −0.370511 0.597282i
\(673\) 9.03852 7.58422i 0.348409 0.292350i −0.451742 0.892149i \(-0.649197\pi\)
0.800151 + 0.599799i \(0.204753\pi\)
\(674\) 7.73975 + 4.46855i 0.298124 + 0.172122i
\(675\) 2.79388 1.64088i 0.107536 0.0631576i
\(676\) −3.92325 6.79527i −0.150894 0.261357i
\(677\) −4.78391 27.1309i −0.183861 1.04273i −0.927410 0.374045i \(-0.877971\pi\)
0.743550 0.668681i \(-0.233141\pi\)
\(678\) 2.01097 8.57974i 0.0772310 0.329503i
\(679\) −16.2223 + 1.42034i −0.622555 + 0.0545076i
\(680\) 4.79061 + 13.1621i 0.183711 + 0.504743i
\(681\) 20.2706 30.9870i 0.776771 1.18743i
\(682\) −0.862117 1.02743i −0.0330122 0.0393424i
\(683\) 10.0793 + 5.81928i 0.385673 + 0.222669i 0.680284 0.732949i \(-0.261857\pi\)
−0.294610 + 0.955617i \(0.595190\pi\)
\(684\) 15.9086 6.95609i 0.608280 0.265973i
\(685\) −7.06095 4.07664i −0.269785 0.155760i
\(686\) −6.68990 0.583968i −0.255422 0.0222960i
\(687\) 16.2491 37.9280i 0.619942 1.44705i
\(688\) 32.5453 11.8455i 1.24078 0.451606i
\(689\) −5.18561 + 29.4090i −0.197556 + 1.12039i
\(690\) 0.380482 + 3.18667i 0.0144847 + 0.121315i
\(691\) −5.61278 6.68905i −0.213520 0.254464i 0.648644 0.761092i \(-0.275336\pi\)
−0.862165 + 0.506628i \(0.830892\pi\)
\(692\) −12.2897 + 21.2864i −0.467184 + 0.809187i
\(693\) −8.91903 + 7.12539i −0.338806 + 0.270671i
\(694\) −4.16341 7.21123i −0.158041 0.273735i
\(695\) −0.882701 + 2.42520i −0.0334828 + 0.0919931i
\(696\) −7.45841 14.7595i −0.282710 0.559459i
\(697\) 31.0447 + 26.0496i 1.17590 + 0.986700i
\(698\) 5.08716 + 4.26863i 0.192552 + 0.161570i
\(699\) 2.00528 + 0.470010i 0.0758466 + 0.0177774i
\(700\) −1.30297 2.79375i −0.0492475 0.105594i
\(701\) 49.8729i 1.88367i −0.336072 0.941836i \(-0.609099\pi\)
0.336072 0.941836i \(-0.390901\pi\)
\(702\) 1.95070 + 5.23790i 0.0736242 + 0.197692i
\(703\) −28.0756 + 16.2095i −1.05889 + 0.611352i
\(704\) −2.46703 + 6.77812i −0.0929799 + 0.255460i
\(705\) 2.07885 0.627988i 0.0782939 0.0236514i
\(706\) −8.07745 1.42427i −0.303999 0.0536032i
\(707\) 19.6514 + 9.16202i 0.739066 + 0.344573i
\(708\) 20.9819 + 41.5214i 0.788549 + 1.56047i
\(709\) −8.39943 3.05714i −0.315447 0.114813i 0.179444 0.983768i \(-0.442570\pi\)
−0.494892 + 0.868955i \(0.664792\pi\)
\(710\) −2.72401 + 4.71812i −0.102230 + 0.177068i
\(711\) 7.67254 1.85867i 0.287743 0.0697055i
\(712\) 12.9620 7.48361i 0.485771 0.280460i
\(713\) 5.90333 + 2.14864i 0.221081 + 0.0804671i
\(714\) −1.12951 + 7.85043i −0.0422710 + 0.293795i
\(715\) −6.83768 5.73750i −0.255715 0.214570i
\(716\) 13.1197 + 36.0461i 0.490307 + 1.34711i
\(717\) 20.7566 + 27.7370i 0.775168 + 1.03586i
\(718\) −1.71924 9.75028i −0.0641614 0.363877i
\(719\) −17.3762 30.0965i −0.648025 1.12241i −0.983594 0.180396i \(-0.942262\pi\)
0.335569 0.942016i \(-0.391071\pi\)
\(720\) −16.8729 + 11.2178i −0.628816 + 0.418062i
\(721\) 5.70122 + 21.2717i 0.212325 + 0.792199i
\(722\) 3.35871 0.592232i 0.124998 0.0220406i
\(723\) −29.5202 + 14.9174i −1.09787 + 0.554783i
\(724\) −17.5696 + 20.9387i −0.652971 + 0.778180i
\(725\) −1.45163 3.98833i −0.0539123 0.148123i
\(726\) 5.46121 + 1.28003i 0.202685 + 0.0475065i
\(727\) −14.1462 16.8588i −0.524654 0.625258i 0.437021 0.899451i \(-0.356034\pi\)
−0.961675 + 0.274193i \(0.911589\pi\)
\(728\) 10.6343 2.85020i 0.394134 0.105636i
\(729\) −5.08364 26.5171i −0.188283 0.982115i
\(730\) −0.672766 + 1.16526i −0.0249002 + 0.0431284i
\(731\) −48.1181 17.5135i −1.77971 0.647762i
\(732\) 14.2353 15.1637i 0.526152 0.560466i
\(733\) −1.91223 + 2.27890i −0.0706297 + 0.0841733i −0.800202 0.599730i \(-0.795275\pi\)
0.729573 + 0.683903i \(0.239719\pi\)
\(734\) −3.98510 + 1.45046i −0.147093 + 0.0535373i
\(735\) −1.40868 + 25.3249i −0.0519598 + 0.934125i
\(736\) 1.68651 + 9.56466i 0.0621655 + 0.352558i
\(737\) 4.87242i 0.179478i
\(738\) 4.10393 8.27367i 0.151068 0.304558i
\(739\) −15.0051 −0.551970 −0.275985 0.961162i \(-0.589004\pi\)
−0.275985 + 0.961162i \(0.589004\pi\)
\(740\) 31.3408 26.2981i 1.15211 0.966737i
\(741\) 1.88688 + 15.8033i 0.0693163 + 0.580548i
\(742\) 8.75245 + 4.08064i 0.321312 + 0.149805i
\(743\) 0.0879752 0.104845i 0.00322750 0.00384638i −0.764428 0.644709i \(-0.776979\pi\)
0.767656 + 0.640862i \(0.221423\pi\)
\(744\) −0.740785 6.20433i −0.0271585 0.227462i
\(745\) 28.1438 4.96252i 1.03111 0.181813i
\(746\) 3.13595i 0.114815i
\(747\) −16.0905 16.8864i −0.588721 0.617840i
\(748\) 11.1091 6.41382i 0.406188 0.234513i
\(749\) 0.0854082 0.976956i 0.00312075 0.0356972i
\(750\) 6.59431 3.33229i 0.240790 0.121678i
\(751\) −0.0242053 + 0.137275i −0.000883263 + 0.00500923i −0.985246 0.171143i \(-0.945254\pi\)
0.984363 + 0.176152i \(0.0563651\pi\)
\(752\) 1.81820 0.661772i 0.0663031 0.0241323i
\(753\) −2.62610 + 11.2041i −0.0957003 + 0.408301i
\(754\) 7.21041 1.27139i 0.262588 0.0463013i
\(755\) 35.7705 1.30182
\(756\) −25.5727 + 2.43086i −0.930070 + 0.0884096i
\(757\) −9.74965 −0.354357 −0.177178 0.984179i \(-0.556697\pi\)
−0.177178 + 0.984179i \(0.556697\pi\)
\(758\) 2.57798 0.454567i 0.0936363 0.0165106i
\(759\) 5.82509 1.75967i 0.211437 0.0638720i
\(760\) 8.54112 3.10871i 0.309819 0.112765i
\(761\) 2.02254 11.4704i 0.0733172 0.415802i −0.925954 0.377636i \(-0.876737\pi\)
0.999271 0.0381665i \(-0.0121517\pi\)
\(762\) −0.248800 + 4.46236i −0.00901306 + 0.161654i
\(763\) 4.80564 6.86412i 0.173976 0.248498i
\(764\) −36.7948 + 21.2435i −1.33119 + 0.768563i
\(765\) 29.7710 + 3.33013i 1.07637 + 0.120401i
\(766\) 6.64867i 0.240226i
\(767\) −41.9958 + 7.40499i