Properties

Label 189.2.ba.a.5.3
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.3
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.31815 + 0.408753i) q^{2} +(-0.111866 - 1.72843i) q^{3} +(3.32736 - 1.21106i) q^{4} +(-0.175778 + 0.996886i) q^{5} +(0.965825 + 3.96105i) q^{6} +(1.63463 + 2.08038i) q^{7} +(-3.14120 + 1.81358i) q^{8} +(-2.97497 + 0.386707i) q^{9} +O(q^{10})\) \(q+(-2.31815 + 0.408753i) q^{2} +(-0.111866 - 1.72843i) q^{3} +(3.32736 - 1.21106i) q^{4} +(-0.175778 + 0.996886i) q^{5} +(0.965825 + 3.96105i) q^{6} +(1.63463 + 2.08038i) q^{7} +(-3.14120 + 1.81358i) q^{8} +(-2.97497 + 0.386707i) q^{9} -2.38278i q^{10} +(0.972614 - 0.171498i) q^{11} +(-2.46546 - 5.61565i) q^{12} +(3.55093 - 4.23183i) q^{13} +(-4.63968 - 4.15448i) q^{14} +(1.74272 + 0.192303i) q^{15} +(1.11551 - 0.936020i) q^{16} +3.54415 q^{17} +(6.73837 - 2.11247i) q^{18} -0.366602i q^{19} +(0.622412 + 3.52988i) q^{20} +(3.41294 - 3.05808i) q^{21} +(-2.18457 + 0.795117i) q^{22} +(4.11352 - 4.90230i) q^{23} +(3.48604 + 5.22649i) q^{24} +(3.73558 + 1.35964i) q^{25} +(-6.50182 + 11.2615i) q^{26} +(1.00120 + 5.09878i) q^{27} +(7.95847 + 4.94254i) q^{28} +(-0.703413 - 0.838295i) q^{29} +(-4.11848 + 0.266553i) q^{30} +(-2.36457 - 6.49659i) q^{31} +(2.45967 - 2.93132i) q^{32} +(-0.405226 - 1.66191i) q^{33} +(-8.21588 + 1.44868i) q^{34} +(-2.36123 + 1.26385i) q^{35} +(-9.43048 + 4.88958i) q^{36} +(2.23803 + 3.87639i) q^{37} +(0.149849 + 0.849839i) q^{38} +(-7.71168 - 5.66415i) q^{39} +(-1.25577 - 3.45021i) q^{40} +(0.350145 + 0.293807i) q^{41} +(-6.66172 + 8.48413i) q^{42} +(-9.94497 - 3.61967i) q^{43} +(3.02854 - 1.74853i) q^{44} +(0.137431 - 3.03368i) q^{45} +(-7.53193 + 13.0457i) q^{46} +(10.6873 + 3.88985i) q^{47} +(-1.74264 - 1.82337i) q^{48} +(-1.65597 + 6.80131i) q^{49} +(-9.21539 - 1.62492i) q^{50} +(-0.396472 - 6.12584i) q^{51} +(6.69022 - 18.3812i) q^{52} +(-6.67945 + 3.85638i) q^{53} +(-4.40507 - 11.4105i) q^{54} +0.999731i q^{55} +(-8.90764 - 3.57038i) q^{56} +(-0.633647 + 0.0410104i) q^{57} +(1.97327 + 1.65577i) q^{58} +(-0.199348 - 0.167273i) q^{59} +(6.03153 - 1.47067i) q^{60} +(-3.45090 + 9.48126i) q^{61} +(8.13692 + 14.0936i) q^{62} +(-5.66748 - 5.55695i) q^{63} +(-5.95988 + 10.3228i) q^{64} +(3.59448 + 4.28373i) q^{65} +(1.61869 + 3.68693i) q^{66} +(-0.0909855 + 0.516004i) q^{67} +(11.7927 - 4.29218i) q^{68} +(-8.93347 - 6.56154i) q^{69} +(4.95709 - 3.89497i) q^{70} +(-4.17294 - 2.40925i) q^{71} +(8.64367 - 6.61006i) q^{72} +(9.88409 + 5.70658i) q^{73} +(-6.77258 - 8.07125i) q^{74} +(1.93216 - 6.60880i) q^{75} +(-0.443977 - 1.21982i) q^{76} +(1.94665 + 1.74307i) q^{77} +(20.1921 + 9.97819i) q^{78} +(0.918512 + 5.20914i) q^{79} +(0.737024 + 1.27656i) q^{80} +(8.70091 - 2.30089i) q^{81} +(-0.931784 - 0.537966i) q^{82} +(7.16717 - 6.01397i) q^{83} +(7.65258 - 14.3086i) q^{84} +(-0.622984 + 3.53312i) q^{85} +(24.5335 + 4.32592i) q^{86} +(-1.37025 + 1.30958i) q^{87} +(-2.74416 + 2.30262i) q^{88} +2.53472 q^{89} +(0.921439 + 7.08871i) q^{90} +(14.6083 + 0.469805i) q^{91} +(7.75018 - 21.2934i) q^{92} +(-10.9644 + 4.81375i) q^{93} +(-26.3647 - 4.64881i) q^{94} +(0.365460 + 0.0644405i) q^{95} +(-5.34174 - 3.92346i) q^{96} +(0.637350 - 1.75110i) q^{97} +(1.05874 - 16.4433i) q^{98} +(-2.82718 + 0.886319i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.31815 + 0.408753i −1.63918 + 0.289032i −0.915865 0.401486i \(-0.868494\pi\)
−0.723315 + 0.690518i \(0.757383\pi\)
\(3\) −0.111866 1.72843i −0.0645861 0.997912i
\(4\) 3.32736 1.21106i 1.66368 0.605530i
\(5\) −0.175778 + 0.996886i −0.0786102 + 0.445821i 0.919943 + 0.392052i \(0.128235\pi\)
−0.998553 + 0.0537691i \(0.982877\pi\)
\(6\) 0.965825 + 3.96105i 0.394296 + 1.61709i
\(7\) 1.63463 + 2.08038i 0.617832 + 0.786310i
\(8\) −3.14120 + 1.81358i −1.11058 + 0.641196i
\(9\) −2.97497 + 0.386707i −0.991657 + 0.128902i
\(10\) 2.38278i 0.753502i
\(11\) 0.972614 0.171498i 0.293254 0.0517086i −0.0250856 0.999685i \(-0.507986\pi\)
0.318340 + 0.947977i \(0.396875\pi\)
\(12\) −2.46546 5.61565i −0.711716 1.62110i
\(13\) 3.55093 4.23183i 0.984851 1.17370i 5.22189e−5 1.00000i \(-0.499983\pi\)
0.984799 0.173700i \(-0.0555722\pi\)
\(14\) −4.63968 4.15448i −1.24001 1.11033i
\(15\) 1.74272 + 0.192303i 0.449967 + 0.0496523i
\(16\) 1.11551 0.936020i 0.278876 0.234005i
\(17\) 3.54415 0.859584 0.429792 0.902928i \(-0.358587\pi\)
0.429792 + 0.902928i \(0.358587\pi\)
\(18\) 6.73837 2.11247i 1.58825 0.497915i
\(19\) 0.366602i 0.0841042i −0.999115 0.0420521i \(-0.986610\pi\)
0.999115 0.0420521i \(-0.0133896\pi\)
\(20\) 0.622412 + 3.52988i 0.139176 + 0.789304i
\(21\) 3.41294 3.05808i 0.744765 0.667327i
\(22\) −2.18457 + 0.795117i −0.465751 + 0.169520i
\(23\) 4.11352 4.90230i 0.857728 1.02220i −0.141750 0.989902i \(-0.545273\pi\)
0.999478 0.0322978i \(-0.0102825\pi\)
\(24\) 3.48604 + 5.22649i 0.711585 + 1.06685i
\(25\) 3.73558 + 1.35964i 0.747116 + 0.271928i
\(26\) −6.50182 + 11.2615i −1.27511 + 2.20856i
\(27\) 1.00120 + 5.09878i 0.192681 + 0.981262i
\(28\) 7.95847 + 4.94254i 1.50401 + 0.934053i
\(29\) −0.703413 0.838295i −0.130620 0.155667i 0.696770 0.717295i \(-0.254620\pi\)
−0.827390 + 0.561627i \(0.810175\pi\)
\(30\) −4.11848 + 0.266553i −0.751928 + 0.0486657i
\(31\) −2.36457 6.49659i −0.424689 1.16682i −0.948994 0.315293i \(-0.897897\pi\)
0.524306 0.851530i \(-0.324325\pi\)
\(32\) 2.45967 2.93132i 0.434812 0.518188i
\(33\) −0.405226 1.66191i −0.0705408 0.289302i
\(34\) −8.21588 + 1.44868i −1.40901 + 0.248447i
\(35\) −2.36123 + 1.26385i −0.399121 + 0.213630i
\(36\) −9.43048 + 4.88958i −1.57175 + 0.814931i
\(37\) 2.23803 + 3.87639i 0.367930 + 0.637274i 0.989242 0.146290i \(-0.0467331\pi\)
−0.621311 + 0.783564i \(0.713400\pi\)
\(38\) 0.149849 + 0.849839i 0.0243088 + 0.137862i
\(39\) −7.71168 5.66415i −1.23486 0.906990i
\(40\) −1.25577 3.45021i −0.198555 0.545526i
\(41\) 0.350145 + 0.293807i 0.0546835 + 0.0458849i 0.669720 0.742614i \(-0.266414\pi\)
−0.615036 + 0.788499i \(0.710859\pi\)
\(42\) −6.66172 + 8.48413i −1.02793 + 1.30913i
\(43\) −9.94497 3.61967i −1.51659 0.551995i −0.556299 0.830982i \(-0.687779\pi\)
−0.960295 + 0.278988i \(0.910001\pi\)
\(44\) 3.02854 1.74853i 0.456570 0.263601i
\(45\) 0.137431 3.03368i 0.0204870 0.452235i
\(46\) −7.53193 + 13.0457i −1.11052 + 1.92348i
\(47\) 10.6873 + 3.88985i 1.55890 + 0.567393i 0.970484 0.241165i \(-0.0775296\pi\)
0.588416 + 0.808559i \(0.299752\pi\)
\(48\) −1.74264 1.82337i −0.251528 0.263181i
\(49\) −1.65597 + 6.80131i −0.236567 + 0.971615i
\(50\) −9.21539 1.62492i −1.30325 0.229799i
\(51\) −0.396472 6.12584i −0.0555171 0.857789i
\(52\) 6.69022 18.3812i 0.927767 2.54902i
\(53\) −6.67945 + 3.85638i −0.917493 + 0.529715i −0.882834 0.469684i \(-0.844368\pi\)
−0.0346586 + 0.999399i \(0.511034\pi\)
\(54\) −4.40507 11.4105i −0.599454 1.55277i
\(55\) 0.999731i 0.134804i
\(56\) −8.90764 3.57038i −1.19033 0.477112i
\(57\) −0.633647 + 0.0410104i −0.0839286 + 0.00543196i
\(58\) 1.97327 + 1.65577i 0.259103 + 0.217414i
\(59\) −0.199348 0.167273i −0.0259529 0.0217771i 0.629719 0.776823i \(-0.283170\pi\)
−0.655672 + 0.755046i \(0.727615\pi\)
\(60\) 6.03153 1.47067i 0.778667 0.189863i
\(61\) −3.45090 + 9.48126i −0.441842 + 1.21395i 0.496438 + 0.868072i \(0.334641\pi\)
−0.938279 + 0.345878i \(0.887581\pi\)
\(62\) 8.13692 + 14.0936i 1.03339 + 1.78988i
\(63\) −5.66748 5.55695i −0.714035 0.700110i
\(64\) −5.95988 + 10.3228i −0.744985 + 1.29035i
\(65\) 3.59448 + 4.28373i 0.445840 + 0.531332i
\(66\) 1.61869 + 3.68693i 0.199247 + 0.453830i
\(67\) −0.0909855 + 0.516004i −0.0111156 + 0.0630400i −0.989861 0.142039i \(-0.954634\pi\)
0.978745 + 0.205079i \(0.0657452\pi\)
\(68\) 11.7927 4.29218i 1.43007 0.520504i
\(69\) −8.93347 6.56154i −1.07546 0.789917i
\(70\) 4.95709 3.89497i 0.592486 0.465537i
\(71\) −4.17294 2.40925i −0.495237 0.285925i 0.231507 0.972833i \(-0.425634\pi\)
−0.726745 + 0.686908i \(0.758968\pi\)
\(72\) 8.64367 6.61006i 1.01867 0.779003i
\(73\) 9.88409 + 5.70658i 1.15685 + 0.667905i 0.950546 0.310584i \(-0.100525\pi\)
0.206300 + 0.978489i \(0.433858\pi\)
\(74\) −6.77258 8.07125i −0.787297 0.938264i
\(75\) 1.93216 6.60880i 0.223107 0.763119i
\(76\) −0.443977 1.21982i −0.0509276 0.139923i
\(77\) 1.94665 + 1.74307i 0.221841 + 0.198641i
\(78\) 20.1921 + 9.97819i 2.28630 + 1.12981i
\(79\) 0.918512 + 5.20914i 0.103341 + 0.586074i 0.991870 + 0.127255i \(0.0406165\pi\)
−0.888529 + 0.458820i \(0.848272\pi\)
\(80\) 0.737024 + 1.27656i 0.0824018 + 0.142724i
\(81\) 8.70091 2.30089i 0.966768 0.255654i
\(82\) −0.931784 0.537966i −0.102898 0.0594084i
\(83\) 7.16717 6.01397i 0.786699 0.660119i −0.158227 0.987403i \(-0.550578\pi\)
0.944926 + 0.327284i \(0.106133\pi\)
\(84\) 7.65258 14.3086i 0.834964 1.56120i
\(85\) −0.622984 + 3.53312i −0.0675721 + 0.383220i
\(86\) 24.5335 + 4.32592i 2.64551 + 0.466476i
\(87\) −1.37025 + 1.30958i −0.146906 + 0.140402i
\(88\) −2.74416 + 2.30262i −0.292528 + 0.245460i
\(89\) 2.53472 0.268680 0.134340 0.990935i \(-0.457109\pi\)
0.134340 + 0.990935i \(0.457109\pi\)
\(90\) 0.921439 + 7.08871i 0.0971282 + 0.747215i
\(91\) 14.6083 + 0.469805i 1.53136 + 0.0492489i
\(92\) 7.75018 21.2934i 0.808012 2.21999i
\(93\) −10.9644 + 4.81375i −1.13696 + 0.499163i
\(94\) −26.3647 4.64881i −2.71931 0.479488i
\(95\) 0.365460 + 0.0644405i 0.0374954 + 0.00661145i
\(96\) −5.34174 3.92346i −0.545189 0.400436i
\(97\) 0.637350 1.75110i 0.0647130 0.177798i −0.903122 0.429385i \(-0.858730\pi\)
0.967835 + 0.251587i \(0.0809526\pi\)
\(98\) 1.05874 16.4433i 0.106948 1.66103i
\(99\) −2.82718 + 0.886319i −0.284142 + 0.0890784i
\(100\) 14.0762 1.40762
\(101\) −13.4219 + 11.2623i −1.33553 + 1.12064i −0.352783 + 0.935705i \(0.614764\pi\)
−0.982750 + 0.184940i \(0.940791\pi\)
\(102\) 3.42303 + 14.0386i 0.338931 + 1.39002i
\(103\) −2.69840 0.475801i −0.265881 0.0468820i 0.0391182 0.999235i \(-0.487545\pi\)
−0.304999 + 0.952353i \(0.598656\pi\)
\(104\) −3.47945 + 19.7329i −0.341188 + 1.93497i
\(105\) 2.44863 + 3.93986i 0.238962 + 0.384491i
\(106\) 13.9077 11.6699i 1.35083 1.13348i
\(107\) −16.9866 9.80720i −1.64215 0.948098i −0.980066 0.198673i \(-0.936337\pi\)
−0.662088 0.749426i \(-0.730330\pi\)
\(108\) 9.50628 + 15.7530i 0.914742 + 1.51583i
\(109\) −8.71121 15.0883i −0.834382 1.44519i −0.894532 0.447003i \(-0.852491\pi\)
0.0601503 0.998189i \(-0.480842\pi\)
\(110\) −0.408643 2.31753i −0.0389625 0.220968i
\(111\) 6.44972 4.30193i 0.612181 0.408321i
\(112\) 3.77072 + 0.790629i 0.356299 + 0.0747075i
\(113\) 3.31029 + 9.09496i 0.311406 + 0.855582i 0.992373 + 0.123268i \(0.0393374\pi\)
−0.680967 + 0.732314i \(0.738440\pi\)
\(114\) 1.45213 0.354073i 0.136004 0.0331620i
\(115\) 4.16397 + 4.96242i 0.388292 + 0.462748i
\(116\) −3.35573 1.93743i −0.311572 0.179886i
\(117\) −8.92744 + 13.9628i −0.825342 + 1.29086i
\(118\) 0.530492 + 0.306280i 0.0488357 + 0.0281953i
\(119\) 5.79338 + 7.37319i 0.531078 + 0.675899i
\(120\) −5.82298 + 2.55648i −0.531563 + 0.233374i
\(121\) −9.42005 + 3.42862i −0.856368 + 0.311693i
\(122\) 4.12421 23.3895i 0.373388 2.11759i
\(123\) 0.468657 0.638071i 0.0422573 0.0575329i
\(124\) −15.7355 18.7529i −1.41309 1.68406i
\(125\) −4.54270 + 7.86818i −0.406311 + 0.703752i
\(126\) 15.4095 + 10.5653i 1.37279 + 0.941228i
\(127\) −7.52166 13.0279i −0.667439 1.15604i −0.978618 0.205687i \(-0.934057\pi\)
0.311178 0.950352i \(-0.399276\pi\)
\(128\) 6.97891 19.1744i 0.616854 1.69479i
\(129\) −5.14386 + 17.5941i −0.452892 + 1.54908i
\(130\) −10.0835 8.46109i −0.884385 0.742087i
\(131\) 7.80505 + 6.54921i 0.681930 + 0.572207i 0.916570 0.399875i \(-0.130947\pi\)
−0.234640 + 0.972082i \(0.575391\pi\)
\(132\) −3.36101 5.03904i −0.292539 0.438592i
\(133\) 0.762672 0.599258i 0.0661320 0.0519623i
\(134\) 1.23337i 0.106547i
\(135\) −5.25889 + 0.101826i −0.452614 + 0.00876381i
\(136\) −11.1329 + 6.42759i −0.954639 + 0.551161i
\(137\) 1.02391 2.81318i 0.0874788 0.240346i −0.888237 0.459385i \(-0.848070\pi\)
0.975716 + 0.219039i \(0.0702921\pi\)
\(138\) 23.3912 + 11.5591i 1.99119 + 0.983974i
\(139\) −3.53438 0.623206i −0.299782 0.0528596i 0.0217341 0.999764i \(-0.493081\pi\)
−0.321516 + 0.946904i \(0.604192\pi\)
\(140\) −6.32607 + 7.06490i −0.534651 + 0.597093i
\(141\) 5.52781 18.9074i 0.465525 1.59229i
\(142\) 10.6583 + 3.87930i 0.894425 + 0.325544i
\(143\) 2.72793 4.72492i 0.228121 0.395118i
\(144\) −2.95663 + 3.21601i −0.246386 + 0.268001i
\(145\) 0.959329 0.553869i 0.0796679 0.0459963i
\(146\) −25.2454 9.18857i −2.08932 0.760452i
\(147\) 11.9409 + 2.10140i 0.984866 + 0.173320i
\(148\) 12.1413 + 10.1877i 0.998007 + 0.837428i
\(149\) −2.17683 5.98079i −0.178333 0.489966i 0.818030 0.575175i \(-0.195066\pi\)
−0.996363 + 0.0852097i \(0.972844\pi\)
\(150\) −1.77768 + 16.1100i −0.145147 + 1.31537i
\(151\) 0.900878 + 5.10913i 0.0733124 + 0.415775i 0.999272 + 0.0381524i \(0.0121472\pi\)
−0.925960 + 0.377623i \(0.876742\pi\)
\(152\) 0.664860 + 1.15157i 0.0539273 + 0.0934048i
\(153\) −10.5438 + 1.37055i −0.852412 + 0.110802i
\(154\) −5.22510 3.24501i −0.421051 0.261490i
\(155\) 6.89200 1.21525i 0.553579 0.0976109i
\(156\) −32.5192 9.50737i −2.60362 0.761198i
\(157\) 4.54023 5.41084i 0.362350 0.431832i −0.553811 0.832642i \(-0.686827\pi\)
0.916161 + 0.400811i \(0.131271\pi\)
\(158\) −4.25850 11.7001i −0.338788 0.930813i
\(159\) 7.41271 + 11.1136i 0.587866 + 0.881365i
\(160\) 2.48983 + 2.96727i 0.196839 + 0.234583i
\(161\) 16.9227 + 0.544238i 1.33370 + 0.0428920i
\(162\) −19.2295 + 8.89033i −1.51082 + 0.698490i
\(163\) 3.91668 6.78389i 0.306778 0.531355i −0.670878 0.741568i \(-0.734082\pi\)
0.977656 + 0.210213i \(0.0674157\pi\)
\(164\) 1.52088 + 0.553554i 0.118761 + 0.0432253i
\(165\) 1.72797 0.111836i 0.134522 0.00870644i
\(166\) −14.1564 + 16.8709i −1.09875 + 1.30943i
\(167\) −18.9988 + 6.91501i −1.47017 + 0.535100i −0.948148 0.317829i \(-0.897046\pi\)
−0.522027 + 0.852929i \(0.674824\pi\)
\(168\) −5.17470 + 15.7957i −0.399237 + 1.21866i
\(169\) −3.04189 17.2514i −0.233991 1.32703i
\(170\) 8.44494i 0.647698i
\(171\) 0.141768 + 1.09063i 0.0108412 + 0.0834026i
\(172\) −37.4741 −2.85738
\(173\) −0.779539 + 0.654111i −0.0592672 + 0.0497311i −0.671940 0.740605i \(-0.734539\pi\)
0.612673 + 0.790337i \(0.290094\pi\)
\(174\) 2.64115 3.59590i 0.200225 0.272604i
\(175\) 3.27772 + 9.99394i 0.247772 + 0.755471i
\(176\) 0.924431 1.10169i 0.0696816 0.0830433i
\(177\) −0.266820 + 0.363272i −0.0200554 + 0.0273052i
\(178\) −5.87586 + 1.03607i −0.440415 + 0.0776570i
\(179\) 3.77073i 0.281837i 0.990021 + 0.140919i \(0.0450056\pi\)
−0.990021 + 0.140919i \(0.954994\pi\)
\(180\) −3.21669 10.2606i −0.239758 0.764779i
\(181\) 15.4065 8.89497i 1.14516 0.661158i 0.197456 0.980312i \(-0.436732\pi\)
0.947703 + 0.319154i \(0.103399\pi\)
\(182\) −34.0562 + 4.88210i −2.52442 + 0.361885i
\(183\) 16.7738 + 4.90401i 1.23995 + 0.362515i
\(184\) −4.03071 + 22.8593i −0.297148 + 1.68521i
\(185\) −4.25771 + 1.54968i −0.313033 + 0.113935i
\(186\) 23.4496 15.6407i 1.71940 1.14683i
\(187\) 3.44709 0.607816i 0.252076 0.0444479i
\(188\) 40.2713 2.93708
\(189\) −8.97083 + 10.4175i −0.652532 + 0.757762i
\(190\) −0.873532 −0.0633727
\(191\) −17.9877 + 3.17172i −1.30155 + 0.229498i −0.781105 0.624400i \(-0.785344\pi\)
−0.520441 + 0.853898i \(0.674232\pi\)
\(192\) 18.5090 + 9.14649i 1.33577 + 0.660091i
\(193\) 4.71776 1.71713i 0.339592 0.123601i −0.166594 0.986026i \(-0.553277\pi\)
0.506186 + 0.862424i \(0.331055\pi\)
\(194\) −0.761705 + 4.31984i −0.0546872 + 0.310147i
\(195\) 7.00205 6.69203i 0.501427 0.479226i
\(196\) 2.72678 + 24.6359i 0.194770 + 1.75971i
\(197\) −18.1661 + 10.4882i −1.29428 + 0.747252i −0.979410 0.201883i \(-0.935294\pi\)
−0.314869 + 0.949135i \(0.601961\pi\)
\(198\) 6.19155 3.21024i 0.440014 0.228142i
\(199\) 5.71686i 0.405257i 0.979256 + 0.202629i \(0.0649484\pi\)
−0.979256 + 0.202629i \(0.935052\pi\)
\(200\) −14.2000 + 2.50385i −1.00409 + 0.177049i
\(201\) 0.902058 + 0.0995390i 0.0636263 + 0.00702094i
\(202\) 26.5106 31.5941i 1.86528 2.22295i
\(203\) 0.594153 2.83367i 0.0417013 0.198885i
\(204\) −8.73796 19.9027i −0.611780 1.39347i
\(205\) −0.354440 + 0.297410i −0.0247551 + 0.0207720i
\(206\) 6.44978 0.449378
\(207\) −10.3418 + 16.1749i −0.718808 + 1.12424i
\(208\) 8.04438i 0.557777i
\(209\) −0.0628715 0.356562i −0.00434891 0.0246639i
\(210\) −7.28673 8.13229i −0.502832 0.561182i
\(211\) 21.3830 7.78276i 1.47206 0.535787i 0.523404 0.852085i \(-0.324662\pi\)
0.948660 + 0.316297i \(0.102440\pi\)
\(212\) −17.5546 + 20.9208i −1.20566 + 1.43685i
\(213\) −3.69742 + 7.48217i −0.253343 + 0.512670i
\(214\) 43.3862 + 15.7913i 2.96582 + 1.07947i
\(215\) 5.35650 9.27774i 0.365311 0.632736i
\(216\) −12.3920 14.2006i −0.843169 0.966227i
\(217\) 9.65020 15.5387i 0.655098 1.05484i
\(218\) 26.3613 + 31.4161i 1.78541 + 2.12777i
\(219\) 8.75776 17.7224i 0.591795 1.19757i
\(220\) 1.21073 + 3.32646i 0.0816277 + 0.224270i
\(221\) 12.5850 14.9983i 0.846562 1.00889i
\(222\) −13.1930 + 12.6089i −0.885456 + 0.846252i
\(223\) −1.93428 + 0.341066i −0.129529 + 0.0228395i −0.238037 0.971256i \(-0.576504\pi\)
0.108508 + 0.994096i \(0.465393\pi\)
\(224\) 10.1189 + 0.325425i 0.676097 + 0.0217434i
\(225\) −11.6390 2.60031i −0.775935 0.173354i
\(226\) −11.3913 19.7304i −0.757741 1.31245i
\(227\) −1.19172 6.75861i −0.0790975 0.448584i −0.998475 0.0552076i \(-0.982418\pi\)
0.919377 0.393377i \(-0.128693\pi\)
\(228\) −2.05871 + 0.903842i −0.136341 + 0.0598584i
\(229\) 7.11726 + 19.5545i 0.470322 + 1.29220i 0.917494 + 0.397750i \(0.130209\pi\)
−0.447172 + 0.894448i \(0.647569\pi\)
\(230\) −11.6811 9.80161i −0.770230 0.646299i
\(231\) 2.79502 3.55964i 0.183899 0.234207i
\(232\) 3.72987 + 1.35756i 0.244878 + 0.0891284i
\(233\) −17.2391 + 9.95302i −1.12937 + 0.652044i −0.943777 0.330582i \(-0.892755\pi\)
−0.185596 + 0.982626i \(0.559421\pi\)
\(234\) 14.9878 36.0169i 0.979785 2.35450i
\(235\) −5.75632 + 9.97025i −0.375501 + 0.650387i
\(236\) −0.865880 0.315155i −0.0563640 0.0205148i
\(237\) 8.90091 2.17032i 0.578176 0.140977i
\(238\) −16.4437 14.7241i −1.06589 0.954422i
\(239\) 0.136444 + 0.0240588i 0.00882584 + 0.00155623i 0.178059 0.984020i \(-0.443018\pi\)
−0.169234 + 0.985576i \(0.554129\pi\)
\(240\) 2.12401 1.41670i 0.137104 0.0914477i
\(241\) −2.77730 + 7.63057i −0.178902 + 0.491528i −0.996436 0.0843514i \(-0.973118\pi\)
0.817534 + 0.575880i \(0.195340\pi\)
\(242\) 20.4356 11.7985i 1.31365 0.758438i
\(243\) −4.95027 14.7816i −0.317560 0.948238i
\(244\) 35.7268i 2.28717i
\(245\) −6.48904 2.84633i −0.414570 0.181845i
\(246\) −0.825604 + 1.67071i −0.0526386 + 0.106520i
\(247\) −1.55140 1.30178i −0.0987131 0.0828301i
\(248\) 19.2097 + 16.1188i 1.21981 + 1.02355i
\(249\) −11.1965 11.7152i −0.709550 0.742422i
\(250\) 7.31452 20.0965i 0.462611 1.27101i
\(251\) −10.2480 17.7501i −0.646848 1.12037i −0.983871 0.178877i \(-0.942753\pi\)
0.337023 0.941496i \(-0.390580\pi\)
\(252\) −25.5875 11.6263i −1.61186 0.732390i
\(253\) 3.16013 5.47351i 0.198676 0.344116i
\(254\) 22.7615 + 27.1261i 1.42819 + 1.70205i
\(255\) 6.17645 + 0.681550i 0.386784 + 0.0426803i
\(256\) −4.20089 + 23.8244i −0.262556 + 1.48903i
\(257\) 3.85987 1.40488i 0.240772 0.0876340i −0.218816 0.975766i \(-0.570219\pi\)
0.459588 + 0.888132i \(0.347997\pi\)
\(258\) 4.73259 42.8885i 0.294638 2.67012i
\(259\) −4.40601 + 10.9924i −0.273776 + 0.683036i
\(260\) 17.1480 + 9.90040i 1.06347 + 0.613997i
\(261\) 2.41681 + 2.22189i 0.149597 + 0.137531i
\(262\) −20.7703 11.9917i −1.28319 0.740851i
\(263\) 15.0074 + 17.8852i 0.925398 + 1.10285i 0.994448 + 0.105234i \(0.0335591\pi\)
−0.0690490 + 0.997613i \(0.521996\pi\)
\(264\) 4.28691 + 4.48551i 0.263841 + 0.276064i
\(265\) −2.67027 7.33651i −0.164034 0.450679i
\(266\) −1.52304 + 1.70092i −0.0933835 + 0.104290i
\(267\) −0.283550 4.38110i −0.0173530 0.268119i
\(268\) 0.322171 + 1.82712i 0.0196797 + 0.111609i
\(269\) 5.04717 + 8.74196i 0.307732 + 0.533007i 0.977866 0.209233i \(-0.0670968\pi\)
−0.670134 + 0.742240i \(0.733763\pi\)
\(270\) 12.1493 2.38564i 0.739382 0.145185i
\(271\) −19.8563 11.4641i −1.20619 0.696392i −0.244262 0.969709i \(-0.578546\pi\)
−0.961924 + 0.273317i \(0.911879\pi\)
\(272\) 3.95352 3.31740i 0.239718 0.201147i
\(273\) −0.822149 25.3020i −0.0497587 1.53135i
\(274\) −1.22369 + 6.93990i −0.0739259 + 0.419255i
\(275\) 3.86645 + 0.681760i 0.233156 + 0.0411117i
\(276\) −37.6713 11.0137i −2.26755 0.662944i
\(277\) −16.6984 + 14.0116i −1.00331 + 0.841875i −0.987439 0.157999i \(-0.949496\pi\)
−0.0158688 + 0.999874i \(0.505051\pi\)
\(278\) 8.44795 0.506675
\(279\) 9.54680 + 18.4128i 0.571552 + 1.10234i
\(280\) 5.12502 8.25230i 0.306279 0.493169i
\(281\) −2.93911 + 8.07514i −0.175333 + 0.481722i −0.995966 0.0897329i \(-0.971399\pi\)
0.820633 + 0.571455i \(0.193621\pi\)
\(282\) −5.08584 + 46.0897i −0.302857 + 2.74460i
\(283\) −17.0288 3.00264i −1.01226 0.178488i −0.357168 0.934040i \(-0.616258\pi\)
−0.655089 + 0.755552i \(0.727369\pi\)
\(284\) −16.8026 2.96276i −0.997053 0.175807i
\(285\) 0.0704985 0.638883i 0.00417597 0.0378441i
\(286\) −4.39244 + 12.0681i −0.259730 + 0.713603i
\(287\) −0.0388721 + 1.20870i −0.00229454 + 0.0713474i
\(288\) −6.18388 + 9.67175i −0.364388 + 0.569914i
\(289\) −4.43897 −0.261116
\(290\) −1.99747 + 1.67608i −0.117296 + 0.0984228i
\(291\) −3.09797 0.905727i −0.181606 0.0530947i
\(292\) 39.7990 + 7.01763i 2.32906 + 0.410676i
\(293\) −2.36568 + 13.4164i −0.138205 + 0.783797i 0.834370 + 0.551205i \(0.185832\pi\)
−0.972574 + 0.232592i \(0.925279\pi\)
\(294\) −28.5397 + 0.00950028i −1.66447 + 0.000554067i
\(295\) 0.201793 0.169324i 0.0117488 0.00985844i
\(296\) −14.0602 8.11769i −0.817235 0.471831i
\(297\) 1.84821 + 4.78745i 0.107244 + 0.277796i
\(298\) 7.49089 + 12.9746i 0.433936 + 0.751598i
\(299\) −6.13890 34.8155i −0.355022 2.01343i
\(300\) −1.57466 24.3298i −0.0909128 1.40468i
\(301\) −8.72605 26.6061i −0.502961 1.53355i
\(302\) −4.17674 11.4755i −0.240344 0.660341i
\(303\) 20.9677 + 21.9391i 1.20456 + 1.26037i
\(304\) −0.343147 0.408946i −0.0196808 0.0234547i
\(305\) −8.84514 5.10674i −0.506471 0.292411i
\(306\) 23.8818 7.48693i 1.36523 0.427999i
\(307\) 11.7697 + 6.79523i 0.671731 + 0.387824i 0.796732 0.604332i \(-0.206560\pi\)
−0.125001 + 0.992157i \(0.539893\pi\)
\(308\) 8.58816 + 3.44232i 0.489356 + 0.196145i
\(309\) −0.520530 + 4.71723i −0.0296119 + 0.268354i
\(310\) −15.4800 + 5.63425i −0.879203 + 0.320004i
\(311\) 0.691761 3.92317i 0.0392262 0.222463i −0.958893 0.283768i \(-0.908415\pi\)
0.998119 + 0.0613056i \(0.0195264\pi\)
\(312\) 34.4963 + 3.80655i 1.95297 + 0.215503i
\(313\) −4.47317 5.33091i −0.252838 0.301321i 0.624664 0.780894i \(-0.285236\pi\)
−0.877502 + 0.479573i \(0.840792\pi\)
\(314\) −8.31325 + 14.3990i −0.469144 + 0.812581i
\(315\) 6.53586 4.67304i 0.368254 0.263296i
\(316\) 9.36481 + 16.2203i 0.526811 + 0.912464i
\(317\) 4.42454 12.1563i 0.248507 0.682767i −0.751235 0.660035i \(-0.770541\pi\)
0.999742 0.0227318i \(-0.00723637\pi\)
\(318\) −21.7265 22.7330i −1.21836 1.27480i
\(319\) −0.827915 0.694703i −0.0463544 0.0388959i
\(320\) −9.24306 7.75585i −0.516703 0.433565i
\(321\) −15.0509 + 30.4573i −0.840058 + 1.69996i
\(322\) −39.4519 + 5.65558i −2.19857 + 0.315173i
\(323\) 1.29929i 0.0722946i
\(324\) 26.1646 18.1932i 1.45359 1.01073i
\(325\) 19.0186 10.9804i 1.05496 0.609081i
\(326\) −6.30653 + 17.3270i −0.349286 + 0.959656i
\(327\) −25.1046 + 16.7446i −1.38829 + 0.925979i
\(328\) −1.63272 0.287893i −0.0901519 0.0158962i
\(329\) 9.37737 + 28.5921i 0.516991 + 1.57633i
\(330\) −3.95998 + 0.965565i −0.217990 + 0.0531526i
\(331\) 12.6017 + 4.58664i 0.692651 + 0.252104i 0.664270 0.747493i \(-0.268743\pi\)
0.0283810 + 0.999597i \(0.490965\pi\)
\(332\) 16.5645 28.6905i 0.909094 1.57460i
\(333\) −8.15711 10.6667i −0.447007 0.584530i
\(334\) 41.2157 23.7959i 2.25522 1.30205i
\(335\) −0.498404 0.181404i −0.0272307 0.00991118i
\(336\) 0.944735 6.60588i 0.0515395 0.360380i
\(337\) 8.03963 + 6.74605i 0.437947 + 0.367481i 0.834940 0.550340i \(-0.185502\pi\)
−0.396994 + 0.917821i \(0.629947\pi\)
\(338\) 14.1031 + 38.7480i 0.767108 + 2.10761i
\(339\) 15.3497 6.73905i 0.833683 0.366015i
\(340\) 2.20593 + 12.5104i 0.119633 + 0.678473i
\(341\) −3.41397 5.91316i −0.184877 0.320216i
\(342\) −0.774437 2.47030i −0.0418767 0.133578i
\(343\) −16.8562 + 7.67257i −0.910150 + 0.414280i
\(344\) 37.8037 6.66582i 2.03824 0.359397i
\(345\) 8.11142 7.75227i 0.436704 0.417368i
\(346\) 1.53972 1.83497i 0.0827758 0.0986484i
\(347\) −6.60110 18.1364i −0.354366 0.973612i −0.980950 0.194258i \(-0.937770\pi\)
0.626585 0.779353i \(-0.284452\pi\)
\(348\) −2.97333 + 6.01690i −0.159387 + 0.322540i
\(349\) −5.74245 6.84358i −0.307386 0.366329i 0.590131 0.807307i \(-0.299076\pi\)
−0.897518 + 0.440979i \(0.854631\pi\)
\(350\) −11.6833 21.8277i −0.624499 1.16674i
\(351\) 25.1324 + 13.8685i 1.34147 + 0.740247i
\(352\) 1.88959 3.27287i 0.100716 0.174444i
\(353\) 27.2321 + 9.91167i 1.44942 + 0.527545i 0.942429 0.334407i \(-0.108536\pi\)
0.506990 + 0.861952i \(0.330758\pi\)
\(354\) 0.470040 0.951183i 0.0249823 0.0505548i
\(355\) 3.13526 3.73645i 0.166402 0.198310i
\(356\) 8.43393 3.06970i 0.446997 0.162694i
\(357\) 12.0960 10.8383i 0.640188 0.573623i
\(358\) −1.54129 8.74111i −0.0814599 0.461982i
\(359\) 6.72303i 0.354828i −0.984136 0.177414i \(-0.943227\pi\)
0.984136 0.177414i \(-0.0567732\pi\)
\(360\) 5.07011 + 9.77866i 0.267218 + 0.515380i
\(361\) 18.8656 0.992926
\(362\) −32.0789 + 26.9174i −1.68603 + 1.41474i
\(363\) 6.97993 + 15.8984i 0.366351 + 0.834449i
\(364\) 49.1760 16.1283i 2.57752 0.845353i
\(365\) −7.42622 + 8.85022i −0.388706 + 0.463242i
\(366\) −40.8887 4.51192i −2.13728 0.235842i
\(367\) 10.1307 1.78632i 0.528818 0.0932449i 0.0971368 0.995271i \(-0.469032\pi\)
0.431682 + 0.902026i \(0.357920\pi\)
\(368\) 9.31888i 0.485780i
\(369\) −1.15529 0.738664i −0.0601420 0.0384533i
\(370\) 9.23658 5.33274i 0.480187 0.277236i
\(371\) −18.9412 7.59204i −0.983377 0.394159i
\(372\) −30.6528 + 29.2957i −1.58928 + 1.51891i
\(373\) −3.06978 + 17.4096i −0.158947 + 0.901434i 0.796141 + 0.605112i \(0.206872\pi\)
−0.955088 + 0.296323i \(0.904240\pi\)
\(374\) −7.74244 + 2.81802i −0.400352 + 0.145716i
\(375\) 14.1078 + 6.97157i 0.728525 + 0.360010i
\(376\) −40.6255 + 7.16337i −2.09510 + 0.369422i
\(377\) −6.04529 −0.311349
\(378\) 16.5376 27.8162i 0.850600 1.43071i
\(379\) −23.3651 −1.20018 −0.600092 0.799931i \(-0.704869\pi\)
−0.600092 + 0.799931i \(0.704869\pi\)
\(380\) 1.29406 0.228178i 0.0663838 0.0117053i
\(381\) −21.6764 + 14.4581i −1.11052 + 0.740710i
\(382\) 40.4018 14.7051i 2.06714 0.752376i
\(383\) 2.69264 15.2707i 0.137588 0.780298i −0.835435 0.549589i \(-0.814784\pi\)
0.973023 0.230709i \(-0.0741045\pi\)
\(384\) −33.9224 9.91762i −1.73109 0.506106i
\(385\) −2.07982 + 1.63419i −0.105997 + 0.0832860i
\(386\) −10.2346 + 5.90896i −0.520928 + 0.300758i
\(387\) 30.9858 + 6.92263i 1.57509 + 0.351897i
\(388\) 6.59842i 0.334984i
\(389\) 12.3228 2.17285i 0.624792 0.110168i 0.147716 0.989030i \(-0.452808\pi\)
0.477076 + 0.878862i \(0.341697\pi\)
\(390\) −13.4964 + 18.3752i −0.683418 + 0.930467i
\(391\) 14.5789 17.3745i 0.737289 0.878667i
\(392\) −7.13294 24.3675i −0.360268 1.23075i
\(393\) 10.4468 14.2231i 0.526969 0.717463i
\(394\) 37.8246 31.7386i 1.90558 1.59897i
\(395\) −5.35437 −0.269408
\(396\) −8.33366 + 6.37299i −0.418782 + 0.320255i
\(397\) 6.72738i 0.337638i 0.985647 + 0.168819i \(0.0539953\pi\)
−0.985647 + 0.168819i \(0.946005\pi\)
\(398\) −2.33678 13.2525i −0.117132 0.664290i
\(399\) −1.12110 1.25119i −0.0561250 0.0626379i
\(400\) 5.43971 1.97989i 0.271985 0.0989946i
\(401\) −1.74561 + 2.08034i −0.0871718 + 0.103887i −0.807867 0.589365i \(-0.799378\pi\)
0.720695 + 0.693252i \(0.243823\pi\)
\(402\) −2.13179 + 0.137972i −0.106324 + 0.00688143i
\(403\) −35.8889 13.0625i −1.78775 0.650690i
\(404\) −31.0202 + 53.7286i −1.54331 + 2.67310i
\(405\) 0.764293 + 9.07826i 0.0379780 + 0.451103i
\(406\) −0.219067 + 6.81173i −0.0108721 + 0.338061i
\(407\) 2.84154 + 3.38641i 0.140850 + 0.167858i
\(408\) 12.3551 + 18.5235i 0.611667 + 0.917049i
\(409\) 7.93652 + 21.8054i 0.392435 + 1.07821i 0.965886 + 0.258967i \(0.0833822\pi\)
−0.573451 + 0.819240i \(0.694396\pi\)
\(410\) 0.700078 0.834320i 0.0345744 0.0412041i
\(411\) −4.97694 1.45507i −0.245494 0.0717731i
\(412\) −9.55477 + 1.68476i −0.470730 + 0.0830024i
\(413\) 0.0221310 0.688149i 0.00108899 0.0338616i
\(414\) 17.3624 41.7232i 0.853316 2.05058i
\(415\) 4.73541 + 8.20197i 0.232452 + 0.402619i
\(416\) −3.67074 20.8178i −0.179973 1.02068i
\(417\) −0.681793 + 6.17865i −0.0333875 + 0.302570i
\(418\) 0.291491 + 0.800866i 0.0142573 + 0.0391716i
\(419\) −2.69835 2.26418i −0.131823 0.110612i 0.574492 0.818510i \(-0.305199\pi\)
−0.706315 + 0.707897i \(0.749644\pi\)
\(420\) 12.9189 + 10.1439i 0.630377 + 0.494971i
\(421\) 7.29428 + 2.65490i 0.355501 + 0.129392i 0.513596 0.858032i \(-0.328313\pi\)
−0.158095 + 0.987424i \(0.550535\pi\)
\(422\) −46.3877 + 26.7820i −2.25812 + 1.30373i
\(423\) −33.2986 7.43935i −1.61903 0.361713i
\(424\) 13.9877 24.2274i 0.679302 1.17659i
\(425\) 13.2395 + 4.81877i 0.642209 + 0.233745i
\(426\) 5.51282 18.8561i 0.267097 0.913583i
\(427\) −25.3656 + 8.31917i −1.22753 + 0.402593i
\(428\) −68.3976 12.0603i −3.30612 0.582958i
\(429\) −8.47188 4.18649i −0.409026 0.202126i
\(430\) −8.62489 + 23.6967i −0.415929 + 1.14276i
\(431\) −24.1151 + 13.9229i −1.16158 + 0.670641i −0.951683 0.307082i \(-0.900647\pi\)
−0.209901 + 0.977723i \(0.567314\pi\)
\(432\) 5.88941 + 4.75058i 0.283354 + 0.228562i
\(433\) 12.9718i 0.623384i −0.950183 0.311692i \(-0.899104\pi\)
0.950183 0.311692i \(-0.100896\pi\)
\(434\) −16.0191 + 39.9657i −0.768943 + 1.91841i
\(435\) −1.06464 1.59618i −0.0510457 0.0765308i
\(436\) −47.2581 39.6543i −2.26325 1.89909i
\(437\) −1.79719 1.50802i −0.0859714 0.0721385i
\(438\) −13.0577 + 44.6629i −0.623923 + 2.13408i
\(439\) −1.48780 + 4.08771i −0.0710090 + 0.195096i −0.970120 0.242625i \(-0.921992\pi\)
0.899111 + 0.437720i \(0.144214\pi\)
\(440\) −1.81309 3.14036i −0.0864355 0.149711i
\(441\) 2.29635 20.8741i 0.109350 0.994003i
\(442\) −23.0435 + 39.9124i −1.09607 + 1.89844i
\(443\) 12.6998 + 15.1351i 0.603388 + 0.719090i 0.978120 0.208044i \(-0.0667096\pi\)
−0.374732 + 0.927133i \(0.622265\pi\)
\(444\) 16.2507 22.1251i 0.771222 1.05001i
\(445\) −0.445548 + 2.52683i −0.0211210 + 0.119783i
\(446\) 4.34455 1.58129i 0.205720 0.0748761i
\(447\) −10.0939 + 4.43156i −0.477425 + 0.209606i
\(448\) −31.2176 + 4.47516i −1.47489 + 0.211432i
\(449\) 13.7666 + 7.94817i 0.649688 + 0.375097i 0.788337 0.615244i \(-0.210943\pi\)
−0.138649 + 0.990342i \(0.544276\pi\)
\(450\) 28.0439 + 1.27044i 1.32200 + 0.0598890i
\(451\) 0.390944 + 0.225711i 0.0184088 + 0.0106283i
\(452\) 22.0291 + 26.2532i 1.03616 + 1.23485i
\(453\) 8.73002 2.12865i 0.410172 0.100013i
\(454\) 5.52519 + 15.1803i 0.259310 + 0.712449i
\(455\) −3.03615 + 14.4802i −0.142337 + 0.678843i
\(456\) 1.91604 1.27799i 0.0897268 0.0598473i
\(457\) −6.15554 34.9098i −0.287944 1.63301i −0.694575 0.719420i \(-0.744408\pi\)
0.406631 0.913592i \(-0.366703\pi\)
\(458\) −24.4918 42.4211i −1.14443 1.98221i
\(459\) 3.54840 + 18.0709i 0.165625 + 0.843476i
\(460\) 19.8648 + 11.4690i 0.926202 + 0.534743i
\(461\) 15.9132 13.3527i 0.741151 0.621899i −0.191996 0.981396i \(-0.561496\pi\)
0.933146 + 0.359497i \(0.117052\pi\)
\(462\) −5.02427 + 9.39426i −0.233750 + 0.437060i
\(463\) −2.91569 + 16.5357i −0.135504 + 0.768480i 0.839004 + 0.544126i \(0.183139\pi\)
−0.974508 + 0.224355i \(0.927973\pi\)
\(464\) −1.56932 0.276714i −0.0728539 0.0128461i
\(465\) −2.87146 11.7764i −0.133161 0.546119i
\(466\) 35.8946 30.1191i 1.66278 1.39524i
\(467\) −3.28103 −0.151828 −0.0759140 0.997114i \(-0.524187\pi\)
−0.0759140 + 0.997114i \(0.524187\pi\)
\(468\) −12.7951 + 57.2708i −0.591452 + 2.64734i
\(469\) −1.22221 + 0.654192i −0.0564366 + 0.0302078i
\(470\) 9.26867 25.4654i 0.427532 1.17463i
\(471\) −9.86018 7.24220i −0.454333 0.333703i
\(472\) 0.929555 + 0.163906i 0.0427862 + 0.00754436i
\(473\) −10.2934 1.81500i −0.473290 0.0834538i
\(474\) −19.7465 + 8.66939i −0.906988 + 0.398198i
\(475\) 0.498447 1.36947i 0.0228703 0.0628356i
\(476\) 28.2060 + 17.5171i 1.29282 + 0.802896i
\(477\) 18.3799 14.0556i 0.841557 0.643563i
\(478\) −0.326132 −0.0149169
\(479\) 24.4613 20.5255i 1.11767 0.937833i 0.119182 0.992872i \(-0.461973\pi\)
0.998484 + 0.0550390i \(0.0175283\pi\)
\(480\) 4.85020 4.63545i 0.221380 0.211578i
\(481\) 24.3513 + 4.29380i 1.11033 + 0.195780i
\(482\) 3.31919 18.8241i 0.151185 0.857412i
\(483\) −0.952405 29.3107i −0.0433359 1.33368i
\(484\) −27.1916 + 22.8165i −1.23598 + 1.03711i
\(485\) 1.63362 + 0.943170i 0.0741788 + 0.0428271i
\(486\) 17.5175 + 32.2425i 0.794609 + 1.46255i
\(487\) 13.3392 + 23.1043i 0.604459 + 1.04695i 0.992137 + 0.125159i \(0.0399440\pi\)
−0.387678 + 0.921795i \(0.626723\pi\)
\(488\) −6.35501 36.0410i −0.287678 1.63150i
\(489\) −12.1637 6.01084i −0.550059 0.271819i
\(490\) 16.2060 + 3.94581i 0.732114 + 0.178254i
\(491\) −5.33517 14.6583i −0.240773 0.661519i −0.999944 0.0106267i \(-0.996617\pi\)
0.759170 0.650892i \(-0.225605\pi\)
\(492\) 0.786647 2.69066i 0.0354648 0.121304i
\(493\) −2.49300 2.97105i −0.112279 0.133809i
\(494\) 4.12848 + 2.38358i 0.185749 + 0.107242i
\(495\) −0.386603 2.97417i −0.0173765 0.133679i
\(496\) −8.71863 5.03370i −0.391478 0.226020i
\(497\) −1.80906 12.6195i −0.0811475 0.566064i
\(498\) 30.7438 + 22.5810i 1.37766 + 1.01188i
\(499\) −2.39951 + 0.873349i −0.107417 + 0.0390965i −0.395169 0.918608i \(-0.629314\pi\)
0.287753 + 0.957705i \(0.407092\pi\)
\(500\) −5.58635 + 31.6818i −0.249829 + 1.41685i
\(501\) 14.0775 + 32.0647i 0.628935 + 1.43255i
\(502\) 31.0118 + 36.9584i 1.38412 + 1.64953i
\(503\) 18.3905 31.8533i 0.819993 1.42027i −0.0856932 0.996322i \(-0.527311\pi\)
0.905686 0.423948i \(-0.139356\pi\)
\(504\) 27.8807 + 7.17712i 1.24190 + 0.319695i
\(505\) −8.86799 15.3598i −0.394620 0.683502i
\(506\) −5.08835 + 13.9801i −0.226205 + 0.621492i
\(507\) −29.4776 + 7.18755i −1.30915 + 0.319210i
\(508\) −40.8048 34.2393i −1.81042 1.51912i
\(509\) −3.11377 2.61276i −0.138015 0.115809i 0.571167 0.820834i \(-0.306491\pi\)
−0.709182 + 0.705026i \(0.750935\pi\)
\(510\) −14.5965 + 0.944705i −0.646345 + 0.0418322i
\(511\) 4.28497 + 29.8908i 0.189556 + 1.32229i
\(512\) 16.1358i 0.713110i
\(513\) 1.86922 0.367041i 0.0825283 0.0162053i
\(514\) −8.37352 + 4.83446i −0.369340 + 0.213239i
\(515\) 0.948638 2.60636i 0.0418020 0.114850i
\(516\) 4.19210 + 64.7716i 0.184547 + 2.85141i
\(517\) 11.0617 + 1.95048i 0.486493 + 0.0857818i
\(518\) 5.72061 27.2831i 0.251349 1.19875i
\(519\) 1.21779 + 1.27421i 0.0534551 + 0.0559316i
\(520\) −19.0599 6.93723i −0.835831 0.304218i
\(521\) −5.06650 + 8.77544i −0.221967 + 0.384459i −0.955405 0.295298i \(-0.904581\pi\)
0.733438 + 0.679756i \(0.237915\pi\)
\(522\) −6.51073 4.16280i −0.284967 0.182201i
\(523\) −0.925908 + 0.534573i −0.0404871 + 0.0233753i −0.520107 0.854101i \(-0.674108\pi\)
0.479620 + 0.877476i \(0.340775\pi\)
\(524\) 33.9017 + 12.3392i 1.48100 + 0.539041i
\(525\) 16.9072 6.78331i 0.737891 0.296048i
\(526\) −42.1001 35.3262i −1.83565 1.54030i
\(527\) −8.38039 23.0249i −0.365056 1.00298i
\(528\) −2.00762 1.47458i −0.0873703 0.0641727i
\(529\) −3.11761 17.6808i −0.135548 0.768732i
\(530\) 9.18892 + 15.9157i 0.399141 + 0.691332i
\(531\) 0.657740 + 0.420543i 0.0285435 + 0.0182500i
\(532\) 1.81195 2.91759i 0.0785578 0.126494i
\(533\) 2.48668 0.438470i 0.107710 0.0189922i
\(534\) 2.44810 + 10.0401i 0.105939 + 0.434479i
\(535\) 12.7625 15.2098i 0.551772 0.657576i
\(536\) −0.650009 1.78588i −0.0280761 0.0771385i
\(537\) 6.51745 0.421817i 0.281249 0.0182028i
\(538\) −15.2734 18.2021i −0.658483 0.784750i
\(539\) −0.444208 + 6.89904i −0.0191334 + 0.297163i
\(540\) −17.3749 + 6.70765i −0.747697 + 0.288651i
\(541\) 1.87506 3.24770i 0.0806153 0.139630i −0.822899 0.568188i \(-0.807645\pi\)
0.903514 + 0.428558i \(0.140978\pi\)
\(542\) 50.7159 + 18.4591i 2.17844 + 0.792886i
\(543\) −17.0979 25.6342i −0.733739 1.10007i
\(544\) 8.71744 10.3890i 0.373757 0.445426i
\(545\) 16.5725 6.03190i 0.709888 0.258378i
\(546\) 12.2481 + 58.3178i 0.524172 + 2.49577i
\(547\) −2.42723 13.7655i −0.103781 0.588570i −0.991700 0.128571i \(-0.958961\pi\)
0.887919 0.459999i \(-0.152150\pi\)
\(548\) 10.6005i 0.452830i
\(549\) 6.59984 29.5410i 0.281674 1.26078i
\(550\) −9.24169 −0.394067
\(551\) −0.307320 + 0.257872i −0.0130923 + 0.0109857i
\(552\) 39.9617 + 4.40963i 1.70088 + 0.187687i
\(553\) −9.33557 + 10.4259i −0.396989 + 0.443353i
\(554\) 32.9821 39.3065i 1.40127 1.66997i
\(555\) 3.15482 + 7.18582i 0.133914 + 0.305021i
\(556\) −12.5149 + 2.20671i −0.530749 + 0.0935854i
\(557\) 37.7207i 1.59828i −0.601147 0.799139i \(-0.705289\pi\)
0.601147 0.799139i \(-0.294711\pi\)
\(558\) −29.6572 38.7814i −1.25549 1.64175i
\(559\) −50.6317 + 29.2322i −2.14149 + 1.23639i
\(560\) −1.45098 + 3.62000i −0.0613149 + 0.152973i
\(561\) −1.43618 5.89008i −0.0606357 0.248679i
\(562\) 3.51257 19.9208i 0.148169 0.840306i
\(563\) 9.84586 3.58360i 0.414953 0.151031i −0.126103 0.992017i \(-0.540247\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(564\) −4.50500 69.6063i −0.189695 2.93095i
\(565\) −9.64851 + 1.70129i −0.405916 + 0.0715739i
\(566\) 40.7027 1.71086
\(567\) 19.0095 + 14.3401i 0.798324 + 0.602228i
\(568\) 17.4774 0.733336
\(569\) −27.4820 + 4.84582i −1.15211 + 0.203147i −0.716895 0.697181i \(-0.754437\pi\)
−0.435211 + 0.900328i \(0.643326\pi\)
\(570\) 0.0977189 + 1.50984i 0.00409299 + 0.0632404i
\(571\) 1.87656 0.683010i 0.0785314 0.0285831i −0.302456 0.953163i \(-0.597806\pi\)
0.380987 + 0.924580i \(0.375584\pi\)
\(572\) 3.35466 19.0252i 0.140265 0.795484i
\(573\) 7.49433 + 30.7358i 0.313080 + 1.28401i
\(574\) −0.403949 2.81784i −0.0168605 0.117614i
\(575\) 22.0317 12.7200i 0.918787 0.530462i
\(576\) 13.7386 33.0148i 0.572441 1.37562i
\(577\) 27.3579i 1.13892i −0.822018 0.569462i \(-0.807152\pi\)
0.822018 0.569462i \(-0.192848\pi\)
\(578\) 10.2902 1.81444i 0.428016 0.0754708i
\(579\) −3.49570 7.96226i −0.145276 0.330900i
\(580\) 2.52126 3.00473i 0.104690 0.124764i
\(581\) 24.2270 + 5.07983i 1.00511 + 0.210747i
\(582\) 7.55177 + 0.833312i 0.313031 + 0.0345419i
\(583\) −5.83517 + 4.89628i −0.241668 + 0.202783i
\(584\) −41.3973 −1.71303
\(585\) −12.3500 11.3540i −0.510611 0.469429i
\(586\) 32.0683i 1.32473i
\(587\) 0.974072 + 5.52423i 0.0402042 + 0.228010i 0.998289 0.0584759i \(-0.0186241\pi\)
−0.958085 + 0.286485i \(0.907513\pi\)
\(588\) 42.2765 7.46899i 1.74345 0.308016i
\(589\) −2.38166 + 0.866855i −0.0981348 + 0.0357181i
\(590\) −0.398575 + 0.475003i −0.0164091 + 0.0195555i
\(591\) 20.1603 + 30.2256i 0.829285 + 1.24331i
\(592\) 6.12492 + 2.22929i 0.251732 + 0.0916231i
\(593\) 7.59363 13.1526i 0.311833 0.540111i −0.666926 0.745124i \(-0.732390\pi\)
0.978759 + 0.205013i \(0.0657237\pi\)
\(594\) −6.24131 10.3426i −0.256084 0.424360i
\(595\) −8.36858 + 4.47929i −0.343078 + 0.183633i
\(596\) −14.4862 17.2640i −0.593378 0.707160i
\(597\) 9.88121 0.639524i 0.404411 0.0261740i
\(598\) 28.4618 + 78.1982i 1.16389 + 3.19776i
\(599\) −27.2744 + 32.5043i −1.11440 + 1.32809i −0.175274 + 0.984520i \(0.556081\pi\)
−0.939127 + 0.343571i \(0.888363\pi\)
\(600\) 5.91624 + 24.2637i 0.241530 + 0.990562i
\(601\) 1.13325 0.199822i 0.0462262 0.00815092i −0.150487 0.988612i \(-0.548084\pi\)
0.196713 + 0.980461i \(0.436973\pi\)
\(602\) 31.1036 + 58.1103i 1.26769 + 2.36840i
\(603\) 0.0711366 1.57028i 0.00289691 0.0639469i
\(604\) 9.18501 + 15.9089i 0.373733 + 0.647324i
\(605\) −1.76210 9.99339i −0.0716397 0.406289i
\(606\) −57.5739 42.2875i −2.33878 1.71781i
\(607\) −5.71360 15.6980i −0.231908 0.637161i 0.768087 0.640345i \(-0.221209\pi\)
−0.999995 + 0.00318399i \(0.998987\pi\)
\(608\) −1.07463 0.901718i −0.0435818 0.0365695i
\(609\) −4.96428 0.709962i −0.201163 0.0287691i
\(610\) 22.5918 + 8.22273i 0.914714 + 0.332929i
\(611\) 54.4110 31.4142i 2.20123 1.27088i
\(612\) −33.4231 + 17.3294i −1.35105 + 0.700501i
\(613\) −11.5895 + 20.0735i −0.468094 + 0.810762i −0.999335 0.0364584i \(-0.988392\pi\)
0.531242 + 0.847220i \(0.321726\pi\)
\(614\) −30.0615 10.9415i −1.21318 0.441562i
\(615\) 0.553704 + 0.579356i 0.0223275 + 0.0233619i
\(616\) −9.27600 1.94496i −0.373741 0.0783646i
\(617\) 19.1376 + 3.37447i 0.770450 + 0.135851i 0.545037 0.838412i \(-0.316516\pi\)
0.225413 + 0.974263i \(0.427627\pi\)
\(618\) −0.721514 11.1480i −0.0290235 0.448439i
\(619\) −12.3203 + 33.8496i −0.495193 + 1.36053i 0.400679 + 0.916219i \(0.368774\pi\)
−0.895872 + 0.444313i \(0.853448\pi\)
\(620\) 21.4604 12.3902i 0.861872 0.497602i
\(621\) 29.1142 + 16.0658i 1.16831 + 0.644697i
\(622\) 9.37727i 0.375994i
\(623\) 4.14333 + 5.27318i 0.165999 + 0.211266i
\(624\) −13.9042 + 0.899895i −0.556613 + 0.0360246i
\(625\) 8.18119 + 6.86483i 0.327247 + 0.274593i
\(626\) 12.5485 + 10.5294i 0.501539 + 0.420841i
\(627\) −0.609261 + 0.148557i −0.0243315 + 0.00593278i
\(628\) 8.55414 23.5023i 0.341347 0.937844i
\(629\) 7.93194 + 13.7385i 0.316267 + 0.547790i
\(630\) −13.2410 + 13.5044i −0.527534 + 0.538027i
\(631\) −10.9185 + 18.9114i −0.434658 + 0.752849i −0.997268 0.0738734i \(-0.976464\pi\)
0.562610 + 0.826722i \(0.309797\pi\)
\(632\) −12.3324 14.6972i −0.490557 0.584623i
\(633\) −15.8440 36.0884i −0.629744 1.43439i
\(634\) −5.28782 + 29.9887i −0.210006 + 1.19100i
\(635\) 14.3095 5.20822i 0.567854 0.206682i
\(636\) 38.1240 + 28.0017i 1.51171 + 1.11034i
\(637\) 22.9018 + 31.1588i 0.907401 + 1.23455i
\(638\) 2.20319 + 1.27201i 0.0872253 + 0.0503596i
\(639\) 13.3461 + 5.55374i 0.527962 + 0.219703i
\(640\) 17.8879 + 10.3276i 0.707083 + 0.408235i
\(641\) 16.3142 + 19.4425i 0.644373 + 0.767934i 0.985054 0.172245i \(-0.0551021\pi\)
−0.340681 + 0.940179i \(0.610658\pi\)
\(642\) 22.4407 76.7567i 0.885665 3.02934i
\(643\) 4.96013 + 13.6278i 0.195609 + 0.537430i 0.998257 0.0590229i \(-0.0187985\pi\)
−0.802648 + 0.596453i \(0.796576\pi\)
\(644\) 56.9671 18.6836i 2.24482 0.736236i
\(645\) −16.6352 8.22050i −0.655009 0.323682i
\(646\) 0.531090 + 3.01196i 0.0208954 + 0.118504i
\(647\) 21.4787 + 37.2021i 0.844414 + 1.46257i 0.886129 + 0.463438i \(0.153384\pi\)
−0.0417158 + 0.999130i \(0.513282\pi\)
\(648\) −23.1585 + 23.0073i −0.909753 + 0.903813i
\(649\) −0.222576 0.128504i −0.00873686 0.00504423i
\(650\) −39.5996 + 33.2280i −1.55323 + 1.30331i
\(651\) −27.9372 14.9415i −1.09495 0.585603i
\(652\) 4.81651 27.3158i 0.188629 1.06977i
\(653\) 17.8826 + 3.15319i 0.699801 + 0.123394i 0.512218 0.858855i \(-0.328824\pi\)
0.187582 + 0.982249i \(0.439935\pi\)
\(654\) 51.3518 49.0781i 2.00801 1.91911i
\(655\) −7.90077 + 6.62953i −0.308709 + 0.259037i
\(656\) 0.665598 0.0259872
\(657\) −31.6117 13.1547i −1.23329 0.513213i
\(658\) −33.4253 62.4477i −1.30305 2.43447i
\(659\) −14.8897 + 40.9090i −0.580019 + 1.59359i 0.208129 + 0.978101i \(0.433263\pi\)
−0.788147 + 0.615487i \(0.788959\pi\)
\(660\) 5.61414 2.46479i 0.218530 0.0959420i
\(661\) −12.5819 2.21854i −0.489381 0.0862910i −0.0764876 0.997071i \(-0.524371\pi\)
−0.412893 + 0.910780i \(0.635482\pi\)
\(662\) −31.0874 5.48155i −1.20825 0.213046i
\(663\) −27.3314 20.0746i −1.06146 0.779634i
\(664\) −11.6068 + 31.8893i −0.450430 + 1.23755i
\(665\) 0.463331 + 0.865633i 0.0179672 + 0.0335678i
\(666\) 23.2695 + 21.3927i 0.901673 + 0.828952i
\(667\) −7.00307 −0.271160
\(668\) −54.8415 + 46.0175i −2.12188 + 1.78047i
\(669\) 0.805892 + 3.30513i 0.0311576 + 0.127784i
\(670\) 1.22953 + 0.216799i 0.0475007 + 0.00837566i
\(671\) −1.73037 + 9.81343i −0.0668003 + 0.378843i
\(672\) −0.569488 17.5263i −0.0219685 0.676090i
\(673\) 2.75663 2.31309i 0.106260 0.0891630i −0.588110 0.808781i \(-0.700128\pi\)
0.694370 + 0.719618i \(0.255683\pi\)
\(674\) −21.3946 12.3521i −0.824087 0.475787i
\(675\) −3.19246 + 20.4082i −0.122878 + 0.785511i
\(676\) −31.0139 53.7177i −1.19284 2.06607i
\(677\) −6.25605 35.4798i −0.240439 1.36360i −0.830850 0.556496i \(-0.812145\pi\)
0.590411 0.807103i \(-0.298966\pi\)
\(678\) −32.8284 + 21.8964i −1.26077 + 0.840925i
\(679\) 4.68479 1.53648i 0.179786 0.0589646i
\(680\) −4.45065 12.2281i −0.170675 0.468925i
\(681\) −11.5485 + 2.81588i −0.442539 + 0.107905i
\(682\) 10.3311 + 12.3121i 0.395599 + 0.471456i
\(683\) 22.1117 + 12.7662i 0.846079 + 0.488484i 0.859326 0.511428i \(-0.170883\pi\)
−0.0132470 + 0.999912i \(0.504217\pi\)
\(684\) 1.79253 + 3.45723i 0.0685391 + 0.132191i
\(685\) 2.62444 + 1.51522i 0.100275 + 0.0578935i
\(686\) 35.9390 24.6762i 1.37216 0.942142i
\(687\) 33.0025 14.4892i 1.25912 0.552798i
\(688\) −14.4818 + 5.27093i −0.552112 + 0.200952i
\(689\) −7.39869 + 41.9601i −0.281868 + 1.59855i
\(690\) −15.6347 + 21.2865i −0.595204 + 0.810363i
\(691\) −6.41627 7.64661i −0.244086 0.290891i 0.630067 0.776541i \(-0.283027\pi\)
−0.874153 + 0.485650i \(0.838583\pi\)
\(692\) −1.80164 + 3.12053i −0.0684880 + 0.118625i
\(693\) −6.46527 4.43281i −0.245595 0.168388i
\(694\) 22.7156 + 39.3446i 0.862274 + 1.49350i
\(695\) 1.24253 3.41382i 0.0471319 0.129494i
\(696\) 1.92921 6.59871i 0.0731266 0.250123i
\(697\) 1.24097 + 1.04130i 0.0470051 + 0.0394419i
\(698\) 16.1092 + 13.5172i 0.609742 + 0.511634i
\(699\) 19.1316 + 28.6833i 0.723624 + 1.08490i
\(700\) 23.0094 + 29.2839i 0.869674 + 1.10683i
\(701\) 15.6794i 0.592201i −0.955157 0.296100i \(-0.904314\pi\)
0.955157 0.296100i \(-0.0956863\pi\)
\(702\) −63.9295 21.8764i −2.41286 0.825672i
\(703\) 1.42109 0.820467i 0.0535975 0.0309445i
\(704\) −4.02632 + 11.0622i −0.151748 + 0.416923i
\(705\) 17.8769 + 8.83409i 0.673281 + 0.332711i
\(706\) −67.1795 11.8456i −2.52834 0.445814i
\(707\) −45.3699 9.51298i −1.70631 0.357772i
\(708\) −0.447861 + 1.53187i −0.0168317 + 0.0575713i
\(709\) −15.8961 5.78570i −0.596990 0.217287i 0.0258110 0.999667i \(-0.491783\pi\)
−0.622801 + 0.782380i \(0.714005\pi\)
\(710\) −5.74072 + 9.94321i −0.215445 + 0.373162i
\(711\) −4.74696 15.1419i −0.178025 0.567864i
\(712\) −7.96207 + 4.59691i −0.298391 + 0.172276i
\(713\) −41.5749 15.1320i −1.55699 0.566700i
\(714\) −23.6102 + 30.0691i −0.883588 + 1.12531i
\(715\) 4.23069 + 3.54997i 0.158219 + 0.132762i
\(716\) 4.56658 + 12.5466i 0.170661 + 0.468887i
\(717\) 0.0263205 0.238526i 0.000982958 0.00890792i
\(718\) 2.74806 + 15.5850i 0.102557 + 0.581627i
\(719\) −10.0964 17.4874i −0.376530 0.652170i 0.614024 0.789287i \(-0.289550\pi\)
−0.990555 + 0.137117i \(0.956216\pi\)
\(720\) −2.68628 3.51273i −0.100112 0.130912i
\(721\) −3.42104 6.39146i −0.127406 0.238030i
\(722\) −43.7333 + 7.71136i −1.62759 + 0.286987i
\(723\) 13.4996 + 3.94678i 0.502057 + 0.146782i
\(724\) 40.4908 48.2550i 1.50483 1.79338i
\(725\) −1.48788 4.08791i −0.0552583 0.151821i
\(726\) −22.6790 34.0018i −0.841698 1.26193i
\(727\) 3.43878 + 4.09818i 0.127537 + 0.151993i 0.826034 0.563620i \(-0.190592\pi\)
−0.698497 + 0.715613i \(0.746147\pi\)
\(728\) −46.7396 + 25.0175i −1.73229 + 0.927209i
\(729\) −24.9952 + 10.2098i −0.925748 + 0.378140i
\(730\) 13.5975 23.5516i 0.503268 0.871685i
\(731\) −35.2465 12.8287i −1.30364 0.474486i
\(732\) 61.7514 3.99663i 2.28240 0.147720i
\(733\) −31.2377 + 37.2277i −1.15379 + 1.37504i −0.239044 + 0.971009i \(0.576834\pi\)
−0.914747 + 0.404026i \(0.867610\pi\)
\(734\) −22.7543 + 8.28190i −0.839878 + 0.305691i
\(735\) −4.19379 + 11.5343i −0.154690 + 0.425449i
\(736\) −4.25231 24.1160i −0.156742 0.888929i
\(737\) 0.517477i 0.0190615i
\(738\) 2.98007 + 1.24011i 0.109698 + 0.0456489i
\(739\) 31.1057 1.14424 0.572121 0.820169i \(-0.306121\pi\)
0.572121 + 0.820169i \(0.306121\pi\)
\(740\) −12.2902 + 10.3127i −0.451796 + 0.379102i
\(741\) −2.07649 + 2.82712i −0.0762817 + 0.103857i
\(742\) 47.0118 + 9.85725i 1.72586 + 0.361871i
\(743\) −20.4465 + 24.3672i −0.750110 + 0.893947i −0.997180 0.0750512i \(-0.976088\pi\)
0.247069 + 0.968998i \(0.420532\pi\)
\(744\) 25.7114 35.0058i 0.942626 1.28337i
\(745\) 6.34481 1.11876i 0.232456 0.0409882i
\(746\) 41.6128i 1.52355i
\(747\) −18.9965 + 20.6630i −0.695045 + 0.756019i
\(748\) 10.7336 6.19706i 0.392460 0.226587i
\(749\) −7.36405 51.3697i −0.269076 1.87701i
\(750\) −35.5537 10.3946i −1.29824 0.379555i
\(751\) −4.62079 + 26.2058i −0.168615 + 0.956263i 0.776643 + 0.629940i \(0.216921\pi\)
−0.945258 + 0.326323i \(0.894190\pi\)
\(752\) 15.5627 5.66436i 0.567513 0.206558i
\(753\) −29.5334 + 19.6986i −1.07626 + 0.717858i
\(754\) 14.0139 2.47103i 0.510356 0.0899896i
\(755\) −5.25157 −0.191124
\(756\) −17.2330 + 45.5270i −0.626757 + 1.65580i
\(757\) −36.6889 −1.33348 −0.666741 0.745289i \(-0.732311\pi\)
−0.666741 + 0.745289i \(0.732311\pi\)
\(758\) 54.1638 9.55054i 1.96732 0.346891i
\(759\) −9.81411 4.84978i −0.356230 0.176036i
\(760\) −1.26485 + 0.460369i −0.0458810 + 0.0166993i
\(761\) −0.705348 + 4.00023i −0.0255688 + 0.145008i −0.994920 0.100673i \(-0.967900\pi\)
0.969351 + 0.245681i \(0.0790116\pi\)
\(762\) 44.3395 42.3763i 1.60625 1.53513i
\(763\) 17.1497 42.7863i 0.620861 1.54897i
\(764\) −56.0105 + 32.3377i −2.02639 + 1.16994i
\(765\) 0.487077 10.7518i 0.0176103 0.388733i
\(766\) 36.5005i 1.31882i
\(767\) −1.41574 + 0.249633i −0.0511195 + 0.00901374i <