Properties

Label 189.2.ba.a.5.16
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.16
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10969 - 0.195669i) q^{2} +(1.47374 + 0.909998i) q^{3} +(-0.686257 + 0.249777i) q^{4} +(0.705645 - 4.00191i) q^{5} +(1.81345 + 0.721453i) q^{6} +(2.51373 + 0.825312i) q^{7} +(-2.66435 + 1.53826i) q^{8} +(1.34381 + 2.68220i) q^{9} +O(q^{10})\) \(q+(1.10969 - 0.195669i) q^{2} +(1.47374 + 0.909998i) q^{3} +(-0.686257 + 0.249777i) q^{4} +(0.705645 - 4.00191i) q^{5} +(1.81345 + 0.721453i) q^{6} +(2.51373 + 0.825312i) q^{7} +(-2.66435 + 1.53826i) q^{8} +(1.34381 + 2.68220i) q^{9} -4.57896i q^{10} +(-4.26189 + 0.751487i) q^{11} +(-1.23866 - 0.256386i) q^{12} +(0.646482 - 0.770447i) q^{13} +(2.95096 + 0.423983i) q^{14} +(4.68167 - 5.25563i) q^{15} +(-1.53673 + 1.28947i) q^{16} -2.69589 q^{17} +(2.01603 + 2.71347i) q^{18} +5.58170i q^{19} +(0.515332 + 2.92259i) q^{20} +(2.95355 + 3.50379i) q^{21} +(-4.58234 + 1.66784i) q^{22} +(2.40867 - 2.87054i) q^{23} +(-5.32637 - 0.157556i) q^{24} +(-10.8189 - 3.93776i) q^{25} +(0.566643 - 0.981454i) q^{26} +(-0.460374 + 5.17572i) q^{27} +(-1.93121 + 0.0614972i) q^{28} +(-0.209206 - 0.249322i) q^{29} +(4.16684 - 6.74819i) q^{30} +(0.235207 + 0.646225i) q^{31} +(2.50212 - 2.98191i) q^{32} +(-6.96477 - 2.77082i) q^{33} +(-2.99160 + 0.527501i) q^{34} +(5.07663 - 9.47737i) q^{35} +(-1.59215 - 1.50502i) q^{36} +(-1.72047 - 2.97994i) q^{37} +(1.09216 + 6.19396i) q^{38} +(1.65385 - 0.547140i) q^{39} +(4.27591 + 11.7480i) q^{40} +(-5.76056 - 4.83369i) q^{41} +(3.96311 + 3.31020i) q^{42} +(-3.15647 - 1.14886i) q^{43} +(2.73705 - 1.58024i) q^{44} +(11.6822 - 3.48512i) q^{45} +(2.11120 - 3.65671i) q^{46} +(-1.47767 - 0.537827i) q^{47} +(-3.43816 + 0.501921i) q^{48} +(5.63772 + 4.14923i) q^{49} +(-12.7761 - 2.25278i) q^{50} +(-3.97303 - 2.45325i) q^{51} +(-0.251212 + 0.690201i) q^{52} +(0.919027 - 0.530601i) q^{53} +(0.501851 + 5.83353i) q^{54} +17.5860i q^{55} +(-7.96702 + 1.66787i) q^{56} +(-5.07934 + 8.22596i) q^{57} +(-0.280939 - 0.235735i) q^{58} +(8.43834 + 7.08061i) q^{59} +(-1.90009 + 4.77609i) q^{60} +(2.79510 - 7.67947i) q^{61} +(0.387453 + 0.671088i) q^{62} +(1.16432 + 7.85139i) q^{63} +(4.19918 - 7.27319i) q^{64} +(-2.62707 - 3.13082i) q^{65} +(-8.27090 - 1.71197i) q^{66} +(0.201732 - 1.14408i) q^{67} +(1.85007 - 0.673371i) q^{68} +(6.16193 - 2.03854i) q^{69} +(3.77907 - 11.5103i) q^{70} +(8.98568 + 5.18788i) q^{71} +(-7.70630 - 5.07919i) q^{72} +(4.91412 + 2.83717i) q^{73} +(-2.49227 - 2.97017i) q^{74} +(-12.3609 - 15.6484i) q^{75} +(-1.39418 - 3.83048i) q^{76} +(-11.3335 - 1.62835i) q^{77} +(1.72820 - 0.930762i) q^{78} +(0.388313 + 2.20223i) q^{79} +(4.07597 + 7.05979i) q^{80} +(-5.38836 + 7.20871i) q^{81} +(-7.33824 - 4.23674i) q^{82} +(7.89183 - 6.62203i) q^{83} +(-2.90206 - 1.66677i) q^{84} +(-1.90234 + 10.7887i) q^{85} +(-3.72750 - 0.657259i) q^{86} +(-0.0814323 - 0.557813i) q^{87} +(10.1992 - 8.55815i) q^{88} +13.4427 q^{89} +(12.2817 - 6.15324i) q^{90} +(2.26094 - 1.40315i) q^{91} +(-0.935970 + 2.57156i) q^{92} +(-0.241430 + 1.16640i) q^{93} +(-1.74499 - 0.307689i) q^{94} +(22.3375 + 3.93870i) q^{95} +(6.40099 - 2.11763i) q^{96} +(-3.48085 + 9.56355i) q^{97} +(7.06800 + 3.50124i) q^{98} +(-7.74280 - 10.4214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10969 0.195669i 0.784670 0.138359i 0.233062 0.972462i \(-0.425125\pi\)
0.551608 + 0.834103i \(0.314014\pi\)
\(3\) 1.47374 + 0.909998i 0.850863 + 0.525388i
\(4\) −0.686257 + 0.249777i −0.343128 + 0.124889i
\(5\) 0.705645 4.00191i 0.315574 1.78971i −0.253408 0.967360i \(-0.581551\pi\)
0.568982 0.822350i \(-0.307337\pi\)
\(6\) 1.81345 + 0.721453i 0.740339 + 0.294532i
\(7\) 2.51373 + 0.825312i 0.950102 + 0.311939i
\(8\) −2.66435 + 1.53826i −0.941991 + 0.543859i
\(9\) 1.34381 + 2.68220i 0.447936 + 0.894066i
\(10\) 4.57896i 1.44799i
\(11\) −4.26189 + 0.751487i −1.28501 + 0.226582i −0.774106 0.633056i \(-0.781800\pi\)
−0.510904 + 0.859638i \(0.670689\pi\)
\(12\) −1.23866 0.256386i −0.357570 0.0740124i
\(13\) 0.646482 0.770447i 0.179302 0.213683i −0.668906 0.743347i \(-0.733237\pi\)
0.848208 + 0.529663i \(0.177682\pi\)
\(14\) 2.95096 + 0.423983i 0.788676 + 0.113314i
\(15\) 4.68167 5.25563i 1.20880 1.35700i
\(16\) −1.53673 + 1.28947i −0.384184 + 0.322368i
\(17\) −2.69589 −0.653849 −0.326925 0.945050i \(-0.606012\pi\)
−0.326925 + 0.945050i \(0.606012\pi\)
\(18\) 2.01603 + 2.71347i 0.475183 + 0.639571i
\(19\) 5.58170i 1.28053i 0.768154 + 0.640265i \(0.221175\pi\)
−0.768154 + 0.640265i \(0.778825\pi\)
\(20\) 0.515332 + 2.92259i 0.115232 + 0.653512i
\(21\) 2.95355 + 3.50379i 0.644518 + 0.764589i
\(22\) −4.58234 + 1.66784i −0.976959 + 0.355584i
\(23\) 2.40867 2.87054i 0.502242 0.598548i −0.454045 0.890979i \(-0.650020\pi\)
0.956287 + 0.292430i \(0.0944640\pi\)
\(24\) −5.32637 0.157556i −1.08724 0.0321611i
\(25\) −10.8189 3.93776i −2.16378 0.787552i
\(26\) 0.566643 0.981454i 0.111128 0.192479i
\(27\) −0.460374 + 5.17572i −0.0885991 + 0.996067i
\(28\) −1.93121 + 0.0614972i −0.364965 + 0.0116219i
\(29\) −0.209206 0.249322i −0.0388486 0.0462979i 0.746270 0.665643i \(-0.231843\pi\)
−0.785119 + 0.619345i \(0.787398\pi\)
\(30\) 4.16684 6.74819i 0.760758 1.23204i
\(31\) 0.235207 + 0.646225i 0.0422444 + 0.116065i 0.959021 0.283335i \(-0.0914407\pi\)
−0.916777 + 0.399400i \(0.869218\pi\)
\(32\) 2.50212 2.98191i 0.442316 0.527132i
\(33\) −6.96477 2.77082i −1.21241 0.482338i
\(34\) −2.99160 + 0.527501i −0.513056 + 0.0904656i
\(35\) 5.07663 9.47737i 0.858107 1.60197i
\(36\) −1.59215 1.50502i −0.265358 0.250837i
\(37\) −1.72047 2.97994i −0.282843 0.489898i 0.689241 0.724532i \(-0.257944\pi\)
−0.972084 + 0.234634i \(0.924611\pi\)
\(38\) 1.09216 + 6.19396i 0.177172 + 1.00479i
\(39\) 1.65385 0.547140i 0.264828 0.0876125i
\(40\) 4.27591 + 11.7480i 0.676081 + 1.85752i
\(41\) −5.76056 4.83369i −0.899649 0.754895i 0.0704731 0.997514i \(-0.477549\pi\)
−0.970122 + 0.242619i \(0.921994\pi\)
\(42\) 3.96311 + 3.31020i 0.611522 + 0.510776i
\(43\) −3.15647 1.14886i −0.481357 0.175199i 0.0899334 0.995948i \(-0.471335\pi\)
−0.571290 + 0.820748i \(0.693557\pi\)
\(44\) 2.73705 1.58024i 0.412626 0.238230i
\(45\) 11.6822 3.48512i 1.74147 0.519531i
\(46\) 2.11120 3.65671i 0.311280 0.539152i
\(47\) −1.47767 0.537827i −0.215540 0.0784501i 0.231993 0.972717i \(-0.425475\pi\)
−0.447533 + 0.894267i \(0.647697\pi\)
\(48\) −3.43816 + 0.501921i −0.496256 + 0.0724460i
\(49\) 5.63772 + 4.14923i 0.805389 + 0.592747i
\(50\) −12.7761 2.25278i −1.80682 0.318591i
\(51\) −3.97303 2.45325i −0.556336 0.343524i
\(52\) −0.251212 + 0.690201i −0.0348369 + 0.0957136i
\(53\) 0.919027 0.530601i 0.126238 0.0728836i −0.435551 0.900164i \(-0.643447\pi\)
0.561789 + 0.827280i \(0.310113\pi\)
\(54\) 0.501851 + 5.83353i 0.0682933 + 0.793843i
\(55\) 17.5860i 2.37130i
\(56\) −7.96702 + 1.66787i −1.06464 + 0.222878i
\(57\) −5.07934 + 8.22596i −0.672775 + 1.08956i
\(58\) −0.280939 0.235735i −0.0368890 0.0309536i
\(59\) 8.43834 + 7.08061i 1.09858 + 0.921816i 0.997329 0.0730447i \(-0.0232716\pi\)
0.101249 + 0.994861i \(0.467716\pi\)
\(60\) −1.90009 + 4.77609i −0.245301 + 0.616590i
\(61\) 2.79510 7.67947i 0.357876 0.983256i −0.621889 0.783105i \(-0.713635\pi\)
0.979765 0.200151i \(-0.0641431\pi\)
\(62\) 0.387453 + 0.671088i 0.0492065 + 0.0852282i
\(63\) 1.16432 + 7.85139i 0.146691 + 0.989182i
\(64\) 4.19918 7.27319i 0.524897 0.909148i
\(65\) −2.62707 3.13082i −0.325848 0.388331i
\(66\) −8.27090 1.71197i −1.01808 0.210729i
\(67\) 0.201732 1.14408i 0.0246455 0.139772i −0.970002 0.243096i \(-0.921837\pi\)
0.994648 + 0.103325i \(0.0329480\pi\)
\(68\) 1.85007 0.673371i 0.224354 0.0816583i
\(69\) 6.16193 2.03854i 0.741809 0.245411i
\(70\) 3.77907 11.5103i 0.451685 1.37574i
\(71\) 8.98568 + 5.18788i 1.06640 + 0.615688i 0.927197 0.374575i \(-0.122211\pi\)
0.139207 + 0.990263i \(0.455545\pi\)
\(72\) −7.70630 5.07919i −0.908197 0.598588i
\(73\) 4.91412 + 2.83717i 0.575154 + 0.332066i 0.759205 0.650851i \(-0.225588\pi\)
−0.184051 + 0.982917i \(0.558921\pi\)
\(74\) −2.49227 2.97017i −0.289720 0.345275i
\(75\) −12.3609 15.6484i −1.42731 1.80692i
\(76\) −1.39418 3.83048i −0.159924 0.439386i
\(77\) −11.3335 1.62835i −1.29157 0.185568i
\(78\) 1.72820 0.930762i 0.195681 0.105388i
\(79\) 0.388313 + 2.20223i 0.0436886 + 0.247770i 0.998829 0.0483836i \(-0.0154070\pi\)
−0.955140 + 0.296154i \(0.904296\pi\)
\(80\) 4.07597 + 7.05979i 0.455707 + 0.789308i
\(81\) −5.38836 + 7.20871i −0.598707 + 0.800968i
\(82\) −7.33824 4.23674i −0.810374 0.467869i
\(83\) 7.89183 6.62203i 0.866241 0.726863i −0.0970620 0.995278i \(-0.530945\pi\)
0.963303 + 0.268416i \(0.0865001\pi\)
\(84\) −2.90206 1.66677i −0.316641 0.181859i
\(85\) −1.90234 + 10.7887i −0.206338 + 1.17020i
\(86\) −3.72750 0.657259i −0.401946 0.0708740i
\(87\) −0.0814323 0.557813i −0.00873046 0.0598038i
\(88\) 10.1992 8.55815i 1.08724 0.912301i
\(89\) 13.4427 1.42492 0.712462 0.701711i \(-0.247580\pi\)
0.712462 + 0.701711i \(0.247580\pi\)
\(90\) 12.2817 6.15324i 1.29460 0.648608i
\(91\) 2.26094 1.40315i 0.237011 0.147090i
\(92\) −0.935970 + 2.57156i −0.0975816 + 0.268103i
\(93\) −0.241430 + 1.16640i −0.0250352 + 0.120950i
\(94\) −1.74499 0.307689i −0.179982 0.0317357i
\(95\) 22.3375 + 3.93870i 2.29178 + 0.404102i
\(96\) 6.40099 2.11763i 0.653299 0.216130i
\(97\) −3.48085 + 9.56355i −0.353426 + 0.971031i 0.627834 + 0.778347i \(0.283942\pi\)
−0.981261 + 0.192684i \(0.938281\pi\)
\(98\) 7.06800 + 3.50124i 0.713976 + 0.353679i
\(99\) −7.74280 10.4214i −0.778181 1.04739i
\(100\) 8.40811 0.840811
\(101\) −4.69272 + 3.93766i −0.466943 + 0.391812i −0.845678 0.533694i \(-0.820804\pi\)
0.378735 + 0.925505i \(0.376359\pi\)
\(102\) −4.88887 1.94496i −0.484070 0.192579i
\(103\) 3.00575 + 0.529996i 0.296166 + 0.0522220i 0.319757 0.947500i \(-0.396399\pi\)
−0.0235910 + 0.999722i \(0.507510\pi\)
\(104\) −0.537304 + 3.04720i −0.0526870 + 0.298803i
\(105\) 16.1060 9.34743i 1.57179 0.912216i
\(106\) 0.916014 0.768627i 0.0889712 0.0746557i
\(107\) −10.2649 5.92642i −0.992341 0.572929i −0.0863680 0.996263i \(-0.527526\pi\)
−0.905973 + 0.423335i \(0.860859\pi\)
\(108\) −0.976840 3.66686i −0.0939965 0.352844i
\(109\) −1.21625 2.10660i −0.116496 0.201776i 0.801881 0.597484i \(-0.203833\pi\)
−0.918377 + 0.395708i \(0.870499\pi\)
\(110\) 3.44103 + 19.5150i 0.328089 + 1.86069i
\(111\) 0.176218 5.95726i 0.0167259 0.565439i
\(112\) −4.92716 + 1.97311i −0.465573 + 0.186441i
\(113\) 2.09463 + 5.75494i 0.197046 + 0.541379i 0.998384 0.0568331i \(-0.0181003\pi\)
−0.801338 + 0.598212i \(0.795878\pi\)
\(114\) −4.02693 + 10.1221i −0.377157 + 0.948026i
\(115\) −9.78797 11.6649i −0.912733 1.08775i
\(116\) 0.205844 + 0.118844i 0.0191121 + 0.0110344i
\(117\) 2.93524 + 0.698659i 0.271363 + 0.0645911i
\(118\) 10.7494 + 6.20617i 0.989563 + 0.571324i
\(119\) −6.77675 2.22495i −0.621224 0.203961i
\(120\) −4.38906 + 21.2045i −0.400664 + 1.93570i
\(121\) 7.26239 2.64329i 0.660217 0.240300i
\(122\) 1.59907 9.06876i 0.144773 0.821047i
\(123\) −4.09091 12.3657i −0.368865 1.11498i
\(124\) −0.322824 0.384727i −0.0289905 0.0345495i
\(125\) −13.2338 + 22.9215i −1.18366 + 2.05016i
\(126\) 2.82831 + 8.48480i 0.251966 + 0.755886i
\(127\) −9.53129 16.5087i −0.845765 1.46491i −0.884955 0.465676i \(-0.845811\pi\)
0.0391906 0.999232i \(-0.487522\pi\)
\(128\) 0.573958 1.57694i 0.0507312 0.139383i
\(129\) −3.60634 4.56550i −0.317521 0.401970i
\(130\) −3.52784 2.96021i −0.309412 0.259628i
\(131\) −6.92439 5.81025i −0.604987 0.507644i 0.288057 0.957613i \(-0.406991\pi\)
−0.893044 + 0.449969i \(0.851435\pi\)
\(132\) 5.47171 + 0.161855i 0.476251 + 0.0140877i
\(133\) −4.60664 + 14.0309i −0.399447 + 1.21663i
\(134\) 1.30905i 0.113085i
\(135\) 20.3879 + 5.49460i 1.75471 + 0.472900i
\(136\) 7.18280 4.14699i 0.615920 0.355601i
\(137\) −0.385709 + 1.05973i −0.0329534 + 0.0905387i −0.955078 0.296354i \(-0.904229\pi\)
0.922125 + 0.386892i \(0.126452\pi\)
\(138\) 6.43896 3.46784i 0.548120 0.295202i
\(139\) 6.67617 + 1.17719i 0.566265 + 0.0998478i 0.449449 0.893306i \(-0.351620\pi\)
0.116816 + 0.993154i \(0.462731\pi\)
\(140\) −1.11664 + 7.77193i −0.0943736 + 0.656848i
\(141\) −1.68827 2.13729i −0.142178 0.179992i
\(142\) 10.9864 + 3.99873i 0.921961 + 0.335566i
\(143\) −2.17626 + 3.76939i −0.181988 + 0.315212i
\(144\) −5.52370 2.38902i −0.460308 0.199085i
\(145\) −1.14539 + 0.661291i −0.0951195 + 0.0549173i
\(146\) 6.00830 + 2.18684i 0.497251 + 0.180984i
\(147\) 4.53273 + 11.2452i 0.373853 + 0.927488i
\(148\) 1.92500 + 1.61527i 0.158234 + 0.132774i
\(149\) −5.80930 15.9609i −0.475917 1.30757i −0.912930 0.408115i \(-0.866186\pi\)
0.437014 0.899455i \(-0.356036\pi\)
\(150\) −16.7787 14.9463i −1.36997 1.22036i
\(151\) 1.65537 + 9.38806i 0.134712 + 0.763990i 0.975060 + 0.221942i \(0.0712396\pi\)
−0.840348 + 0.542048i \(0.817649\pi\)
\(152\) −8.58613 14.8716i −0.696427 1.20625i
\(153\) −3.62276 7.23091i −0.292882 0.584584i
\(154\) −12.8953 + 0.410635i −1.03913 + 0.0330899i
\(155\) 2.75211 0.485271i 0.221055 0.0389779i
\(156\) −0.998303 + 0.788572i −0.0799282 + 0.0631363i
\(157\) 12.7308 15.1719i 1.01603 1.21085i 0.0386700 0.999252i \(-0.487688\pi\)
0.977356 0.211601i \(-0.0678677\pi\)
\(158\) 0.861814 + 2.36782i 0.0685623 + 0.188373i
\(159\) 1.83725 + 0.0543467i 0.145703 + 0.00430997i
\(160\) −10.1677 12.1174i −0.803829 0.957966i
\(161\) 8.42384 5.22787i 0.663891 0.412014i
\(162\) −4.56890 + 9.05378i −0.358967 + 0.711332i
\(163\) 11.2716 19.5229i 0.882856 1.52915i 0.0347055 0.999398i \(-0.488951\pi\)
0.848151 0.529755i \(-0.177716\pi\)
\(164\) 5.16057 + 1.87829i 0.402973 + 0.146670i
\(165\) −16.0032 + 25.9172i −1.24585 + 2.01765i
\(166\) 7.46177 8.89260i 0.579146 0.690199i
\(167\) −11.0484 + 4.02130i −0.854954 + 0.311178i −0.732059 0.681242i \(-0.761440\pi\)
−0.122896 + 0.992420i \(0.539218\pi\)
\(168\) −13.2591 4.79198i −1.02296 0.369709i
\(169\) 2.08178 + 11.8063i 0.160137 + 0.908180i
\(170\) 12.3444i 0.946770i
\(171\) −14.9712 + 7.50073i −1.14488 + 0.573595i
\(172\) 2.45311 0.187048
\(173\) −14.8669 + 12.4748i −1.13031 + 0.948440i −0.999079 0.0429125i \(-0.986336\pi\)
−0.131228 + 0.991352i \(0.541892\pi\)
\(174\) −0.199511 0.603066i −0.0151249 0.0457183i
\(175\) −23.9460 18.8274i −1.81015 1.42322i
\(176\) 5.58038 6.65044i 0.420637 0.501295i
\(177\) 5.99256 + 18.1138i 0.450428 + 1.36152i
\(178\) 14.9172 2.63031i 1.11809 0.197150i
\(179\) 5.26843i 0.393781i −0.980425 0.196891i \(-0.936916\pi\)
0.980425 0.196891i \(-0.0630844\pi\)
\(180\) −7.14647 + 5.30962i −0.532666 + 0.395756i
\(181\) 6.42639 3.71028i 0.477670 0.275783i −0.241775 0.970332i \(-0.577730\pi\)
0.719445 + 0.694550i \(0.244396\pi\)
\(182\) 2.23440 1.99946i 0.165624 0.148210i
\(183\) 11.1075 8.77399i 0.821094 0.648592i
\(184\) −2.00189 + 11.3533i −0.147581 + 0.836975i
\(185\) −13.1395 + 4.78238i −0.966034 + 0.351607i
\(186\) −0.0396848 + 1.34159i −0.00290983 + 0.0983700i
\(187\) 11.4896 2.02593i 0.840202 0.148150i
\(188\) 1.14840 0.0837554
\(189\) −5.42884 + 12.6304i −0.394890 + 0.918728i
\(190\) 25.5584 1.85420
\(191\) −18.2591 + 3.21958i −1.32118 + 0.232960i −0.789379 0.613906i \(-0.789597\pi\)
−0.531805 + 0.846867i \(0.678486\pi\)
\(192\) 12.8071 6.89753i 0.924271 0.497786i
\(193\) −20.4044 + 7.42660i −1.46874 + 0.534578i −0.947759 0.318988i \(-0.896657\pi\)
−0.520983 + 0.853567i \(0.674435\pi\)
\(194\) −1.99138 + 11.2937i −0.142973 + 0.810839i
\(195\) −1.02257 7.00465i −0.0732281 0.501613i
\(196\) −4.90531 1.43926i −0.350379 0.102805i
\(197\) −12.3676 + 7.14043i −0.881155 + 0.508735i −0.871039 0.491214i \(-0.836553\pi\)
−0.0101156 + 0.999949i \(0.503220\pi\)
\(198\) −10.6313 10.0495i −0.755530 0.714187i
\(199\) 5.19839i 0.368504i 0.982879 + 0.184252i \(0.0589863\pi\)
−0.982879 + 0.184252i \(0.941014\pi\)
\(200\) 34.8827 6.15076i 2.46658 0.434924i
\(201\) 1.33841 1.50250i 0.0944043 0.105978i
\(202\) −4.43699 + 5.28780i −0.312186 + 0.372048i
\(203\) −0.320120 0.799390i −0.0224680 0.0561062i
\(204\) 3.33929 + 0.691189i 0.233797 + 0.0483929i
\(205\) −23.4089 + 19.6424i −1.63495 + 1.37188i
\(206\) 3.43916 0.239618
\(207\) 10.9361 + 2.60307i 0.760114 + 0.180926i
\(208\) 2.01759i 0.139895i
\(209\) −4.19458 23.7886i −0.290145 1.64549i
\(210\) 16.0437 13.5242i 1.10712 0.933259i
\(211\) −6.35545 + 2.31320i −0.437527 + 0.159247i −0.551386 0.834250i \(-0.685901\pi\)
0.113859 + 0.993497i \(0.463679\pi\)
\(212\) −0.498157 + 0.593680i −0.0342135 + 0.0407741i
\(213\) 8.52157 + 15.8225i 0.583888 + 1.08414i
\(214\) −12.5504 4.56799i −0.857930 0.312261i
\(215\) −6.82498 + 11.8212i −0.465460 + 0.806200i
\(216\) −6.73502 14.4981i −0.458260 0.986471i
\(217\) 0.0579098 + 1.81856i 0.00393117 + 0.123452i
\(218\) −1.76186 2.09970i −0.119328 0.142210i
\(219\) 4.66031 + 8.65309i 0.314915 + 0.584721i
\(220\) −4.39258 12.0685i −0.296148 0.813659i
\(221\) −1.74284 + 2.07704i −0.117236 + 0.139717i
\(222\) −0.970101 6.64520i −0.0651089 0.445997i
\(223\) 5.39616 0.951488i 0.361353 0.0637163i 0.00997589 0.999950i \(-0.496825\pi\)
0.351377 + 0.936234i \(0.385713\pi\)
\(224\) 8.75066 5.43069i 0.584678 0.362854i
\(225\) −3.97667 34.3100i −0.265112 2.28733i
\(226\) 3.45045 + 5.97635i 0.229520 + 0.397541i
\(227\) 0.805662 + 4.56913i 0.0534736 + 0.303264i 0.999801 0.0199454i \(-0.00634925\pi\)
−0.946327 + 0.323210i \(0.895238\pi\)
\(228\) 1.43107 6.91383i 0.0947751 0.457879i
\(229\) −1.69286 4.65111i −0.111868 0.307354i 0.871107 0.491092i \(-0.163402\pi\)
−0.982975 + 0.183739i \(0.941180\pi\)
\(230\) −13.1441 11.0292i −0.866694 0.727243i
\(231\) −15.2208 12.7132i −1.00145 0.836468i
\(232\) 0.940922 + 0.342468i 0.0617745 + 0.0224841i
\(233\) 5.38598 3.10960i 0.352848 0.203717i −0.313091 0.949723i \(-0.601365\pi\)
0.665939 + 0.746006i \(0.268031\pi\)
\(234\) 3.39391 + 0.200963i 0.221867 + 0.0131373i
\(235\) −3.19504 + 5.53398i −0.208422 + 0.360997i
\(236\) −7.55944 2.75141i −0.492078 0.179102i
\(237\) −1.43175 + 3.59888i −0.0930025 + 0.233772i
\(238\) −7.95545 1.14301i −0.515675 0.0740904i
\(239\) 9.36770 + 1.65178i 0.605946 + 0.106845i 0.468199 0.883623i \(-0.344903\pi\)
0.137747 + 0.990467i \(0.456014\pi\)
\(240\) −0.417481 + 14.1134i −0.0269483 + 0.911016i
\(241\) −7.59759 + 20.8742i −0.489404 + 1.34463i 0.411817 + 0.911267i \(0.364894\pi\)
−0.901221 + 0.433360i \(0.857328\pi\)
\(242\) 7.54180 4.35426i 0.484805 0.279903i
\(243\) −14.5010 + 5.72035i −0.930236 + 0.366961i
\(244\) 5.96824i 0.382078i
\(245\) 20.5831 19.6338i 1.31501 1.25436i
\(246\) −6.95923 12.9216i −0.443704 0.823853i
\(247\) 4.30040 + 3.60847i 0.273628 + 0.229601i
\(248\) −1.62074 1.35996i −0.102917 0.0863576i
\(249\) 17.6565 2.57759i 1.11894 0.163348i
\(250\) −10.2004 + 28.0252i −0.645127 + 1.77247i
\(251\) 0.170636 + 0.295550i 0.0107704 + 0.0186550i 0.871360 0.490644i \(-0.163238\pi\)
−0.860590 + 0.509298i \(0.829905\pi\)
\(252\) −2.76012 5.09725i −0.173871 0.321097i
\(253\) −8.10831 + 14.0440i −0.509765 + 0.882939i
\(254\) −13.8070 16.4546i −0.866329 1.03245i
\(255\) −12.6213 + 14.1686i −0.790374 + 0.887273i
\(256\) −2.58836 + 14.6793i −0.161772 + 0.917457i
\(257\) 10.5726 3.84813i 0.659503 0.240040i 0.00948151 0.999955i \(-0.496982\pi\)
0.650022 + 0.759915i \(0.274760\pi\)
\(258\) −4.89525 4.36064i −0.304765 0.271482i
\(259\) −1.86542 8.91069i −0.115911 0.553683i
\(260\) 2.58486 + 1.49237i 0.160306 + 0.0925527i
\(261\) 0.387598 0.896173i 0.0239917 0.0554717i
\(262\) −8.82082 5.09270i −0.544952 0.314628i
\(263\) 10.9554 + 13.0562i 0.675541 + 0.805079i 0.989527 0.144349i \(-0.0461088\pi\)
−0.313985 + 0.949428i \(0.601664\pi\)
\(264\) 22.8188 3.33121i 1.40440 0.205022i
\(265\) −1.47491 4.05228i −0.0906030 0.248930i
\(266\) −2.36655 + 16.4714i −0.145102 + 1.00992i
\(267\) 19.8110 + 12.2328i 1.21241 + 0.748637i
\(268\) 0.147325 + 0.835522i 0.00899931 + 0.0510376i
\(269\) 4.50153 + 7.79687i 0.274463 + 0.475384i 0.969999 0.243107i \(-0.0781666\pi\)
−0.695537 + 0.718491i \(0.744833\pi\)
\(270\) 23.6994 + 2.10804i 1.44230 + 0.128291i
\(271\) −12.8153 7.39893i −0.778475 0.449453i 0.0574144 0.998350i \(-0.481714\pi\)
−0.835890 + 0.548898i \(0.815048\pi\)
\(272\) 4.14287 3.47628i 0.251198 0.210780i
\(273\) 4.60890 0.0104219i 0.278943 0.000630764i
\(274\) −0.220663 + 1.25144i −0.0133307 + 0.0756024i
\(275\) 49.0682 + 8.65205i 2.95892 + 0.521738i
\(276\) −3.71948 + 2.93807i −0.223887 + 0.176851i
\(277\) 23.5086 19.7261i 1.41250 1.18523i 0.457278 0.889324i \(-0.348825\pi\)
0.955219 0.295901i \(-0.0956199\pi\)
\(278\) 7.63882 0.458146
\(279\) −1.41723 + 1.49927i −0.0848474 + 0.0897591i
\(280\) 1.05276 + 33.0602i 0.0629147 + 1.97573i
\(281\) 5.06196 13.9076i 0.301971 0.829659i −0.692186 0.721719i \(-0.743352\pi\)
0.994157 0.107940i \(-0.0344254\pi\)
\(282\) −2.29166 2.04139i −0.136467 0.121563i
\(283\) 31.0263 + 5.47077i 1.84432 + 0.325204i 0.983106 0.183037i \(-0.0585928\pi\)
0.861215 + 0.508240i \(0.169704\pi\)
\(284\) −7.46230 1.31580i −0.442806 0.0780786i
\(285\) 29.3354 + 26.1317i 1.73768 + 1.54791i
\(286\) −1.67742 + 4.60868i −0.0991880 + 0.272517i
\(287\) −10.4912 16.9049i −0.619277 0.997862i
\(288\) 11.3604 + 2.70406i 0.669420 + 0.159338i
\(289\) −9.73218 −0.572481
\(290\) −1.14164 + 0.957946i −0.0670392 + 0.0562525i
\(291\) −13.8327 + 10.9266i −0.810885 + 0.640529i
\(292\) −4.08101 0.719592i −0.238823 0.0421109i
\(293\) 2.47194 14.0191i 0.144412 0.819002i −0.823425 0.567425i \(-0.807940\pi\)
0.967837 0.251577i \(-0.0809491\pi\)
\(294\) 7.23026 + 11.5918i 0.421677 + 0.676046i
\(295\) 34.2904 28.7731i 1.99647 1.67523i
\(296\) 9.16785 + 5.29306i 0.532871 + 0.307653i
\(297\) −1.92742 22.4043i −0.111840 1.30003i
\(298\) −9.56958 16.5750i −0.554351 0.960164i
\(299\) −0.654437 3.71150i −0.0378471 0.214642i
\(300\) 12.3913 + 7.65136i 0.715415 + 0.441752i
\(301\) −6.98635 5.49300i −0.402686 0.316611i
\(302\) 3.67390 + 10.0939i 0.211409 + 0.580841i
\(303\) −10.4991 + 1.53271i −0.603157 + 0.0880520i
\(304\) −7.19746 8.57759i −0.412802 0.491959i
\(305\) −28.7602 16.6047i −1.64681 0.950784i
\(306\) −5.43500 7.31521i −0.310698 0.418183i
\(307\) −18.6376 10.7604i −1.06371 0.614131i −0.137251 0.990536i \(-0.543827\pi\)
−0.926455 + 0.376406i \(0.877160\pi\)
\(308\) 8.18440 1.71337i 0.466350 0.0976286i
\(309\) 3.94740 + 3.51630i 0.224560 + 0.200036i
\(310\) 2.95904 1.07700i 0.168062 0.0611696i
\(311\) −2.70366 + 15.3332i −0.153310 + 0.869467i 0.807004 + 0.590546i \(0.201088\pi\)
−0.960314 + 0.278920i \(0.910023\pi\)
\(312\) −3.56479 + 4.00183i −0.201817 + 0.226559i
\(313\) 19.3149 + 23.0185i 1.09174 + 1.30108i 0.950368 + 0.311128i \(0.100707\pi\)
0.141372 + 0.989957i \(0.454849\pi\)
\(314\) 11.1586 19.3272i 0.629714 1.09070i
\(315\) 32.2422 + 0.880771i 1.81664 + 0.0496258i
\(316\) −0.816549 1.41430i −0.0459345 0.0795608i
\(317\) −7.02142 + 19.2912i −0.394362 + 1.08350i 0.570627 + 0.821210i \(0.306700\pi\)
−0.964989 + 0.262291i \(0.915522\pi\)
\(318\) 2.04941 0.299184i 0.114925 0.0167774i
\(319\) 1.07898 + 0.905369i 0.0604111 + 0.0506909i
\(320\) −26.1435 21.9370i −1.46147 1.22632i
\(321\) −9.73468 18.0750i −0.543337 1.00885i
\(322\) 8.32493 7.44960i 0.463930 0.415150i
\(323\) 15.0476i 0.837274i
\(324\) 1.89723 6.29292i 0.105402 0.349607i
\(325\) −10.0281 + 5.78970i −0.556256 + 0.321155i
\(326\) 8.68793 23.8699i 0.481180 1.32203i
\(327\) 0.124574 4.21137i 0.00688896 0.232889i
\(328\) 22.7836 + 4.01737i 1.25802 + 0.221822i
\(329\) −3.27059 2.57149i −0.180313 0.141771i
\(330\) −12.6875 + 31.8914i −0.698422 + 1.75556i
\(331\) −23.5871 8.58501i −1.29647 0.471875i −0.400622 0.916244i \(-0.631206\pi\)
−0.895844 + 0.444369i \(0.853428\pi\)
\(332\) −3.76179 + 6.51561i −0.206455 + 0.357591i
\(333\) 5.68080 8.61909i 0.311306 0.472323i
\(334\) −11.4735 + 6.62424i −0.627803 + 0.362462i
\(335\) −4.43616 1.61463i −0.242373 0.0882167i
\(336\) −9.05687 1.57586i −0.494093 0.0859703i
\(337\) 8.08743 + 6.78616i 0.440550 + 0.369665i 0.835915 0.548859i \(-0.184937\pi\)
−0.395365 + 0.918524i \(0.629382\pi\)
\(338\) 4.62026 + 12.6941i 0.251309 + 0.690466i
\(339\) −2.15005 + 10.3874i −0.116775 + 0.564165i
\(340\) −1.38928 7.87899i −0.0753442 0.427298i
\(341\) −1.48806 2.57739i −0.0805827 0.139573i
\(342\) −15.1458 + 11.2529i −0.818990 + 0.608487i
\(343\) 10.7473 + 15.0829i 0.580301 + 0.814402i
\(344\) 10.1772 1.79451i 0.548717 0.0967536i
\(345\) −3.80992 26.0980i −0.205119 1.40507i
\(346\) −14.0567 + 16.7521i −0.755693 + 0.900600i
\(347\) 5.26419 + 14.4632i 0.282597 + 0.776428i 0.997051 + 0.0767453i \(0.0244528\pi\)
−0.714454 + 0.699682i \(0.753325\pi\)
\(348\) 0.195212 + 0.362463i 0.0104645 + 0.0194300i
\(349\) 0.652102 + 0.777145i 0.0349062 + 0.0415996i 0.783215 0.621751i \(-0.213578\pi\)
−0.748309 + 0.663350i \(0.769134\pi\)
\(350\) −30.2566 16.2072i −1.61728 0.866310i
\(351\) 3.68999 + 3.70070i 0.196957 + 0.197529i
\(352\) −8.42289 + 14.5889i −0.448942 + 0.777590i
\(353\) −23.8037 8.66383i −1.26694 0.461129i −0.380849 0.924637i \(-0.624368\pi\)
−0.886093 + 0.463508i \(0.846590\pi\)
\(354\) 10.1942 + 18.9282i 0.541815 + 1.00602i
\(355\) 27.1022 32.2991i 1.43843 1.71426i
\(356\) −9.22515 + 3.35768i −0.488932 + 0.177957i
\(357\) −7.96245 9.44582i −0.421418 0.499926i
\(358\) −1.03087 5.84633i −0.0544830 0.308988i
\(359\) 1.81868i 0.0959862i −0.998848 0.0479931i \(-0.984717\pi\)
0.998848 0.0479931i \(-0.0152826\pi\)
\(360\) −25.7644 + 27.2558i −1.35790 + 1.43651i
\(361\) −12.1554 −0.639757
\(362\) 6.40532 5.37470i 0.336656 0.282488i
\(363\) 13.1083 + 2.71324i 0.688005 + 0.142408i
\(364\) −1.20111 + 1.52765i −0.0629554 + 0.0800707i
\(365\) 14.8217 17.6639i 0.775805 0.924568i
\(366\) 10.6092 11.9098i 0.554549 0.622536i
\(367\) 35.2784 6.22053i 1.84152 0.324709i 0.859156 0.511713i \(-0.170989\pi\)
0.982359 + 0.187004i \(0.0598778\pi\)
\(368\) 7.51716i 0.391859i
\(369\) 5.22381 21.9465i 0.271941 1.14249i
\(370\) −13.6450 + 7.87795i −0.709370 + 0.409555i
\(371\) 2.74810 0.575305i 0.142674 0.0298683i
\(372\) −0.125658 0.860756i −0.00651504 0.0446281i
\(373\) −0.877998 + 4.97938i −0.0454610 + 0.257822i −0.999065 0.0432429i \(-0.986231\pi\)
0.953604 + 0.301065i \(0.0973422\pi\)
\(374\) 12.3535 4.49630i 0.638784 0.232498i
\(375\) −40.3616 + 21.7376i −2.08427 + 1.12253i
\(376\) 4.76435 0.840083i 0.245702 0.0433240i
\(377\) −0.327337 −0.0168587
\(378\) −3.55296 + 15.0781i −0.182745 + 0.775535i
\(379\) −29.1103 −1.49530 −0.747648 0.664095i \(-0.768817\pi\)
−0.747648 + 0.664095i \(0.768817\pi\)
\(380\) −16.3130 + 2.87643i −0.836841 + 0.147558i
\(381\) 0.976240 33.0029i 0.0500143 1.69079i
\(382\) −19.6320 + 7.14547i −1.00446 + 0.365594i
\(383\) −0.923428 + 5.23702i −0.0471849 + 0.267599i −0.999269 0.0382385i \(-0.987825\pi\)
0.952084 + 0.305838i \(0.0989365\pi\)
\(384\) 2.28087 1.80169i 0.116395 0.0919422i
\(385\) −14.5139 + 44.2066i −0.739699 + 2.25297i
\(386\) −21.1894 + 12.2337i −1.07851 + 0.622681i
\(387\) −1.16021 10.0101i −0.0589770 0.508843i
\(388\) 7.43249i 0.377327i
\(389\) −9.69769 + 1.70996i −0.491692 + 0.0866986i −0.413997 0.910278i \(-0.635867\pi\)
−0.0776959 + 0.996977i \(0.524756\pi\)
\(390\) −2.50533 7.57291i −0.126862 0.383469i
\(391\) −6.49350 + 7.73865i −0.328390 + 0.391360i
\(392\) −21.4035 2.38271i −1.08104 0.120345i
\(393\) −4.91742 14.8640i −0.248051 0.749788i
\(394\) −12.3271 + 10.3436i −0.621028 + 0.521104i
\(395\) 9.08715 0.457224
\(396\) 7.91657 + 5.21777i 0.397823 + 0.262203i
\(397\) 3.19622i 0.160414i −0.996778 0.0802069i \(-0.974442\pi\)
0.996778 0.0802069i \(-0.0255581\pi\)
\(398\) 1.01716 + 5.76861i 0.0509857 + 0.289154i
\(399\) −19.5571 + 16.4859i −0.979079 + 0.825325i
\(400\) 21.7034 7.89940i 1.08517 0.394970i
\(401\) −9.96904 + 11.8806i −0.497830 + 0.593291i −0.955191 0.295990i \(-0.904350\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(402\) 1.19123 1.92920i 0.0594133 0.0962195i
\(403\) 0.649939 + 0.236558i 0.0323758 + 0.0117838i
\(404\) 2.23687 3.87438i 0.111289 0.192757i
\(405\) 25.0464 + 26.6506i 1.24456 + 1.32428i
\(406\) −0.511650 0.824438i −0.0253927 0.0409162i
\(407\) 9.57183 + 11.4073i 0.474458 + 0.565437i
\(408\) 14.3593 + 0.424755i 0.710892 + 0.0210285i
\(409\) −1.43725 3.94882i −0.0710676 0.195257i 0.899074 0.437798i \(-0.144241\pi\)
−0.970141 + 0.242541i \(0.922019\pi\)
\(410\) −22.1332 + 26.3774i −1.09308 + 1.30269i
\(411\) −1.53278 + 1.21077i −0.0756067 + 0.0597227i
\(412\) −2.19510 + 0.387055i −0.108145 + 0.0190688i
\(413\) 15.3680 + 24.7630i 0.756211 + 1.21851i
\(414\) 12.6451 + 0.748748i 0.621471 + 0.0367990i
\(415\) −20.9320 36.2552i −1.02751 1.77970i
\(416\) −0.679828 3.85550i −0.0333313 0.189031i
\(417\) 8.76768 + 7.81016i 0.429355 + 0.382465i
\(418\) −9.30937 25.5773i −0.455336 1.25103i
\(419\) 15.7288 + 13.1980i 0.768400 + 0.644764i 0.940299 0.340350i \(-0.110546\pi\)
−0.171899 + 0.985115i \(0.554990\pi\)
\(420\) −8.71808 + 10.4376i −0.425399 + 0.509305i
\(421\) −22.2876 8.11201i −1.08623 0.395355i −0.264007 0.964521i \(-0.585044\pi\)
−0.822223 + 0.569165i \(0.807266\pi\)
\(422\) −6.59997 + 3.81050i −0.321282 + 0.185492i
\(423\) −0.543142 4.68613i −0.0264085 0.227847i
\(424\) −1.63241 + 2.82741i −0.0792767 + 0.137311i
\(425\) 29.1666 + 10.6158i 1.41479 + 0.514940i
\(426\) 12.5523 + 15.8907i 0.608160 + 0.769908i
\(427\) 13.3641 16.9973i 0.646734 0.822558i
\(428\) 8.52461 + 1.50312i 0.412053 + 0.0726560i
\(429\) −6.63736 + 3.57470i −0.320455 + 0.172588i
\(430\) −5.26058 + 14.4533i −0.253688 + 0.697001i
\(431\) −30.4481 + 17.5792i −1.46663 + 0.846761i −0.999303 0.0373228i \(-0.988117\pi\)
−0.467329 + 0.884083i \(0.654784\pi\)
\(432\) −5.96648 8.54735i −0.287062 0.411234i
\(433\) 9.29552i 0.446714i −0.974737 0.223357i \(-0.928298\pi\)
0.974737 0.223357i \(-0.0717016\pi\)
\(434\) 0.420096 + 2.00671i 0.0201653 + 0.0963249i
\(435\) −2.28978 0.0677327i −0.109787 0.00324753i
\(436\) 1.36084 + 1.14188i 0.0651725 + 0.0546862i
\(437\) 16.0225 + 13.4445i 0.766459 + 0.643136i
\(438\) 6.86464 + 8.69038i 0.328005 + 0.415242i
\(439\) −5.20092 + 14.2894i −0.248226 + 0.681996i 0.751525 + 0.659704i \(0.229318\pi\)
−0.999752 + 0.0222915i \(0.992904\pi\)
\(440\) −27.0519 46.8553i −1.28965 2.23374i
\(441\) −3.55304 + 20.6972i −0.169193 + 0.985583i
\(442\) −1.52761 + 2.64589i −0.0726608 + 0.125852i
\(443\) −2.83111 3.37398i −0.134510 0.160303i 0.694585 0.719411i \(-0.255588\pi\)
−0.829095 + 0.559108i \(0.811144\pi\)
\(444\) 1.36706 + 4.13223i 0.0648776 + 0.196107i
\(445\) 9.48578 53.7965i 0.449669 2.55020i
\(446\) 5.80189 2.11172i 0.274727 0.0999926i
\(447\) 5.96302 28.8087i 0.282041 1.36260i
\(448\) 16.5583 14.8172i 0.782304 0.700048i
\(449\) −20.2360 11.6833i −0.954997 0.551368i −0.0603675 0.998176i \(-0.519227\pi\)
−0.894630 + 0.446808i \(0.852561\pi\)
\(450\) −11.1263 37.2954i −0.524497 1.75812i
\(451\) 28.1834 + 16.2717i 1.32710 + 0.766203i
\(452\) −2.87490 3.42617i −0.135224 0.161154i
\(453\) −6.10354 + 15.3419i −0.286769 + 0.720827i
\(454\) 1.78807 + 4.91269i 0.0839183 + 0.230564i
\(455\) −4.01986 10.0382i −0.188454 0.470599i
\(456\) 0.879433 29.7302i 0.0411832 1.39225i
\(457\) 0.593282 + 3.36467i 0.0277526 + 0.157393i 0.995535 0.0943965i \(-0.0300921\pi\)
−0.967782 + 0.251789i \(0.918981\pi\)
\(458\) −2.78863 4.83005i −0.130304 0.225694i
\(459\) 1.24112 13.9532i 0.0579305 0.651278i
\(460\) 9.63068 + 5.56027i 0.449033 + 0.259249i
\(461\) −11.0867 + 9.30284i −0.516359 + 0.433276i −0.863360 0.504588i \(-0.831644\pi\)
0.347002 + 0.937865i \(0.387200\pi\)
\(462\) −19.3779 11.1295i −0.901544 0.517792i
\(463\) −0.365037 + 2.07023i −0.0169647 + 0.0962116i −0.992114 0.125335i \(-0.959999\pi\)
0.975150 + 0.221547i \(0.0711105\pi\)
\(464\) 0.642988 + 0.113376i 0.0298500 + 0.00526336i
\(465\) 4.49748 + 1.78925i 0.208566 + 0.0829745i
\(466\) 5.36833 4.50456i 0.248683 0.208670i
\(467\) 17.1162 0.792044 0.396022 0.918241i \(-0.370390\pi\)
0.396022 + 0.918241i \(0.370390\pi\)
\(468\) −2.18884 + 0.253695i −0.101179 + 0.0117271i
\(469\) 1.45133 2.70942i 0.0670160 0.125110i
\(470\) −2.46269 + 6.76618i −0.113595 + 0.312101i
\(471\) 32.5683 10.7745i 1.50067 0.496462i
\(472\) −33.3745 5.88483i −1.53619 0.270871i
\(473\) 14.3159 + 2.52428i 0.658245 + 0.116066i
\(474\) −0.884619 + 4.27379i −0.0406319 + 0.196302i
\(475\) 21.9794 60.3879i 1.00848 2.77079i
\(476\) 5.20633 0.165790i 0.238632 0.00759895i
\(477\) 2.65817 + 1.75199i 0.121709 + 0.0802180i
\(478\) 10.7185 0.490251
\(479\) 18.0812 15.1719i 0.826149 0.693221i −0.128254 0.991741i \(-0.540937\pi\)
0.954403 + 0.298520i \(0.0964930\pi\)
\(480\) −3.95773 27.1105i −0.180645 1.23742i
\(481\) −3.40813 0.600945i −0.155397 0.0274008i
\(482\) −4.34656 + 24.6505i −0.197980 + 1.12280i
\(483\) 17.1719 0.0388301i 0.781347 0.00176683i
\(484\) −4.32363 + 3.62796i −0.196529 + 0.164907i
\(485\) 35.8162 + 20.6785i 1.62633 + 0.938963i
\(486\) −14.9723 + 9.18520i −0.679157 + 0.416649i
\(487\) 20.3632 + 35.2702i 0.922747 + 1.59824i 0.795145 + 0.606419i \(0.207395\pi\)
0.127602 + 0.991825i \(0.459272\pi\)
\(488\) 4.36593 + 24.7604i 0.197636 + 1.12085i
\(489\) 34.3771 18.5146i 1.55459 0.837257i
\(490\) 18.9992 25.8149i 0.858294 1.16620i
\(491\) 2.12792 + 5.84641i 0.0960316 + 0.263845i 0.978402 0.206711i \(-0.0662759\pi\)
−0.882371 + 0.470555i \(0.844054\pi\)
\(492\) 5.89608 + 7.46422i 0.265816 + 0.336513i
\(493\) 0.563996 + 0.672145i 0.0254011 + 0.0302719i
\(494\) 5.47818 + 3.16283i 0.246475 + 0.142302i
\(495\) −47.1691 + 23.6322i −2.12010 + 1.06219i
\(496\) −1.19474 0.689784i −0.0536454 0.0309722i
\(497\) 18.3060 + 20.4569i 0.821136 + 0.917620i
\(498\) 19.0889 6.31516i 0.855396 0.282989i
\(499\) −25.8870 + 9.42209i −1.15886 + 0.421791i −0.848690 0.528890i \(-0.822608\pi\)
−0.310170 + 0.950681i \(0.600386\pi\)
\(500\) 3.35648 19.0355i 0.150106 0.851295i
\(501\) −19.9419 4.12771i −0.890938 0.184413i
\(502\) 0.247183 + 0.294581i 0.0110323 + 0.0131478i
\(503\) −16.2335 + 28.1172i −0.723815 + 1.25368i 0.235645 + 0.971839i \(0.424280\pi\)
−0.959460 + 0.281845i \(0.909053\pi\)
\(504\) −15.1797 19.1278i −0.676157 0.852021i
\(505\) 12.4468 + 21.5584i 0.553874 + 0.959338i
\(506\) −6.24975 + 17.1711i −0.277835 + 0.763346i
\(507\) −7.67575 + 19.2939i −0.340892 + 0.856871i
\(508\) 10.6644 + 8.94849i 0.473156 + 0.397025i
\(509\) −5.15763 4.32776i −0.228608 0.191825i 0.521288 0.853381i \(-0.325452\pi\)
−0.749896 + 0.661556i \(0.769896\pi\)
\(510\) −11.2333 + 18.1924i −0.497421 + 0.805571i
\(511\) 10.0112 + 11.1876i 0.442872 + 0.494909i
\(512\) 20.1522i 0.890612i
\(513\) −28.8893 2.56967i −1.27549 0.113454i
\(514\) 10.9794 6.33897i 0.484281 0.279600i
\(515\) 4.24199 11.6548i 0.186924 0.513571i
\(516\) 3.61523 + 2.23232i 0.159152 + 0.0982724i
\(517\) 6.70183 + 1.18171i 0.294746 + 0.0519717i
\(518\) −3.81358 9.52311i −0.167559 0.418421i
\(519\) −33.2619 + 4.85574i −1.46003 + 0.213143i
\(520\) 11.8155 + 4.30048i 0.518143 + 0.188589i
\(521\) 6.29718 10.9070i 0.275885 0.477846i −0.694473 0.719518i \(-0.744363\pi\)
0.970358 + 0.241672i \(0.0776959\pi\)
\(522\) 0.254762 1.07032i 0.0111506 0.0468465i
\(523\) 9.44997 5.45594i 0.413218 0.238572i −0.278953 0.960305i \(-0.589987\pi\)
0.692172 + 0.721733i \(0.256654\pi\)
\(524\) 6.20318 + 2.25777i 0.270987 + 0.0986312i
\(525\) −18.1571 49.5375i −0.792443 2.16199i
\(526\) 14.7118 + 12.3447i 0.641467 + 0.538254i
\(527\) −0.634091 1.74215i −0.0276214 0.0758893i
\(528\) 14.2759 4.72287i 0.621279 0.205536i
\(529\) 1.55560 + 8.82225i 0.0676348 + 0.383576i
\(530\) −2.42960 4.20819i −0.105535 0.182792i
\(531\) −7.65208 + 32.1483i −0.332072 + 1.39512i
\(532\) −0.343259 10.7794i −0.0148822 0.467348i
\(533\) −7.44819 + 1.31332i −0.322617 + 0.0568861i
\(534\) 24.3777 + 9.69827i 1.05493 + 0.419685i
\(535\) −30.9604 + 36.8971i −1.33853 + 1.59520i
\(536\) 1.22241 + 3.35855i 0.0528002 + 0.145067i
\(537\) 4.79426 7.76429i 0.206888 0.335054i
\(538\) 6.52091 + 7.77132i 0.281136 + 0.335045i
\(539\) −27.1455 13.4469i −1.16924 0.579199i
\(540\) −15.3638 + 1.32173i −0.661151 + 0.0568780i
\(541\) 5.23639 9.06969i 0.225130 0.389936i −0.731229 0.682133i \(-0.761053\pi\)
0.956358 + 0.292196i \(0.0943860\pi\)
\(542\) −15.6688 5.70297i −0.673032 0.244964i
\(543\) 12.8472 + 0.380024i 0.551324 + 0.0163084i
\(544\) −6.74543 + 8.03889i −0.289208 + 0.344665i
\(545\) −9.28869 + 3.38081i −0.397884 + 0.144818i
\(546\) 5.11242 0.913382i 0.218791 0.0390891i
\(547\) −0.339966 1.92804i −0.0145359 0.0824371i 0.976677 0.214715i \(-0.0688821\pi\)
−0.991213 + 0.132277i \(0.957771\pi\)
\(548\) 0.823587i 0.0351819i
\(549\) 24.3539 2.82272i 1.03940 0.120471i
\(550\) 56.1435 2.39397
\(551\) 1.39164 1.16773i 0.0592859 0.0497468i
\(552\) −13.2817 + 14.9101i −0.565308 + 0.634614i
\(553\) −0.841413 + 5.85630i −0.0357805 + 0.249035i
\(554\) 22.2275 26.4897i 0.944358 1.12544i
\(555\) −23.7161 4.90893i −1.00669 0.208372i
\(556\) −4.87560 + 0.859700i −0.206771 + 0.0364594i
\(557\) 23.4292i 0.992725i −0.868115 0.496362i \(-0.834669\pi\)
0.868115 0.496362i \(-0.165331\pi\)
\(558\) −1.27933 + 1.94104i −0.0541583 + 0.0821706i
\(559\) −2.92573 + 1.68917i −0.123745 + 0.0714444i
\(560\) 4.41938 + 21.1104i 0.186753 + 0.892076i
\(561\) 18.7762 + 7.46983i 0.792734 + 0.315376i
\(562\) 2.89593 16.4236i 0.122157 0.692789i
\(563\) −6.83228 + 2.48675i −0.287946 + 0.104804i −0.481955 0.876196i \(-0.660073\pi\)
0.194009 + 0.981000i \(0.437851\pi\)
\(564\) 1.69244 + 1.04504i 0.0712644 + 0.0440040i
\(565\) 24.5088 4.32156i 1.03109 0.181810i
\(566\) 35.5001 1.49218
\(567\) −19.4944 + 13.6737i −0.818686 + 0.574242i
\(568\) −31.9213 −1.33939
\(569\) 15.3756 2.71113i 0.644578 0.113656i 0.158203 0.987407i \(-0.449430\pi\)
0.486375 + 0.873750i \(0.338319\pi\)
\(570\) 37.6664 + 23.2581i 1.57767 + 0.974174i
\(571\) 7.78348 2.83296i 0.325729 0.118556i −0.173980 0.984749i \(-0.555663\pi\)
0.499708 + 0.866194i \(0.333440\pi\)
\(572\) 0.551964 3.13034i 0.0230788 0.130886i
\(573\) −29.8390 11.8710i −1.24654 0.495916i
\(574\) −14.9498 16.7064i −0.623991 0.697311i
\(575\) −37.3626 + 21.5713i −1.55813 + 0.899586i
\(576\) 25.1510 + 1.48926i 1.04796 + 0.0620524i
\(577\) 29.9556i 1.24707i −0.781797 0.623533i \(-0.785697\pi\)
0.781797 0.623533i \(-0.214303\pi\)
\(578\) −10.7997 + 1.90428i −0.449209 + 0.0792077i
\(579\) −36.8290 7.62312i −1.53056 0.316806i
\(580\) 0.620856 0.739908i 0.0257797 0.0307230i
\(581\) 25.3032 10.1328i 1.04975 0.420380i
\(582\) −13.2120 + 14.8318i −0.547655 + 0.614797i
\(583\) −3.51806 + 2.95200i −0.145703 + 0.122259i
\(584\) −17.4573 −0.722387
\(585\) 4.86721 11.2536i 0.201234 0.465277i
\(586\) 16.0405i 0.662627i
\(587\) 1.70034 + 9.64312i 0.0701806 + 0.398014i 0.999581 + 0.0289412i \(0.00921356\pi\)
−0.929401 + 0.369073i \(0.879675\pi\)
\(588\) −5.91941 6.58492i −0.244112 0.271557i
\(589\) −3.60703 + 1.31285i −0.148625 + 0.0540952i
\(590\) 32.4218 38.6388i 1.33478 1.59073i
\(591\) −24.7244 0.731358i −1.01702 0.0300840i
\(592\) 6.48645 + 2.36087i 0.266591 + 0.0970313i
\(593\) 2.54164 4.40224i 0.104372 0.180778i −0.809109 0.587658i \(-0.800050\pi\)
0.913482 + 0.406880i \(0.133383\pi\)
\(594\) −6.52266 24.4848i −0.267628 1.00462i
\(595\) −13.6860 + 25.5499i −0.561073 + 1.04745i
\(596\) 7.97335 + 9.50226i 0.326601 + 0.389228i
\(597\) −4.73052 + 7.66106i −0.193607 + 0.313547i
\(598\) −1.45245 3.99056i −0.0593950 0.163186i
\(599\) 15.6458 18.6459i 0.639268 0.761850i −0.344986 0.938608i \(-0.612116\pi\)
0.984254 + 0.176758i \(0.0565608\pi\)
\(600\) 57.0051 + 22.6786i 2.32722 + 0.925848i
\(601\) 30.7674 5.42513i 1.25503 0.221295i 0.493683 0.869642i \(-0.335650\pi\)
0.761346 + 0.648346i \(0.224539\pi\)
\(602\) −8.82750 4.72852i −0.359782 0.192720i
\(603\) 3.33974 0.996338i 0.136005 0.0405740i
\(604\) −3.48093 6.02915i −0.141637 0.245323i
\(605\) −5.45356 30.9287i −0.221719 1.25743i
\(606\) −11.3509 + 3.75518i −0.461097 + 0.152544i
\(607\) −8.19540 22.5167i −0.332641 0.913924i −0.987422 0.158105i \(-0.949461\pi\)
0.654781 0.755818i \(-0.272761\pi\)
\(608\) 16.6441 + 13.9661i 0.675008 + 0.566399i
\(609\) 0.255670 1.46940i 0.0103603 0.0595431i
\(610\) −35.1640 12.7986i −1.42375 0.518202i
\(611\) −1.36965 + 0.790769i −0.0554102 + 0.0319911i
\(612\) 4.29226 + 4.05738i 0.173504 + 0.164010i
\(613\) 12.6996 21.9963i 0.512931 0.888422i −0.486957 0.873426i \(-0.661893\pi\)
0.999888 0.0149962i \(-0.00477363\pi\)
\(614\) −22.7875 8.29397i −0.919628 0.334717i
\(615\) −52.3731 + 7.64570i −2.11189 + 0.308304i
\(616\) 32.7012 13.0954i 1.31757 0.527628i
\(617\) 12.5023 + 2.20449i 0.503324 + 0.0887495i 0.419544 0.907735i \(-0.362190\pi\)
0.0837791 + 0.996484i \(0.473301\pi\)
\(618\) 5.06842 + 3.12963i 0.203882 + 0.125892i
\(619\) 0.171762 0.471912i 0.00690370 0.0189678i −0.936193 0.351487i \(-0.885676\pi\)
0.943097 + 0.332519i \(0.107899\pi\)
\(620\) −1.76744 + 1.02043i −0.0709822 + 0.0409816i
\(621\) 13.7482 + 13.7881i 0.551696 + 0.553297i
\(622\) 17.5441i 0.703456i
\(623\) 33.7914 + 11.0944i 1.35382 + 0.444489i
\(624\) −1.83601 + 2.97340i −0.0734990 + 0.119031i
\(625\) 38.2934 + 32.1319i 1.53173 + 1.28528i
\(626\) 25.9375 + 21.7642i 1.03667 + 0.869871i
\(627\) 15.4659 38.8752i 0.617648 1.55253i
\(628\) −4.94698 + 13.5917i −0.197406 + 0.542368i
\(629\) 4.63819 + 8.03357i 0.184937 + 0.320320i
\(630\) 35.9512 5.33140i 1.43233 0.212408i
\(631\) −2.95212 + 5.11322i −0.117522 + 0.203554i −0.918785 0.394758i \(-0.870828\pi\)
0.801263 + 0.598312i \(0.204162\pi\)
\(632\) −4.42221 5.27019i −0.175906 0.209637i
\(633\) −11.4713 2.37441i −0.455942 0.0943741i
\(634\) −4.01693 + 22.7811i −0.159533 + 0.904754i
\(635\) −72.7920 + 26.4941i −2.88866 + 1.05139i
\(636\) −1.27440 + 0.421607i −0.0505333 + 0.0167178i
\(637\) 6.84144 1.66116i 0.271068 0.0658176i
\(638\) 1.37448 + 0.793558i 0.0544163 + 0.0314173i
\(639\) −1.83991 + 31.0729i −0.0727856 + 1.22922i
\(640\) −5.90575 3.40969i −0.233445 0.134780i
\(641\) −6.06084 7.22302i −0.239389 0.285292i 0.632952 0.774191i \(-0.281843\pi\)
−0.872340 + 0.488899i \(0.837399\pi\)
\(642\) −14.3392 18.1529i −0.565923 0.716437i
\(643\) −3.08722 8.48206i −0.121748 0.334500i 0.863815 0.503809i \(-0.168069\pi\)
−0.985563 + 0.169309i \(0.945846\pi\)
\(644\) −4.47511 + 5.69174i −0.176344 + 0.224286i
\(645\) −20.8155 + 11.2107i −0.819610 + 0.441419i
\(646\) −2.94435 16.6982i −0.115844 0.656984i
\(647\) −12.1970 21.1259i −0.479514 0.830543i 0.520210 0.854039i \(-0.325854\pi\)
−0.999724 + 0.0234953i \(0.992521\pi\)
\(648\) 3.26759 27.4953i 0.128363 1.08012i
\(649\) −41.2843 23.8355i −1.62055 0.935625i
\(650\) −9.99518 + 8.38695i −0.392043 + 0.328963i
\(651\) −1.56954 + 2.73277i −0.0615151 + 0.107106i
\(652\) −2.85881 + 16.2131i −0.111960 + 0.634954i
\(653\) −30.9401 5.45557i −1.21078 0.213493i −0.468427 0.883502i \(-0.655179\pi\)
−0.742353 + 0.670009i \(0.766290\pi\)
\(654\) −0.685793 4.69769i −0.0268166 0.183694i
\(655\) −28.1383 + 23.6108i −1.09945 + 0.922551i
\(656\) 15.0854 0.588984
\(657\) −1.00622 + 16.9933i −0.0392562 + 0.662970i
\(658\) −4.13250 2.21361i −0.161102 0.0862955i
\(659\) −4.14303 + 11.3829i −0.161390 + 0.443415i −0.993859 0.110657i \(-0.964704\pi\)
0.832469 + 0.554072i \(0.186927\pi\)
\(660\) 4.50881 21.7831i 0.175505 0.847905i
\(661\) 39.7487 + 7.00877i 1.54605 + 0.272610i 0.880609 0.473844i \(-0.157134\pi\)
0.665437 + 0.746454i \(0.268245\pi\)
\(662\) −27.8542 4.91146i −1.08259 0.190889i
\(663\) −4.45860 + 1.47503i −0.173157 + 0.0572853i
\(664\) −10.8402 + 29.7832i −0.420681 + 1.15581i
\(665\) 52.8998 + 28.3362i 2.05137 + 1.09883i
\(666\) 4.61745 10.6761i 0.178922 0.413690i
\(667\) −1.21960 −0.0472229
\(668\) 6.57764 5.51929i 0.254496 0.213548i
\(669\) 8.81837 + 3.50825i 0.340938 + 0.135637i
\(670\) −5.23870 0.923724i −0.202389 0.0356866i
\(671\) −6.14139 + 34.8296i −0.237086 + 1.34458i
\(672\) 17.8381 0.0403366i 0.688120 0.00155602i
\(673\) 2.82302 2.36879i 0.108819 0.0913103i −0.586755 0.809765i \(-0.699595\pi\)
0.695574 + 0.718455i \(0.255150\pi\)
\(674\) 10.3024 + 5.94808i 0.396833 + 0.229112i
\(675\) 25.3615 54.1827i 0.976164 2.08549i
\(676\) −4.37759 7.58220i −0.168369 0.291623i
\(677\) −0.487731 2.76606i −0.0187450 0.106308i 0.974000 0.226549i \(-0.0727444\pi\)
−0.992745 + 0.120241i \(0.961633\pi\)
\(678\) −0.353411 + 11.9475i −0.0135727 + 0.458840i
\(679\) −16.6428 + 21.1674i −0.638693 + 0.812332i
\(680\) −11.5274 31.6712i −0.442055 1.21454i
\(681\) −2.97057 + 7.46686i −0.113832 + 0.286131i
\(682\) −2.15560 2.56894i −0.0825420 0.0983698i
\(683\) 25.8376 + 14.9173i 0.988648 + 0.570796i 0.904870 0.425689i \(-0.139968\pi\)
0.0837778 + 0.996484i \(0.473301\pi\)
\(684\) 8.40059 8.88690i 0.321205 0.339799i
\(685\) 3.96876 + 2.29137i 0.151639 + 0.0875486i
\(686\) 14.8775 + 14.6345i 0.568024 + 0.558748i
\(687\) 1.73766 8.39502i 0.0662959 0.320290i
\(688\) 6.33207 2.30469i 0.241408 0.0878654i
\(689\) 0.185335 1.05108i 0.00706069 0.0400431i
\(690\) −9.33438 28.2152i −0.355354 1.07413i
\(691\) −1.09694 1.30729i −0.0417297 0.0497315i 0.744776 0.667315i \(-0.232556\pi\)
−0.786506 + 0.617583i \(0.788112\pi\)
\(692\) 7.08657 12.2743i 0.269391 0.466599i
\(693\) −10.8624 32.5868i −0.412630 1.23787i
\(694\) 8.67163 + 15.0197i 0.329170 + 0.570140i
\(695\) 9.42201 25.8867i 0.357397 0.981940i
\(696\) 1.07503 + 1.36094i 0.0407488 + 0.0515865i
\(697\) 15.5298 + 13.0311i 0.588234 + 0.493587i
\(698\) 0.875694 + 0.734795i 0.0331455 + 0.0278124i
\(699\) 10.7673 + 0.318500i 0.407255 + 0.0120468i
\(700\) 21.1357 + 6.93931i 0.798856 + 0.262281i
\(701\) 10.1720i 0.384193i −0.981376 0.192096i \(-0.938471\pi\)
0.981376 0.192096i \(-0.0615287\pi\)
\(702\) 4.81886 + 3.38462i 0.181876 + 0.127744i
\(703\) 16.6331 9.60313i 0.627329 0.362189i
\(704\) −12.4307 + 34.1532i −0.468501 + 1.28720i
\(705\) −9.74457 + 5.24815i −0.367002 + 0.197657i
\(706\) −28.1100 4.95655i −1.05793 0.186542i
\(707\) −15.0460 + 6.02527i −0.565865 + 0.226604i
\(708\) −8.63685 10.9339i −0.324593 0.410922i
\(709\) −1.72281 0.627053i −0.0647017 0.0235495i 0.309467 0.950910i \(-0.399850\pi\)
−0.374168 + 0.927361i \(0.622072\pi\)
\(710\) 23.7551 41.1451i 0.891513 1.54415i
\(711\) −5.38500 + 4.00091i −0.201953 + 0.150046i
\(712\) −35.8161 + 20.6784i −1.34226 + 0.774957i
\(713\) 2.42155 + 0.881371i 0.0906877 + 0.0330076i
\(714\) −10.6841 8.92394i −0.399843 0.333970i
\(715\) 13.5491 + 11.3690i 0.506707 + 0.425178i
\(716\) 1.31593 + 3.61550i 0.0491787 + 0.135117i
\(717\) 12.3024 + 10.9589i 0.459442 + 0.409267i
\(718\) −0.355858 2.01817i −0.0132805 0.0753175i
\(719\) 21.2752 + 36.8498i 0.793432 + 1.37427i 0.923830 + 0.382803i \(0.125041\pi\)
−0.130397 + 0.991462i \(0.541625\pi\)
\(720\) −13.4584 + 20.4195i −0.501566 + 0.760992i
\(721\) 7.11826 + 3.81295i 0.265098 + 0.142002i
\(722\) −13.4887 + 2.37843i −0.501998 + 0.0885159i
\(723\) −30.1924 + 23.8493i −1.12287 + 0.886966i
\(724\) −3.48341 + 4.15137i −0.129460 + 0.154284i
\(725\) 1.28161 + 3.52119i 0.0475978 + 0.130774i
\(726\) 15.0770 + 0.445985i 0.559560 + 0.0165520i
\(727\) −5.61173 6.68779i −0.208127 0.248037i 0.651875 0.758326i \(-0.273983\pi\)
−0.860003 + 0.510290i \(0.829538\pi\)
\(728\) −3.86553 + 7.21641i −0.143266 + 0.267458i
\(729\) −26.5761 4.76554i −0.984300 0.176501i
\(730\) 12.9913 22.5016i 0.480829 0.832820i
\(731\) 8.50948 + 3.09720i 0.314735 + 0.114554i
\(732\) −5.43109 + 8.79562i −0.200739 + 0.325096i
\(733\) −6.17903 + 7.36388i −0.228228 + 0.271991i −0.867990 0.496582i \(-0.834588\pi\)
0.639762 + 0.768573i \(0.279033\pi\)
\(734\) 37.9309 13.8057i 1.40006 0.509579i
\(735\) 48.2008 10.2045i 1.77791 0.376398i
\(736\) −2.53291 14.3648i −0.0933643 0.529495i
\(737\) 5.02755i 0.185192i
\(738\) 1.50258 25.3760i 0.0553107 0.934103i
\(739\) 6.95825 0.255963 0.127982 0.991777i \(-0.459150\pi\)
0.127982 + 0.991777i \(0.459150\pi\)
\(740\) 7.82253 6.56388i 0.287562 0.241293i
\(741\) 3.05397 + 9.23129i 0.112190 + 0.339120i
\(742\) 2.93697 1.17613i 0.107820 0.0431770i
\(743\) −25.6686 + 30.5906i −0.941688 + 1.12226i 0.0506507 + 0.998716i \(0.483870\pi\)
−0.992339 + 0.123544i \(0.960574\pi\)
\(744\) −1.15098 3.47909i −0.0421970 0.127550i
\(745\) −67.9735 + 11.9856i −2.49036 + 0.439117i
\(746\) 5.69737i 0.208595i
\(747\) 28.3667 + 12.2687i 1.03788 + 0.448889i
\(748\) −7.37878 + 4.26014i −0.269795 + 0.155766i
\(749\) −20.9120 23.3692i −0.764107 0.853890i
\(750\) −40.5356 + 32.0196i −1.48015 + 1.16919i
\(751\) 5.28500 29.9727i 0.192852 1.09372i −0.722592 0.691275i \(-0.757049\pi\)
0.915444 0.402445i \(-0.131839\pi\)
\(752\) 2.96430 1.07892i 0.108097 0.0393440i
\(753\) −0.0174774 + 0.590842i −0.000636910 + 0.0215315i
\(754\) −0.363243 + 0.0640496i −0.0132285 + 0.00233255i
\(755\) 38.7383 1.40983
\(756\) 0.570788 10.0237i 0.0207594 0.364559i
\(757\) 31.9836 1.16246 0.581232 0.813738i \(-0.302571\pi\)
0.581232 + 0.813738i \(0.302571\pi\)
\(758\) −32.3035 + 5.69597i −1.17331 + 0.206887i
\(759\) −24.7295 + 13.3186i −0.897626 + 0.483436i
\(760\) −65.5737 + 23.8669i −2.37861 + 0.865742i
\(761\) 4.85956 27.5599i 0.176159 0.999047i −0.760639 0.649175i \(-0.775114\pi\)
0.936798 0.349872i \(-0.113775\pi\)
\(762\) −5.37430 36.8141i −0.194690 1.33363i
\(763\) −1.31872 6.29923i −0.0477409 0.228047i
\(764\) 11.7263 6.77017i 0.424242 0.244936i
\(765\) −31.4938 + 9.39550i −1.13866 + 0.339695i
\(766\) 5.99216i 0.216505i
\(767\) 10.9105 1.92381i 0.393954 0.0694647i