Properties

Label 189.2.ba.a.5.19
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.19
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.77697 - 0.313327i) q^{2} +(-1.53787 - 0.796838i) q^{3} +(1.18006 - 0.429505i) q^{4} +(0.415679 - 2.35743i) q^{5} +(-2.98242 - 0.934099i) q^{6} +(0.444023 - 2.60823i) q^{7} +(-1.16293 + 0.671420i) q^{8} +(1.73010 + 2.45087i) q^{9} +O(q^{10})\) \(q+(1.77697 - 0.313327i) q^{2} +(-1.53787 - 0.796838i) q^{3} +(1.18006 - 0.429505i) q^{4} +(0.415679 - 2.35743i) q^{5} +(-2.98242 - 0.934099i) q^{6} +(0.444023 - 2.60823i) q^{7} +(-1.16293 + 0.671420i) q^{8} +(1.73010 + 2.45087i) q^{9} -4.31932i q^{10} +(3.72736 - 0.657234i) q^{11} +(-2.15702 - 0.279790i) q^{12} +(-0.707773 + 0.843491i) q^{13} +(-0.0282138 - 4.77386i) q^{14} +(-2.51775 + 3.29420i) q^{15} +(-3.78010 + 3.17188i) q^{16} +1.49460 q^{17} +(3.84225 + 3.81303i) q^{18} +4.58033i q^{19} +(-0.522004 - 2.96043i) q^{20} +(-2.76118 + 3.65730i) q^{21} +(6.41747 - 2.33577i) q^{22} +(-1.53425 + 1.82845i) q^{23} +(2.32346 - 0.105888i) q^{24} +(-0.686224 - 0.249765i) q^{25} +(-0.993401 + 1.72062i) q^{26} +(-0.707722 - 5.14773i) q^{27} +(-0.596274 - 3.26856i) q^{28} +(4.43679 + 5.28755i) q^{29} +(-3.44180 + 6.64256i) q^{30} +(-2.09891 - 5.76670i) q^{31} +(-3.99696 + 4.76339i) q^{32} +(-6.25591 - 1.95936i) q^{33} +(2.65586 - 0.468300i) q^{34} +(-5.96414 - 2.13094i) q^{35} +(3.09427 + 2.14908i) q^{36} +(1.11472 + 1.93075i) q^{37} +(1.43514 + 8.13910i) q^{38} +(1.76059 - 0.733200i) q^{39} +(1.09942 + 3.02063i) q^{40} +(4.72742 + 3.96678i) q^{41} +(-3.76060 + 7.36406i) q^{42} +(-10.2916 - 3.74582i) q^{43} +(4.11621 - 2.37649i) q^{44} +(6.49692 - 3.05981i) q^{45} +(-2.15341 + 3.72982i) q^{46} +(6.24206 + 2.27193i) q^{47} +(8.34079 - 1.86582i) q^{48} +(-6.60569 - 2.31623i) q^{49} +(-1.29766 - 0.228812i) q^{50} +(-2.29851 - 1.19096i) q^{51} +(-0.472928 + 1.29936i) q^{52} +(4.79739 - 2.76978i) q^{53} +(-2.87052 - 8.92560i) q^{54} -9.06019i q^{55} +(1.23485 + 3.33132i) q^{56} +(3.64978 - 7.04396i) q^{57} +(9.54076 + 8.00565i) q^{58} +(-6.20019 - 5.20258i) q^{59} +(-1.55621 + 4.96872i) q^{60} +(-3.62212 + 9.95168i) q^{61} +(-5.53655 - 9.58959i) q^{62} +(7.16063 - 3.42424i) q^{63} +(-0.675396 + 1.16982i) q^{64} +(1.69426 + 2.01915i) q^{65} +(-11.7305 - 1.52157i) q^{66} +(2.21498 - 12.5617i) q^{67} +(1.76372 - 0.641940i) q^{68} +(3.81646 - 1.58937i) q^{69} +(-11.2658 - 1.91788i) q^{70} +(9.44989 + 5.45590i) q^{71} +(-3.65755 - 1.68858i) q^{72} +(-4.26048 - 2.45979i) q^{73} +(2.58577 + 3.08160i) q^{74} +(0.856302 + 0.930917i) q^{75} +(1.96728 + 5.40505i) q^{76} +(-0.0591811 - 10.0136i) q^{77} +(2.89878 - 1.85451i) q^{78} +(-1.58416 - 8.98420i) q^{79} +(5.90618 + 10.2298i) q^{80} +(-3.01352 + 8.48049i) q^{81} +(9.64337 + 5.56760i) q^{82} +(-9.60538 + 8.05987i) q^{83} +(-1.68752 + 5.50176i) q^{84} +(0.621275 - 3.52342i) q^{85} +(-19.4614 - 3.43157i) q^{86} +(-2.60988 - 11.6670i) q^{87} +(-3.89339 + 3.26694i) q^{88} +6.74096 q^{89} +(10.5861 - 7.47285i) q^{90} +(1.88575 + 2.22056i) q^{91} +(-1.02517 + 2.81664i) q^{92} +(-1.36728 + 10.5409i) q^{93} +(11.8038 + 2.08133i) q^{94} +(10.7978 + 1.90395i) q^{95} +(9.94246 - 4.14055i) q^{96} +(-5.66935 + 15.5764i) q^{97} +(-12.4638 - 2.04612i) q^{98} +(8.05949 + 7.99819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.77697 0.313327i 1.25651 0.221556i 0.494530 0.869161i \(-0.335340\pi\)
0.761976 + 0.647605i \(0.224229\pi\)
\(3\) −1.53787 0.796838i −0.887891 0.460055i
\(4\) 1.18006 0.429505i 0.590028 0.214753i
\(5\) 0.415679 2.35743i 0.185897 1.05427i −0.738900 0.673815i \(-0.764655\pi\)
0.924797 0.380460i \(-0.124234\pi\)
\(6\) −2.98242 0.934099i −1.21757 0.381344i
\(7\) 0.444023 2.60823i 0.167825 0.985817i
\(8\) −1.16293 + 0.671420i −0.411159 + 0.237383i
\(9\) 1.73010 + 2.45087i 0.576699 + 0.816957i
\(10\) 4.31932i 1.36589i
\(11\) 3.72736 0.657234i 1.12384 0.198164i 0.419315 0.907841i \(-0.362270\pi\)
0.704527 + 0.709677i \(0.251159\pi\)
\(12\) −2.15702 0.279790i −0.622678 0.0807683i
\(13\) −0.707773 + 0.843491i −0.196301 + 0.233942i −0.855212 0.518279i \(-0.826573\pi\)
0.658911 + 0.752221i \(0.271017\pi\)
\(14\) −0.0282138 4.77386i −0.00754044 1.27587i
\(15\) −2.51775 + 3.29420i −0.650080 + 0.850558i
\(16\) −3.78010 + 3.17188i −0.945025 + 0.792970i
\(17\) 1.49460 0.362495 0.181247 0.983438i \(-0.441987\pi\)
0.181247 + 0.983438i \(0.441987\pi\)
\(18\) 3.84225 + 3.81303i 0.905628 + 0.898740i
\(19\) 4.58033i 1.05080i 0.850855 + 0.525400i \(0.176084\pi\)
−0.850855 + 0.525400i \(0.823916\pi\)
\(20\) −0.522004 2.96043i −0.116724 0.661973i
\(21\) −2.76118 + 3.65730i −0.602540 + 0.798089i
\(22\) 6.41747 2.33577i 1.36821 0.497987i
\(23\) −1.53425 + 1.82845i −0.319913 + 0.381258i −0.901903 0.431938i \(-0.857830\pi\)
0.581990 + 0.813196i \(0.302274\pi\)
\(24\) 2.32346 0.105888i 0.474273 0.0216143i
\(25\) −0.686224 0.249765i −0.137245 0.0499530i
\(26\) −0.993401 + 1.72062i −0.194822 + 0.337442i
\(27\) −0.707722 5.14773i −0.136201 0.990681i
\(28\) −0.596274 3.26856i −0.112685 0.617700i
\(29\) 4.43679 + 5.28755i 0.823890 + 0.981874i 0.999997 0.00249689i \(-0.000794785\pi\)
−0.176107 + 0.984371i \(0.556350\pi\)
\(30\) −3.44180 + 6.64256i −0.628384 + 1.21276i
\(31\) −2.09891 5.76670i −0.376975 1.03573i −0.972604 0.232470i \(-0.925319\pi\)
0.595629 0.803260i \(-0.296903\pi\)
\(32\) −3.99696 + 4.76339i −0.706569 + 0.842056i
\(33\) −6.25591 1.95936i −1.08901 0.341081i
\(34\) 2.65586 0.468300i 0.455477 0.0803128i
\(35\) −5.96414 2.13094i −1.00812 0.360194i
\(36\) 3.09427 + 2.14908i 0.515712 + 0.358179i
\(37\) 1.11472 + 1.93075i 0.183258 + 0.317413i 0.942988 0.332826i \(-0.108002\pi\)
−0.759730 + 0.650239i \(0.774669\pi\)
\(38\) 1.43514 + 8.13910i 0.232811 + 1.32034i
\(39\) 1.76059 0.733200i 0.281920 0.117406i
\(40\) 1.09942 + 3.02063i 0.173833 + 0.477603i
\(41\) 4.72742 + 3.96678i 0.738299 + 0.619506i 0.932380 0.361479i \(-0.117728\pi\)
−0.194081 + 0.980985i \(0.562173\pi\)
\(42\) −3.76060 + 7.36406i −0.580274 + 1.13630i
\(43\) −10.2916 3.74582i −1.56945 0.571232i −0.596571 0.802560i \(-0.703471\pi\)
−0.972876 + 0.231328i \(0.925693\pi\)
\(44\) 4.11621 2.37649i 0.620541 0.358270i
\(45\) 6.49692 3.05981i 0.968503 0.456130i
\(46\) −2.15341 + 3.72982i −0.317503 + 0.549931i
\(47\) 6.24206 + 2.27193i 0.910498 + 0.331394i 0.754452 0.656355i \(-0.227903\pi\)
0.156047 + 0.987750i \(0.450125\pi\)
\(48\) 8.34079 1.86582i 1.20389 0.269308i
\(49\) −6.60569 2.31623i −0.943670 0.330889i
\(50\) −1.29766 0.228812i −0.183516 0.0323589i
\(51\) −2.29851 1.19096i −0.321856 0.166767i
\(52\) −0.472928 + 1.29936i −0.0655833 + 0.180189i
\(53\) 4.79739 2.76978i 0.658973 0.380458i −0.132913 0.991128i \(-0.542433\pi\)
0.791885 + 0.610670i \(0.209100\pi\)
\(54\) −2.87052 8.92560i −0.390629 1.21462i
\(55\) 9.06019i 1.22168i
\(56\) 1.23485 + 3.33132i 0.165013 + 0.445166i
\(57\) 3.64978 7.04396i 0.483426 0.932996i
\(58\) 9.54076 + 8.00565i 1.25276 + 1.05119i
\(59\) −6.20019 5.20258i −0.807196 0.677318i 0.142740 0.989760i \(-0.454409\pi\)
−0.949937 + 0.312442i \(0.898853\pi\)
\(60\) −1.55621 + 4.96872i −0.200906 + 0.641459i
\(61\) −3.62212 + 9.95168i −0.463764 + 1.27418i 0.458869 + 0.888504i \(0.348255\pi\)
−0.922633 + 0.385678i \(0.873967\pi\)
\(62\) −5.53655 9.58959i −0.703143 1.21788i
\(63\) 7.16063 3.42424i 0.902154 0.431414i
\(64\) −0.675396 + 1.16982i −0.0844245 + 0.146227i
\(65\) 1.69426 + 2.01915i 0.210148 + 0.250444i
\(66\) −11.7305 1.52157i −1.44392 0.187293i
\(67\) 2.21498 12.5617i 0.270602 1.53466i −0.481991 0.876176i \(-0.660086\pi\)
0.752593 0.658486i \(-0.228803\pi\)
\(68\) 1.76372 0.641940i 0.213882 0.0778467i
\(69\) 3.81646 1.58937i 0.459447 0.191338i
\(70\) −11.2658 1.91788i −1.34652 0.229230i
\(71\) 9.44989 + 5.45590i 1.12150 + 0.647496i 0.941782 0.336223i \(-0.109150\pi\)
0.179713 + 0.983719i \(0.442483\pi\)
\(72\) −3.65755 1.68858i −0.431047 0.199001i
\(73\) −4.26048 2.45979i −0.498651 0.287896i 0.229505 0.973307i \(-0.426289\pi\)
−0.728156 + 0.685411i \(0.759623\pi\)
\(74\) 2.58577 + 3.08160i 0.300590 + 0.358229i
\(75\) 0.856302 + 0.930917i 0.0988773 + 0.107493i
\(76\) 1.96728 + 5.40505i 0.225662 + 0.620001i
\(77\) −0.0591811 10.0136i −0.00674431 1.14116i
\(78\) 2.89878 1.85451i 0.328222 0.209982i
\(79\) −1.58416 8.98420i −0.178232 1.01080i −0.934347 0.356364i \(-0.884016\pi\)
0.756116 0.654438i \(-0.227095\pi\)
\(80\) 5.90618 + 10.2298i 0.660331 + 1.14373i
\(81\) −3.01352 + 8.48049i −0.334836 + 0.942276i
\(82\) 9.64337 + 5.56760i 1.06493 + 0.614839i
\(83\) −9.60538 + 8.05987i −1.05433 + 0.884686i −0.993542 0.113465i \(-0.963805\pi\)
−0.0607858 + 0.998151i \(0.519361\pi\)
\(84\) −1.68752 + 5.50176i −0.184124 + 0.600291i
\(85\) 0.621275 3.52342i 0.0673867 0.382169i
\(86\) −19.4614 3.43157i −2.09858 0.370036i
\(87\) −2.60988 11.6670i −0.279809 1.25083i
\(88\) −3.89339 + 3.26694i −0.415037 + 0.348257i
\(89\) 6.74096 0.714541 0.357270 0.934001i \(-0.383707\pi\)
0.357270 + 0.934001i \(0.383707\pi\)
\(90\) 10.5861 7.47285i 1.11587 0.787707i
\(91\) 1.88575 + 2.22056i 0.197680 + 0.232778i
\(92\) −1.02517 + 2.81664i −0.106882 + 0.293655i
\(93\) −1.36728 + 10.5409i −0.141780 + 1.09304i
\(94\) 11.8038 + 2.08133i 1.21747 + 0.214673i
\(95\) 10.7978 + 1.90395i 1.10783 + 0.195341i
\(96\) 9.94246 4.14055i 1.01475 0.422593i
\(97\) −5.66935 + 15.5764i −0.575636 + 1.58155i 0.219824 + 0.975540i \(0.429452\pi\)
−0.795460 + 0.606006i \(0.792771\pi\)
\(98\) −12.4638 2.04612i −1.25904 0.206689i
\(99\) 8.05949 + 7.99819i 0.810010 + 0.803849i
\(100\) −0.917058 −0.0917058
\(101\) −13.2061 + 11.0812i −1.31406 + 1.10262i −0.326527 + 0.945188i \(0.605878\pi\)
−0.987529 + 0.157436i \(0.949677\pi\)
\(102\) −4.45754 1.39611i −0.441362 0.138235i
\(103\) −0.572887 0.101015i −0.0564482 0.00995334i 0.145353 0.989380i \(-0.453568\pi\)
−0.201801 + 0.979427i \(0.564679\pi\)
\(104\) 0.256756 1.45614i 0.0251770 0.142786i
\(105\) 7.47407 + 8.02956i 0.729394 + 0.783605i
\(106\) 7.65697 6.42496i 0.743711 0.624047i
\(107\) −14.9103 8.60844i −1.44143 0.832209i −0.443484 0.896282i \(-0.646258\pi\)
−0.997945 + 0.0640729i \(0.979591\pi\)
\(108\) −3.04613 5.77064i −0.293114 0.555280i
\(109\) −6.37212 11.0368i −0.610338 1.05714i −0.991183 0.132498i \(-0.957700\pi\)
0.380845 0.924639i \(-0.375633\pi\)
\(110\) −2.83881 16.0997i −0.270669 1.53504i
\(111\) −0.175799 3.85749i −0.0166861 0.366137i
\(112\) 6.59453 + 11.2677i 0.623125 + 1.06470i
\(113\) −0.0878943 0.241488i −0.00826840 0.0227173i 0.935490 0.353354i \(-0.114959\pi\)
−0.943758 + 0.330637i \(0.892737\pi\)
\(114\) 4.27848 13.6605i 0.400717 1.27942i
\(115\) 3.67268 + 4.37693i 0.342479 + 0.408151i
\(116\) 7.50668 + 4.33399i 0.696978 + 0.402400i
\(117\) −3.29180 0.275337i −0.304327 0.0254549i
\(118\) −12.6477 7.30213i −1.16431 0.672215i
\(119\) 0.663639 3.89827i 0.0608357 0.357353i
\(120\) 0.716187 5.52140i 0.0653787 0.504033i
\(121\) 3.12464 1.13728i 0.284058 0.103389i
\(122\) −3.31825 + 18.8187i −0.300420 + 1.70377i
\(123\) −4.10929 9.86738i −0.370522 0.889712i
\(124\) −4.95365 5.90353i −0.444851 0.530153i
\(125\) 5.11044 8.85154i 0.457092 0.791706i
\(126\) 11.6513 8.32839i 1.03798 0.741952i
\(127\) 4.98481 + 8.63395i 0.442331 + 0.766139i 0.997862 0.0653565i \(-0.0208185\pi\)
−0.555531 + 0.831496i \(0.687485\pi\)
\(128\) 3.41986 9.39598i 0.302275 0.830495i
\(129\) 12.8423 + 13.9613i 1.13070 + 1.22922i
\(130\) 3.64331 + 3.05710i 0.319539 + 0.268125i
\(131\) 1.82591 + 1.53212i 0.159530 + 0.133862i 0.719059 0.694949i \(-0.244573\pi\)
−0.559528 + 0.828811i \(0.689018\pi\)
\(132\) −8.22388 + 0.374790i −0.715797 + 0.0326213i
\(133\) 11.9465 + 2.03377i 1.03590 + 0.176351i
\(134\) 23.0158i 1.98827i
\(135\) −12.4296 0.471396i −1.06977 0.0405713i
\(136\) −1.73813 + 1.00351i −0.149043 + 0.0860500i
\(137\) 5.70203 15.6662i 0.487157 1.33845i −0.416086 0.909325i \(-0.636598\pi\)
0.903243 0.429129i \(-0.141179\pi\)
\(138\) 6.28373 4.02006i 0.534906 0.342210i
\(139\) 1.18654 + 0.209219i 0.100641 + 0.0177458i 0.223742 0.974648i \(-0.428173\pi\)
−0.123101 + 0.992394i \(0.539284\pi\)
\(140\) −7.95326 + 0.0470042i −0.672173 + 0.00397258i
\(141\) −7.78913 8.46784i −0.655963 0.713121i
\(142\) 18.5016 + 6.73404i 1.55262 + 0.565108i
\(143\) −2.08375 + 3.60917i −0.174252 + 0.301814i
\(144\) −14.3138 3.77687i −1.19282 0.314739i
\(145\) 14.3093 8.26149i 1.18832 0.686079i
\(146\) −8.34145 3.03604i −0.690343 0.251264i
\(147\) 8.31304 + 8.82572i 0.685648 + 0.727933i
\(148\) 2.14469 + 1.79961i 0.176293 + 0.147927i
\(149\) −1.04464 2.87013i −0.0855805 0.235130i 0.889519 0.456898i \(-0.151040\pi\)
−0.975100 + 0.221768i \(0.928817\pi\)
\(150\) 1.81330 + 1.38591i 0.148056 + 0.113159i
\(151\) 2.33876 + 13.2638i 0.190326 + 1.07939i 0.918920 + 0.394444i \(0.129063\pi\)
−0.728594 + 0.684945i \(0.759826\pi\)
\(152\) −3.07533 5.32662i −0.249442 0.432046i
\(153\) 2.58581 + 3.66308i 0.209050 + 0.296142i
\(154\) −3.24271 17.7753i −0.261305 1.43238i
\(155\) −14.4671 + 2.55093i −1.16202 + 0.204896i
\(156\) 1.76268 1.62140i 0.141127 0.129816i
\(157\) −6.31241 + 7.52284i −0.503785 + 0.600388i −0.956668 0.291182i \(-0.905951\pi\)
0.452882 + 0.891570i \(0.350396\pi\)
\(158\) −5.62999 15.4683i −0.447898 1.23059i
\(159\) −9.58484 + 0.436814i −0.760127 + 0.0346416i
\(160\) 9.56791 + 11.4026i 0.756410 + 0.901454i
\(161\) 4.08776 + 4.81354i 0.322161 + 0.379360i
\(162\) −2.69776 + 16.0138i −0.211956 + 1.25816i
\(163\) −8.50045 + 14.7232i −0.665806 + 1.15321i 0.313260 + 0.949667i \(0.398579\pi\)
−0.979066 + 0.203543i \(0.934754\pi\)
\(164\) 7.28237 + 2.65056i 0.568657 + 0.206974i
\(165\) −7.21950 + 13.9334i −0.562038 + 1.08471i
\(166\) −14.5431 + 17.3318i −1.12876 + 1.34521i
\(167\) −2.04590 + 0.744647i −0.158317 + 0.0576225i −0.419963 0.907541i \(-0.637957\pi\)
0.261646 + 0.965164i \(0.415735\pi\)
\(168\) 0.755489 6.10711i 0.0582872 0.471174i
\(169\) 2.04689 + 11.6085i 0.157453 + 0.892962i
\(170\) 6.45567i 0.495128i
\(171\) −11.2258 + 7.92442i −0.858458 + 0.605996i
\(172\) −13.7535 −1.04869
\(173\) 2.53206 2.12465i 0.192509 0.161534i −0.541439 0.840740i \(-0.682120\pi\)
0.733948 + 0.679206i \(0.237676\pi\)
\(174\) −8.29326 19.9141i −0.628710 1.50968i
\(175\) −0.956144 + 1.67893i −0.0722777 + 0.126915i
\(176\) −12.0051 + 14.3072i −0.904921 + 1.07844i
\(177\) 5.38949 + 12.9415i 0.405099 + 0.972739i
\(178\) 11.9785 2.11213i 0.897825 0.158311i
\(179\) 17.8711i 1.33575i 0.744273 + 0.667876i \(0.232796\pi\)
−0.744273 + 0.667876i \(0.767204\pi\)
\(180\) 6.35252 6.40121i 0.473489 0.477118i
\(181\) 8.05480 4.65044i 0.598709 0.345665i −0.169825 0.985474i \(-0.554320\pi\)
0.768533 + 0.639810i \(0.220987\pi\)
\(182\) 4.04668 + 3.35501i 0.299960 + 0.248690i
\(183\) 13.5002 12.4182i 0.997966 0.917977i
\(184\) 0.556574 3.15649i 0.0410312 0.232700i
\(185\) 5.01497 1.82530i 0.368708 0.134199i
\(186\) 0.873155 + 19.1593i 0.0640229 + 1.40483i
\(187\) 5.57093 0.982305i 0.407387 0.0718332i
\(188\) 8.34178 0.608387
\(189\) −13.7407 0.439813i −0.999488 0.0319917i
\(190\) 19.7839 1.43528
\(191\) 11.2908 1.99087i 0.816972 0.144054i 0.250480 0.968122i \(-0.419411\pi\)
0.566492 + 0.824068i \(0.308300\pi\)
\(192\) 1.97083 1.26085i 0.142232 0.0909941i
\(193\) −3.20481 + 1.16646i −0.230688 + 0.0839634i −0.454778 0.890605i \(-0.650281\pi\)
0.224090 + 0.974568i \(0.428059\pi\)
\(194\) −5.19374 + 29.4552i −0.372889 + 2.11476i
\(195\) −0.996629 4.45524i −0.0713701 0.319047i
\(196\) −8.78991 + 0.103901i −0.627851 + 0.00742152i
\(197\) 8.74678 5.04996i 0.623182 0.359794i −0.154925 0.987926i \(-0.549513\pi\)
0.778107 + 0.628132i \(0.216180\pi\)
\(198\) 16.8275 + 11.6873i 1.19588 + 0.830578i
\(199\) 1.90128i 0.134778i −0.997727 0.0673891i \(-0.978533\pi\)
0.997727 0.0673891i \(-0.0214669\pi\)
\(200\) 0.965731 0.170284i 0.0682875 0.0120409i
\(201\) −13.4160 + 17.5534i −0.946294 + 1.23812i
\(202\) −19.9948 + 23.8288i −1.40683 + 1.67659i
\(203\) 15.7612 9.22434i 1.10622 0.647422i
\(204\) −3.22389 0.418175i −0.225717 0.0292781i
\(205\) 11.3165 9.49566i 0.790377 0.663205i
\(206\) −1.04965 −0.0731327
\(207\) −7.13569 0.596853i −0.495965 0.0414841i
\(208\) 5.43345i 0.376742i
\(209\) 3.01035 + 17.0725i 0.208230 + 1.18093i
\(210\) 15.7971 + 11.9264i 1.09010 + 0.823003i
\(211\) −13.6052 + 4.95189i −0.936621 + 0.340902i −0.764831 0.644231i \(-0.777177\pi\)
−0.171791 + 0.985134i \(0.554955\pi\)
\(212\) 4.47156 5.32900i 0.307108 0.365997i
\(213\) −10.1853 15.9205i −0.697882 1.09085i
\(214\) −29.1923 10.6251i −1.99555 0.726319i
\(215\) −13.1085 + 22.7046i −0.893991 + 1.54844i
\(216\) 4.27932 + 5.51129i 0.291171 + 0.374996i
\(217\) −15.9728 + 2.91388i −1.08431 + 0.197807i
\(218\) −14.7812 17.6155i −1.00111 1.19307i
\(219\) 4.59201 + 7.17775i 0.310299 + 0.485027i
\(220\) −3.89140 10.6915i −0.262358 0.720822i
\(221\) −1.05784 + 1.26068i −0.0711580 + 0.0848028i
\(222\) −1.52105 6.79956i −0.102086 0.456356i
\(223\) 7.63082 1.34552i 0.510998 0.0901027i 0.0877965 0.996138i \(-0.472017\pi\)
0.423201 + 0.906036i \(0.360906\pi\)
\(224\) 10.6493 + 12.5400i 0.711533 + 0.837866i
\(225\) −0.575093 2.11396i −0.0383396 0.140931i
\(226\) −0.231850 0.401576i −0.0154224 0.0267125i
\(227\) −1.71288 9.71421i −0.113688 0.644754i −0.987392 0.158297i \(-0.949400\pi\)
0.873704 0.486458i \(-0.161711\pi\)
\(228\) 1.28153 9.87987i 0.0848714 0.654310i
\(229\) −2.85254 7.83730i −0.188501 0.517903i 0.809058 0.587729i \(-0.199978\pi\)
−0.997559 + 0.0698259i \(0.977756\pi\)
\(230\) 7.89765 + 6.62692i 0.520756 + 0.436966i
\(231\) −7.88823 + 15.4468i −0.519007 + 1.01633i
\(232\) −8.70986 3.17013i −0.571830 0.208129i
\(233\) 1.21130 0.699342i 0.0793546 0.0458154i −0.459798 0.888024i \(-0.652078\pi\)
0.539152 + 0.842208i \(0.318745\pi\)
\(234\) −5.93570 + 0.542146i −0.388029 + 0.0354412i
\(235\) 7.95060 13.7708i 0.518640 0.898310i
\(236\) −9.55111 3.47632i −0.621724 0.226289i
\(237\) −4.72272 + 15.0789i −0.306774 + 0.979477i
\(238\) −0.0421684 7.13503i −0.00273337 0.462495i
\(239\) −2.22752 0.392772i −0.144086 0.0254063i 0.101140 0.994872i \(-0.467751\pi\)
−0.245226 + 0.969466i \(0.578862\pi\)
\(240\) −0.931448 20.4384i −0.0601247 1.31929i
\(241\) 10.2522 28.1677i 0.660403 1.81444i 0.0853116 0.996354i \(-0.472811\pi\)
0.575092 0.818089i \(-0.304966\pi\)
\(242\) 5.19604 2.99994i 0.334014 0.192843i
\(243\) 11.3920 10.6406i 0.730796 0.682596i
\(244\) 13.2993i 0.851397i
\(245\) −8.20618 + 14.6096i −0.524274 + 0.933376i
\(246\) −10.3938 16.2465i −0.662684 1.03584i
\(247\) −3.86347 3.24184i −0.245827 0.206273i
\(248\) 6.31277 + 5.29704i 0.400861 + 0.336362i
\(249\) 21.1943 4.74111i 1.34313 0.300456i
\(250\) 6.30766 17.3301i 0.398931 1.09605i
\(251\) −13.0913 22.6747i −0.826314 1.43122i −0.900911 0.434004i \(-0.857101\pi\)
0.0745974 0.997214i \(-0.476233\pi\)
\(252\) 6.97921 7.11632i 0.439649 0.448286i
\(253\) −4.51698 + 7.82365i −0.283980 + 0.491868i
\(254\) 11.5631 + 13.7804i 0.725534 + 0.864657i
\(255\) −3.76304 + 4.92352i −0.235651 + 0.308323i
\(256\) 3.60208 20.4284i 0.225130 1.27678i
\(257\) −4.65885 + 1.69568i −0.290611 + 0.105774i −0.483212 0.875503i \(-0.660530\pi\)
0.192601 + 0.981277i \(0.438308\pi\)
\(258\) 27.1948 + 20.7849i 1.69307 + 1.29401i
\(259\) 5.53079 2.05014i 0.343666 0.127389i
\(260\) 2.86656 + 1.65501i 0.177776 + 0.102639i
\(261\) −5.28303 + 20.0220i −0.327012 + 1.23933i
\(262\) 3.72463 + 2.15042i 0.230109 + 0.132853i
\(263\) −3.02036 3.59952i −0.186243 0.221956i 0.664841 0.746985i \(-0.268499\pi\)
−0.851085 + 0.525028i \(0.824055\pi\)
\(264\) 8.59076 1.92174i 0.528725 0.118275i
\(265\) −4.53538 12.4609i −0.278606 0.765464i
\(266\) 21.8659 0.129228i 1.34068 0.00792350i
\(267\) −10.3667 5.37146i −0.634434 0.328728i
\(268\) −2.78154 15.7749i −0.169910 0.963606i
\(269\) 1.02453 + 1.77454i 0.0624668 + 0.108196i 0.895567 0.444926i \(-0.146770\pi\)
−0.833101 + 0.553121i \(0.813437\pi\)
\(270\) −22.2347 + 3.05688i −1.35316 + 0.186036i
\(271\) 7.55251 + 4.36045i 0.458783 + 0.264878i 0.711532 0.702653i \(-0.248002\pi\)
−0.252750 + 0.967532i \(0.581335\pi\)
\(272\) −5.64975 + 4.74071i −0.342567 + 0.287448i
\(273\) −1.13061 4.91757i −0.0684276 0.297625i
\(274\) 5.22368 29.6249i 0.315574 1.78971i
\(275\) −2.72196 0.479955i −0.164140 0.0289424i
\(276\) 3.82099 3.51473i 0.229996 0.211562i
\(277\) 6.02699 5.05724i 0.362127 0.303860i −0.443511 0.896269i \(-0.646267\pi\)
0.805638 + 0.592409i \(0.201823\pi\)
\(278\) 2.17400 0.130388
\(279\) 10.5021 15.1211i 0.628745 0.905277i
\(280\) 8.36665 1.52630i 0.500003 0.0912141i
\(281\) −2.69517 + 7.40491i −0.160780 + 0.441740i −0.993757 0.111568i \(-0.964413\pi\)
0.832977 + 0.553308i \(0.186635\pi\)
\(282\) −16.4942 12.6065i −0.982218 0.750708i
\(283\) 14.0878 + 2.48405i 0.837431 + 0.147662i 0.575886 0.817530i \(-0.304657\pi\)
0.261545 + 0.965191i \(0.415768\pi\)
\(284\) 13.4947 + 2.37949i 0.800765 + 0.141196i
\(285\) −15.0885 11.5321i −0.893766 0.683105i
\(286\) −2.57191 + 7.06627i −0.152080 + 0.417837i
\(287\) 12.4453 10.5688i 0.734625 0.623859i
\(288\) −18.5896 1.55489i −1.09540 0.0916230i
\(289\) −14.7662 −0.868598
\(290\) 22.8386 19.1639i 1.34113 1.12534i
\(291\) 21.1306 19.4370i 1.23870 1.13942i
\(292\) −6.08409 1.07279i −0.356044 0.0627802i
\(293\) 2.01529 11.4293i 0.117735 0.667706i −0.867625 0.497219i \(-0.834355\pi\)
0.985360 0.170487i \(-0.0545342\pi\)
\(294\) 17.5373 + 13.0783i 1.02280 + 0.762743i
\(295\) −14.8420 + 12.4539i −0.864135 + 0.725095i
\(296\) −2.59269 1.49689i −0.150697 0.0870048i
\(297\) −6.02120 18.7223i −0.349385 1.08638i
\(298\) −2.75559 4.77282i −0.159627 0.276482i
\(299\) −0.456379 2.58825i −0.0263931 0.149682i
\(300\) 1.41032 + 0.730747i 0.0814247 + 0.0421897i
\(301\) −14.3396 + 25.1795i −0.826522 + 1.45132i
\(302\) 8.31180 + 22.8365i 0.478290 + 1.31409i
\(303\) 29.1392 6.51839i 1.67401 0.374472i
\(304\) −14.5283 17.3141i −0.833254 0.993033i
\(305\) 21.9548 + 12.6756i 1.25713 + 0.725802i
\(306\) 5.74265 + 5.69897i 0.328285 + 0.325788i
\(307\) 9.87025 + 5.69859i 0.563325 + 0.325236i 0.754479 0.656324i \(-0.227890\pi\)
−0.191154 + 0.981560i \(0.561223\pi\)
\(308\) −4.37074 11.7912i −0.249046 0.671867i
\(309\) 0.800533 + 0.611847i 0.0455408 + 0.0348068i
\(310\) −24.9082 + 9.06585i −1.41469 + 0.514906i
\(311\) 2.50796 14.2233i 0.142213 0.806531i −0.827349 0.561687i \(-0.810152\pi\)
0.969563 0.244843i \(-0.0787365\pi\)
\(312\) −1.55516 + 2.03476i −0.0880438 + 0.115196i
\(313\) −4.98081 5.93590i −0.281532 0.335517i 0.606684 0.794943i \(-0.292499\pi\)
−0.888216 + 0.459426i \(0.848055\pi\)
\(314\) −8.85984 + 15.3457i −0.499990 + 0.866008i
\(315\) −5.09590 18.3041i −0.287121 1.03132i
\(316\) −5.72815 9.92145i −0.322234 0.558125i
\(317\) 7.44495 20.4548i 0.418150 1.14886i −0.534600 0.845105i \(-0.679538\pi\)
0.952751 0.303753i \(-0.0982399\pi\)
\(318\) −16.8951 + 3.77940i −0.947430 + 0.211938i
\(319\) 20.0127 + 16.7926i 1.12049 + 0.940206i
\(320\) 2.47702 + 2.07847i 0.138470 + 0.116190i
\(321\) 16.0705 + 25.1197i 0.896969 + 1.40205i
\(322\) 8.77204 + 7.27270i 0.488847 + 0.405292i
\(323\) 6.84578i 0.380910i
\(324\) 0.0862885 + 11.3018i 0.00479381 + 0.627876i
\(325\) 0.696366 0.402047i 0.0386274 0.0223016i
\(326\) −10.4918 + 28.8261i −0.581089 + 1.59653i
\(327\) 1.00493 + 22.0508i 0.0555728 + 1.21941i
\(328\) −8.16105 1.43901i −0.450619 0.0794562i
\(329\) 8.69732 15.2719i 0.479499 0.841968i
\(330\) −8.46311 + 27.0213i −0.465879 + 1.48747i
\(331\) −11.7970 4.29376i −0.648422 0.236006i −0.00319226 0.999995i \(-0.501016\pi\)
−0.645230 + 0.763989i \(0.723238\pi\)
\(332\) −7.87313 + 13.6367i −0.432094 + 0.748409i
\(333\) −2.80344 + 6.07241i −0.153628 + 0.332766i
\(334\) −3.40218 + 1.96425i −0.186159 + 0.107479i
\(335\) −28.6927 10.4433i −1.56765 0.570578i
\(336\) −1.16297 22.5831i −0.0634453 1.23201i
\(337\) −15.1651 12.7250i −0.826096 0.693177i 0.128295 0.991736i \(-0.459049\pi\)
−0.954391 + 0.298559i \(0.903494\pi\)
\(338\) 7.27452 + 19.9866i 0.395682 + 1.08713i
\(339\) −0.0572564 + 0.441415i −0.00310974 + 0.0239744i
\(340\) −0.780190 4.42468i −0.0423117 0.239962i
\(341\) −11.6135 20.1151i −0.628904 1.08929i
\(342\) −17.4649 + 17.5988i −0.944396 + 0.951634i
\(343\) −8.97432 + 16.2007i −0.484568 + 0.874754i
\(344\) 14.4834 2.55382i 0.780893 0.137693i
\(345\) −2.16041 9.65769i −0.116312 0.519953i
\(346\) 3.83367 4.56879i 0.206100 0.245620i
\(347\) −7.19368 19.7645i −0.386177 1.06101i −0.968708 0.248204i \(-0.920160\pi\)
0.582531 0.812809i \(-0.302063\pi\)
\(348\) −8.09083 12.6467i −0.433714 0.677936i
\(349\) 6.46292 + 7.70220i 0.345952 + 0.412290i 0.910762 0.412931i \(-0.135495\pi\)
−0.564810 + 0.825221i \(0.691051\pi\)
\(350\) −1.17298 + 3.28298i −0.0626986 + 0.175483i
\(351\) 4.84297 + 3.04647i 0.258499 + 0.162608i
\(352\) −11.7674 + 20.3818i −0.627207 + 1.08635i
\(353\) 12.6941 + 4.62027i 0.675638 + 0.245912i 0.656974 0.753914i \(-0.271836\pi\)
0.0186646 + 0.999826i \(0.494059\pi\)
\(354\) 13.6319 + 21.3079i 0.724525 + 1.13250i
\(355\) 16.7900 20.0096i 0.891121 1.06200i
\(356\) 7.95471 2.89528i 0.421599 0.153449i
\(357\) −4.12688 + 5.46622i −0.218418 + 0.289303i
\(358\) 5.59952 + 31.7564i 0.295944 + 1.67838i
\(359\) 22.1365i 1.16832i 0.811639 + 0.584159i \(0.198576\pi\)
−0.811639 + 0.584159i \(0.801424\pi\)
\(360\) −5.50107 + 7.92052i −0.289932 + 0.417448i
\(361\) −1.97945 −0.104181
\(362\) 12.8560 10.7875i 0.675697 0.566977i
\(363\) −5.71152 0.740848i −0.299777 0.0388844i
\(364\) 3.17903 + 1.81045i 0.166626 + 0.0948932i
\(365\) −7.56976 + 9.02129i −0.396220 + 0.472196i
\(366\) 20.0985 26.2967i 1.05057 1.37455i
\(367\) 35.1182 6.19229i 1.83316 0.323235i 0.853069 0.521798i \(-0.174738\pi\)
0.980088 + 0.198562i \(0.0636272\pi\)
\(368\) 11.7782i 0.613980i
\(369\) −1.54315 + 18.4492i −0.0803333 + 0.960427i
\(370\) 8.33952 4.81482i 0.433551 0.250311i
\(371\) −5.09405 13.7425i −0.264470 0.713477i
\(372\) 2.91392 + 13.0261i 0.151080 + 0.675374i
\(373\) 4.68630 26.5773i 0.242647 1.37612i −0.583246 0.812295i \(-0.698218\pi\)
0.825894 0.563826i \(-0.190671\pi\)
\(374\) 9.59158 3.49105i 0.495969 0.180518i
\(375\) −14.9124 + 9.54034i −0.770075 + 0.492661i
\(376\) −8.78452 + 1.54895i −0.453027 + 0.0798809i
\(377\) −7.60024 −0.391432
\(378\) −24.5546 + 3.52380i −1.26295 + 0.181245i
\(379\) −13.4068 −0.688664 −0.344332 0.938848i \(-0.611895\pi\)
−0.344332 + 0.938848i \(0.611895\pi\)
\(380\) 13.5598 2.39095i 0.695602 0.122653i
\(381\) −0.786142 17.2500i −0.0402753 0.883744i
\(382\) 19.4395 7.07542i 0.994614 0.362010i
\(383\) 0.596375 3.38221i 0.0304734 0.172823i −0.965773 0.259390i \(-0.916479\pi\)
0.996246 + 0.0865669i \(0.0275896\pi\)
\(384\) −12.7464 + 11.7247i −0.650461 + 0.598325i
\(385\) −23.6310 4.02293i −1.20435 0.205028i
\(386\) −5.32937 + 3.07691i −0.271258 + 0.156611i
\(387\) −8.62488 31.7039i −0.438427 1.61160i
\(388\) 20.8161i 1.05678i
\(389\) −16.6440 + 2.93479i −0.843886 + 0.148800i −0.578845 0.815437i \(-0.696496\pi\)
−0.265040 + 0.964237i \(0.585385\pi\)
\(390\) −3.16693 7.60455i −0.160364 0.385071i
\(391\) −2.29310 + 2.73281i −0.115967 + 0.138204i
\(392\) 9.23714 1.74157i 0.466546 0.0879628i
\(393\) −1.58716 3.81116i −0.0800617 0.192247i
\(394\) 13.9605 11.7142i 0.703318 0.590154i
\(395\) −21.8381 −1.09880
\(396\) 12.9459 + 5.97672i 0.650557 + 0.300341i
\(397\) 24.3411i 1.22165i 0.791767 + 0.610823i \(0.209161\pi\)
−0.791767 + 0.610823i \(0.790839\pi\)
\(398\) −0.595723 3.37851i −0.0298609 0.169350i
\(399\) −16.7517 12.6471i −0.838632 0.633149i
\(400\) 3.38622 1.23248i 0.169311 0.0616242i
\(401\) 1.60393 1.91149i 0.0800964 0.0954552i −0.724508 0.689266i \(-0.757933\pi\)
0.804604 + 0.593811i \(0.202377\pi\)
\(402\) −18.3399 + 35.3954i −0.914711 + 1.76536i
\(403\) 6.34971 + 2.31110i 0.316301 + 0.115124i
\(404\) −10.8245 + 18.7486i −0.538538 + 0.932776i
\(405\) 18.7395 + 10.6293i 0.931173 + 0.528175i
\(406\) 25.1169 21.3298i 1.24653 1.05858i
\(407\) 5.42391 + 6.46396i 0.268853 + 0.320407i
\(408\) 3.47265 0.158260i 0.171922 0.00783506i
\(409\) −6.13986 16.8691i −0.303596 0.834124i −0.993868 0.110574i \(-0.964731\pi\)
0.690271 0.723551i \(-0.257491\pi\)
\(410\) 17.1338 20.4192i 0.846177 1.00843i
\(411\) −21.2524 + 19.5490i −1.04830 + 0.964282i
\(412\) −0.719425 + 0.126854i −0.0354435 + 0.00624965i
\(413\) −16.3225 + 13.8614i −0.803179 + 0.682077i
\(414\) −12.8669 + 1.17522i −0.632374 + 0.0577589i
\(415\) 15.0078 + 25.9943i 0.736706 + 1.27601i
\(416\) −1.18894 6.74280i −0.0582924 0.330593i
\(417\) −1.65804 1.26724i −0.0811944 0.0620568i
\(418\) 10.6986 + 29.3941i 0.523285 + 1.43771i
\(419\) 24.2558 + 20.3530i 1.18497 + 0.994311i 0.999933 + 0.0115796i \(0.00368598\pi\)
0.185040 + 0.982731i \(0.440758\pi\)
\(420\) 12.2686 + 6.26518i 0.598644 + 0.305709i
\(421\) 4.59828 + 1.67364i 0.224106 + 0.0815680i 0.451633 0.892204i \(-0.350842\pi\)
−0.227527 + 0.973772i \(0.573064\pi\)
\(422\) −22.6245 + 13.0622i −1.10134 + 0.635860i
\(423\) 5.23119 + 19.2291i 0.254349 + 0.934953i
\(424\) −3.71937 + 6.44213i −0.180628 + 0.312858i
\(425\) −1.02563 0.373300i −0.0497505 0.0181077i
\(426\) −23.0872 25.0989i −1.11858 1.21605i
\(427\) 24.3479 + 13.8661i 1.17828 + 0.671026i
\(428\) −21.2923 3.75441i −1.02920 0.181476i
\(429\) 6.08047 3.89002i 0.293568 0.187812i
\(430\) −16.1794 + 44.4525i −0.780240 + 2.14369i
\(431\) 17.1414 9.89662i 0.825674 0.476703i −0.0266950 0.999644i \(-0.508498\pi\)
0.852369 + 0.522940i \(0.175165\pi\)
\(432\) 19.0033 + 17.2141i 0.914294 + 0.828215i
\(433\) 13.0576i 0.627507i −0.949504 0.313754i \(-0.898413\pi\)
0.949504 0.313754i \(-0.101587\pi\)
\(434\) −27.4702 + 10.1826i −1.31861 + 0.488780i
\(435\) −28.5890 + 1.30290i −1.37074 + 0.0624691i
\(436\) −12.2598 10.2872i −0.587139 0.492668i
\(437\) −8.37490 7.02737i −0.400626 0.336165i
\(438\) 10.4088 + 11.3158i 0.497354 + 0.540691i
\(439\) 8.14121 22.3678i 0.388559 1.06756i −0.579092 0.815262i \(-0.696593\pi\)
0.967651 0.252294i \(-0.0811851\pi\)
\(440\) 6.08319 + 10.5364i 0.290005 + 0.502303i
\(441\) −5.75172 20.1970i −0.273891 0.961761i
\(442\) −1.48474 + 2.57165i −0.0706219 + 0.122321i
\(443\) 19.5285 + 23.2732i 0.927828 + 1.10574i 0.994157 + 0.107945i \(0.0344270\pi\)
−0.0663286 + 0.997798i \(0.521129\pi\)
\(444\) −1.86426 4.47655i −0.0884741 0.212448i
\(445\) 2.80207 15.8914i 0.132831 0.753322i
\(446\) 13.1381 4.78189i 0.622109 0.226429i
\(447\) −0.680505 + 5.24631i −0.0321868 + 0.248142i
\(448\) 2.75126 + 2.28101i 0.129985 + 0.107768i
\(449\) 14.2542 + 8.22965i 0.672696 + 0.388381i 0.797097 0.603851i \(-0.206368\pi\)
−0.124401 + 0.992232i \(0.539701\pi\)
\(450\) −1.68429 3.57625i −0.0793980 0.168586i
\(451\) 20.2279 + 11.6786i 0.952494 + 0.549923i
\(452\) −0.207440 0.247218i −0.00975718 0.0116281i
\(453\) 6.97236 22.2616i 0.327590 1.04594i
\(454\) −6.08745 16.7251i −0.285698 0.784950i
\(455\) 6.01868 3.52248i 0.282160 0.165136i
\(456\) 0.485002 + 10.6422i 0.0227123 + 0.498367i
\(457\) −1.31526 7.45922i −0.0615254 0.348928i −0.999994 0.00356224i \(-0.998866\pi\)
0.938468 0.345365i \(-0.112245\pi\)
\(458\) −7.52452 13.0328i −0.351598 0.608985i
\(459\) −1.05776 7.69382i −0.0493722 0.359117i
\(460\) 6.21388 + 3.58759i 0.289724 + 0.167272i
\(461\) −1.38722 + 1.16401i −0.0646091 + 0.0542135i −0.674520 0.738256i \(-0.735650\pi\)
0.609911 + 0.792470i \(0.291205\pi\)
\(462\) −9.17721 + 29.9201i −0.426962 + 1.39201i
\(463\) 4.09497 23.2237i 0.190309 1.07930i −0.728632 0.684905i \(-0.759844\pi\)
0.918942 0.394393i \(-0.129045\pi\)
\(464\) −33.5430 5.91454i −1.55719 0.274575i
\(465\) 24.2812 + 7.60490i 1.12601 + 0.352669i
\(466\) 1.93331 1.62224i 0.0895588 0.0751488i
\(467\) −24.2799 −1.12354 −0.561770 0.827293i \(-0.689879\pi\)
−0.561770 + 0.827293i \(0.689879\pi\)
\(468\) −4.00277 + 1.08893i −0.185028 + 0.0503359i
\(469\) −31.7804 11.3549i −1.46748 0.524319i
\(470\) 9.81317 26.9615i 0.452648 1.24364i
\(471\) 15.7022 6.53919i 0.723517 0.301310i
\(472\) 10.7035 + 1.88732i 0.492670 + 0.0868710i
\(473\) −40.8222 7.19806i −1.87701 0.330967i
\(474\) −3.66751 + 28.2744i −0.168454 + 1.29869i
\(475\) 1.14401 3.14314i 0.0524907 0.144217i
\(476\) −0.891194 4.88521i −0.0408478 0.223913i
\(477\) 15.0883 + 6.96580i 0.690847 + 0.318942i
\(478\) −4.08130 −0.186674
\(479\) −18.2114 + 15.2812i −0.832100 + 0.698215i −0.955772 0.294108i \(-0.904977\pi\)
0.123672 + 0.992323i \(0.460533\pi\)
\(480\) −5.62820 25.1598i −0.256891 1.14838i
\(481\) −2.41753 0.426277i −0.110230 0.0194365i
\(482\) 9.39214 53.2655i 0.427800 2.42618i
\(483\) −2.45084 10.6599i −0.111517 0.485042i
\(484\) 3.19878 2.68410i 0.145399 0.122004i
\(485\) 34.3637 + 19.8399i 1.56037 + 0.900883i
\(486\) 16.9092 22.4774i 0.767017 1.01960i
\(487\) 1.83891 + 3.18509i 0.0833291 + 0.144330i 0.904678 0.426096i \(-0.140111\pi\)
−0.821349 + 0.570426i \(0.806778\pi\)
\(488\) −2.46948 14.0051i −0.111788 0.633981i
\(489\) 24.8046 15.8689i 1.12170 0.717617i
\(490\) −10.0045 + 28.5321i −0.451958 + 1.28895i
\(491\) −7.30505 20.0705i −0.329672 0.905768i −0.988194 0.153206i \(-0.951040\pi\)
0.658522 0.752562i \(-0.271182\pi\)
\(492\) −9.08727 9.87910i −0.409686 0.445384i
\(493\) 6.63124 + 7.90280i 0.298656 + 0.355924i
\(494\) −7.88102 4.55011i −0.354584 0.204719i
\(495\) 22.2053 15.6750i 0.998056 0.704539i
\(496\) 26.2254 + 15.1412i 1.17755 + 0.679861i
\(497\) 18.4262 22.2249i 0.826527 0.996923i
\(498\) 36.1760 15.0655i 1.62109 0.675103i
\(499\) −30.3837 + 11.0587i −1.36016 + 0.495058i −0.916104 0.400941i \(-0.868683\pi\)
−0.444056 + 0.895999i \(0.646461\pi\)
\(500\) 2.22882 12.6403i 0.0996759 0.565290i
\(501\) 3.73970 + 0.485081i 0.167077 + 0.0216718i
\(502\) −30.3674 36.1904i −1.35536 1.61526i
\(503\) −15.6646 + 27.1319i −0.698451 + 1.20975i 0.270553 + 0.962705i \(0.412794\pi\)
−0.969003 + 0.247047i \(0.920540\pi\)
\(504\) −6.02823 + 8.78996i −0.268519 + 0.391536i
\(505\) 20.6337 + 35.7387i 0.918190 + 1.59035i
\(506\) −5.57517 + 15.3177i −0.247847 + 0.680953i
\(507\) 6.10224 19.4834i 0.271010 0.865289i
\(508\) 9.59068 + 8.04754i 0.425518 + 0.357052i
\(509\) 10.9098 + 9.15444i 0.483570 + 0.405764i 0.851715 0.524005i \(-0.175563\pi\)
−0.368145 + 0.929768i \(0.620007\pi\)
\(510\) −5.14413 + 9.92800i −0.227786 + 0.439619i
\(511\) −8.30743 + 10.0201i −0.367499 + 0.443262i
\(512\) 17.4313i 0.770362i
\(513\) 23.5783 3.24160i 1.04101 0.143120i
\(514\) −7.74732 + 4.47292i −0.341720 + 0.197292i
\(515\) −0.476274 + 1.30855i −0.0209871 + 0.0576616i
\(516\) 21.1510 + 10.9593i 0.931123 + 0.482455i
\(517\) 24.7596 + 4.36579i 1.08893 + 0.192007i
\(518\) 9.18566 5.37598i 0.403595 0.236207i
\(519\) −5.58698 + 1.24980i −0.245241 + 0.0548600i
\(520\) −3.32601 1.21057i −0.145855 0.0530870i
\(521\) 10.2319 17.7222i 0.448269 0.776426i −0.550004 0.835162i \(-0.685374\pi\)
0.998274 + 0.0587365i \(0.0187072\pi\)
\(522\) −3.11435 + 37.2337i −0.136311 + 1.62968i
\(523\) 23.2641 13.4315i 1.01727 0.587319i 0.103955 0.994582i \(-0.466850\pi\)
0.913311 + 0.407263i \(0.133517\pi\)
\(524\) 2.81273 + 1.02375i 0.122874 + 0.0447227i
\(525\) 2.80826 1.82008i 0.122562 0.0794349i
\(526\) −6.49491 5.44988i −0.283192 0.237626i
\(527\) −3.13703 8.61893i −0.136651 0.375447i
\(528\) 29.8628 12.4364i 1.29961 0.541226i
\(529\) 3.00461 + 17.0400i 0.130635 + 0.740869i
\(530\) −11.9636 20.7215i −0.519664 0.900084i
\(531\) 2.02390 24.1968i 0.0878299 1.05005i
\(532\) 14.9711 2.73113i 0.649079 0.118410i
\(533\) −6.69188 + 1.17996i −0.289857 + 0.0511097i
\(534\) −20.1044 6.29672i −0.870002 0.272486i
\(535\) −26.4917 + 31.5715i −1.14533 + 1.36496i
\(536\) 5.85834 + 16.0957i 0.253042 + 0.695227i
\(537\) 14.2404 27.4835i 0.614519 1.18600i
\(538\) 2.37657 + 2.83229i 0.102461 + 0.122109i
\(539\) −26.1441 4.29192i −1.12611 0.184866i
\(540\) −14.8701 + 4.78230i −0.639906 + 0.205798i
\(541\) −2.45115 + 4.24551i −0.105383 + 0.182529i −0.913895 0.405951i \(-0.866940\pi\)
0.808512 + 0.588480i \(0.200274\pi\)
\(542\) 14.7868 + 5.38196i 0.635148 + 0.231175i
\(543\) −16.0929 + 0.733409i −0.690613 + 0.0314736i
\(544\) −5.97387 + 7.11938i −0.256128 + 0.305241i
\(545\) −28.6673 + 10.4340i −1.22797 + 0.446946i
\(546\) −3.54987 8.38412i −0.151920 0.358807i
\(547\) −2.09851 11.9012i −0.0897257 0.508860i −0.996236 0.0866771i \(-0.972375\pi\)
0.906511 0.422183i \(-0.138736\pi\)
\(548\) 20.9360i 0.894343i
\(549\) −30.6569 + 8.34005i −1.30840 + 0.355945i
\(550\) −4.98722 −0.212656
\(551\) −24.2188 + 20.3220i −1.03175 + 0.865744i
\(552\) −3.37115 + 4.41078i −0.143486 + 0.187735i
\(553\) −24.1362 + 0.142646i −1.02638 + 0.00606594i
\(554\) 9.12519 10.8750i 0.387692 0.462034i
\(555\) −9.16684 1.18904i −0.389111 0.0504720i
\(556\) 1.49005 0.262735i 0.0631921 0.0111425i
\(557\) 12.0873i 0.512154i 0.966656 + 0.256077i \(0.0824300\pi\)
−0.966656 + 0.256077i \(0.917570\pi\)
\(558\) 13.9241 30.1603i 0.589453 1.27679i
\(559\) 10.4436 6.02964i 0.441719 0.255027i
\(560\) 29.3041 10.8624i 1.23833 0.459020i
\(561\) −9.35011 2.92847i −0.394762 0.123640i
\(562\) −2.46906 + 14.0028i −0.104151 + 0.590671i
\(563\) −14.5581 + 5.29871i −0.613550 + 0.223314i −0.630056 0.776550i \(-0.716968\pi\)
0.0165057 + 0.999864i \(0.494746\pi\)
\(564\) −12.8286 6.64705i −0.540181 0.279891i
\(565\) −0.605826 + 0.106823i −0.0254873 + 0.00449410i
\(566\) 25.8118 1.08495
\(567\) 20.7810 + 11.6255i 0.872718 + 0.488224i
\(568\) −14.6528 −0.614818
\(569\) 10.4955 1.85063i 0.439993 0.0775826i 0.0507365 0.998712i \(-0.483843\pi\)
0.389256 + 0.921129i \(0.372732\pi\)
\(570\) −30.4251 15.7646i −1.27437 0.660306i
\(571\) −41.3091 + 15.0353i −1.72873 + 0.629206i −0.998539 0.0540359i \(-0.982791\pi\)
−0.730192 + 0.683242i \(0.760569\pi\)
\(572\) −0.908789 + 5.15400i −0.0379984 + 0.215500i
\(573\) −18.9502 5.93522i −0.791654 0.247947i
\(574\) 18.8034 22.6799i 0.784841 0.946643i
\(575\) 1.50952 0.871523i 0.0629514 0.0363450i
\(576\) −4.03558 + 0.368596i −0.168149 + 0.0153582i
\(577\) 3.59947i 0.149848i 0.997189 + 0.0749240i \(0.0238714\pi\)
−0.997189 + 0.0749240i \(0.976129\pi\)
\(578\) −26.2390 + 4.62664i −1.09140 + 0.192443i
\(579\) 5.85807 + 0.759857i 0.243453 + 0.0315786i
\(580\) 13.3374 15.8949i 0.553807 0.660001i
\(581\) 16.7570 + 28.6318i 0.695196 + 1.18785i
\(582\) 31.4583 41.1597i 1.30399 1.70612i
\(583\) 16.0612 13.4770i 0.665188 0.558159i
\(584\) 6.60620 0.273367
\(585\) −2.01742 + 7.64574i −0.0834100 + 0.316113i
\(586\) 20.9409i 0.865061i
\(587\) 2.65468 + 15.0555i 0.109570 + 0.621405i 0.989296 + 0.145923i \(0.0466152\pi\)
−0.879725 + 0.475482i \(0.842274\pi\)
\(588\) 13.6005 + 6.84435i 0.560877 + 0.282256i
\(589\) 26.4134 9.61369i 1.08835 0.396125i
\(590\) −22.4716 + 26.7806i −0.925142 + 1.10254i
\(591\) −17.4754 + 0.796415i −0.718843 + 0.0327601i
\(592\) −10.3378 3.76267i −0.424883 0.154645i
\(593\) 1.69979 2.94413i 0.0698021 0.120901i −0.829012 0.559231i \(-0.811097\pi\)
0.898814 + 0.438330i \(0.144430\pi\)
\(594\) −16.5657 31.3823i −0.679698 1.28763i
\(595\) −8.91403 3.18491i −0.365439 0.130568i
\(596\) −2.46547 2.93824i −0.100990 0.120355i
\(597\) −1.51501 + 2.92392i −0.0620053 + 0.119668i
\(598\) −1.62194 4.45624i −0.0663261 0.182229i
\(599\) −16.9192 + 20.1635i −0.691300 + 0.823859i −0.991512 0.130014i \(-0.958498\pi\)
0.300213 + 0.953872i \(0.402942\pi\)
\(600\) −1.62086 0.507656i −0.0661713 0.0207250i
\(601\) −14.3519 + 2.53063i −0.585427 + 0.103227i −0.458514 0.888687i \(-0.651618\pi\)
−0.126913 + 0.991914i \(0.540507\pi\)
\(602\) −17.5916 + 49.2361i −0.716982 + 2.00671i
\(603\) 34.6193 16.3044i 1.40981 0.663968i
\(604\) 8.45672 + 14.6475i 0.344099 + 0.595997i
\(605\) −1.38220 7.83886i −0.0561945 0.318695i
\(606\) 49.7371 20.7131i 2.02043 0.841412i
\(607\) 14.3278 + 39.3653i 0.581548 + 1.59779i 0.785536 + 0.618816i \(0.212387\pi\)
−0.203988 + 0.978973i \(0.565390\pi\)
\(608\) −21.8179 18.3074i −0.884833 0.742463i
\(609\) −31.5890 + 1.62675i −1.28005 + 0.0659192i
\(610\) 42.9845 + 15.6451i 1.74039 + 0.633451i
\(611\) −6.33431 + 3.65712i −0.256259 + 0.147951i
\(612\) 4.62471 + 3.21202i 0.186943 + 0.129838i
\(613\) −17.6908 + 30.6414i −0.714526 + 1.23760i 0.248616 + 0.968602i \(0.420024\pi\)
−0.963142 + 0.268994i \(0.913309\pi\)
\(614\) 19.3246 + 7.03360i 0.779879 + 0.283853i
\(615\) −24.9698 + 5.58569i −1.00688 + 0.225237i
\(616\) 6.79217 + 11.6054i 0.273664 + 0.467597i
\(617\) 6.35428 + 1.12043i 0.255814 + 0.0451068i 0.300084 0.953913i \(-0.402985\pi\)
−0.0442706 + 0.999020i \(0.514096\pi\)
\(618\) 1.61423 + 0.836403i 0.0649339 + 0.0336451i
\(619\) −14.8405 + 40.7739i −0.596489 + 1.63884i 0.161725 + 0.986836i \(0.448294\pi\)
−0.758215 + 0.652005i \(0.773928\pi\)
\(620\) −15.9763 + 9.22392i −0.641623 + 0.370441i
\(621\) 10.4982 + 6.60387i 0.421277 + 0.265004i
\(622\) 26.0602i 1.04492i
\(623\) 2.99314 17.5820i 0.119918 0.704406i
\(624\) −4.32958 + 8.35595i −0.173322 + 0.334506i
\(625\) −21.5397 18.0739i −0.861587 0.722957i
\(626\) −10.7106 8.98728i −0.428083 0.359204i
\(627\) 8.97453 28.6542i 0.358408 1.14434i
\(628\) −4.21790 + 11.5886i −0.168312 + 0.462435i
\(629\) 1.66606 + 2.88570i 0.0664302 + 0.115061i
\(630\) −14.7904 30.9290i −0.589264 1.23224i
\(631\) −0.281322 + 0.487265i −0.0111993 + 0.0193977i −0.871571 0.490270i \(-0.836898\pi\)
0.860371 + 0.509667i \(0.170232\pi\)
\(632\) 7.87444 + 9.38440i 0.313229 + 0.373291i
\(633\) 24.8689 + 3.22578i 0.988451 + 0.128213i
\(634\) 6.82038 38.6803i 0.270872 1.53619i
\(635\) 22.4260 8.16240i 0.889949 0.323915i
\(636\) −11.1230 + 4.63220i −0.441057 + 0.183679i
\(637\) 6.62904 3.93248i 0.262652 0.155810i
\(638\) 40.8234 + 23.5694i 1.61622 + 0.933122i
\(639\) 2.97754 + 32.5997i 0.117790 + 1.28962i
\(640\) −20.7288 11.9678i −0.819378 0.473068i
\(641\) −10.0886 12.0231i −0.398476 0.474885i 0.529079 0.848573i \(-0.322538\pi\)
−0.927555 + 0.373688i \(0.878093\pi\)
\(642\) 36.4275 + 39.6016i 1.43768 + 1.56295i
\(643\) −9.42832 25.9041i −0.371817 1.02156i −0.974659 0.223697i \(-0.928187\pi\)
0.602842 0.797860i \(-0.294035\pi\)
\(644\) 6.89123 + 3.92453i 0.271552 + 0.154648i
\(645\) 38.2510 24.4714i 1.50613 0.963559i
\(646\) 2.14497 + 12.1647i 0.0843928 + 0.478615i
\(647\) −7.73122 13.3909i −0.303945 0.526449i 0.673081 0.739569i \(-0.264971\pi\)
−0.977026 + 0.213120i \(0.931637\pi\)
\(648\) −2.18944 11.8856i −0.0860094 0.466910i
\(649\) −26.5297 15.3169i −1.04138 0.601241i
\(650\) 1.11145 0.932615i 0.0435945 0.0365802i
\(651\) 26.8860 + 8.24658i 1.05375 + 0.323209i
\(652\) −3.70731 + 21.0252i −0.145189 + 0.823410i
\(653\) 28.6076 + 5.04430i 1.11950 + 0.197399i 0.702623 0.711562i \(-0.252012\pi\)
0.416881 + 0.908961i \(0.363123\pi\)
\(654\) 8.69484 + 38.8687i 0.339995 + 1.51988i
\(655\) 4.37085 3.66758i 0.170783 0.143304i
\(656\) −30.4523 −1.18896
\(657\) −1.34242 14.6975i −0.0523729 0.573406i
\(658\) 10.6697 29.8628i 0.415950 1.16417i
\(659\) 4.45468 12.2391i 0.173530 0.476769i −0.822188 0.569216i \(-0.807247\pi\)
0.995718 + 0.0924471i \(0.0294689\pi\)
\(660\) −2.53495 + 19.5430i −0.0986727 + 0.760710i
\(661\) 14.9378 + 2.63393i 0.581012 + 0.102448i 0.456427 0.889761i \(-0.349129\pi\)
0.124585 + 0.992209i \(0.460240\pi\)
\(662\) −22.3082 3.93355i −0.867035 0.152882i
\(663\) 2.63138 1.09584i 0.102194 0.0425591i
\(664\) 5.75886 15.8223i 0.223487 0.614026i
\(665\) 9.76040 27.3177i 0.378492 1.05934i
\(666\) −3.07897 + 11.6689i −0.119308 + 0.452160i
\(667\) −16.4752 −0.637921
\(668\) −2.09445 + 1.75745i −0.0810366 + 0.0679978i
\(669\) −12.8074 4.01129i −0.495162 0.155086i
\(670\) −54.2582 9.56719i −2.09618 0.369613i
\(671\) −6.96035 + 39.4741i −0.268701 + 1.52388i
\(672\) −6.38482 27.7707i −0.246300 1.07128i
\(673\) −13.9965 + 11.7444i −0.539525 + 0.452715i −0.871375 0.490617i \(-0.836772\pi\)
0.331850 + 0.943332i \(0.392327\pi\)
\(674\) −30.9350 17.8603i −1.19157 0.687954i
\(675\) −0.800068 + 3.70926i −0.0307946 + 0.142770i
\(676\) 7.40136 + 12.8195i 0.284668 + 0.493059i
\(677\) −4.59060 26.0346i −0.176431 1.00059i −0.936479 0.350724i \(-0.885936\pi\)
0.760048 0.649867i \(-0.225176\pi\)
\(678\) 0.0365645 + 0.802320i 0.00140425 + 0.0308129i
\(679\) 38.1095 + 21.7032i 1.46251 + 0.832894i
\(680\) 1.64320 + 4.51465i 0.0630137 + 0.173129i
\(681\) −5.10647 + 16.3041i −0.195680 + 0.624774i
\(682\) −26.9393 32.1051i −1.03156 1.22937i
\(683\) 19.6327 + 11.3350i 0.751226 + 0.433721i 0.826137 0.563470i \(-0.190534\pi\)
−0.0749108 + 0.997190i \(0.523867\pi\)
\(684\) −9.84348 + 14.1728i −0.376375 + 0.541910i
\(685\) −34.5618 19.9542i −1.32054 0.762412i
\(686\) −10.8710 + 31.6000i −0.415055 + 1.20649i
\(687\) −1.85821 + 14.3258i −0.0708952 + 0.546562i
\(688\) 50.7844 18.4840i 1.93614 0.704696i
\(689\) −1.05918 + 6.00693i −0.0403517 + 0.228846i
\(690\) −6.86499 16.4845i −0.261346 0.627554i
\(691\) 6.00045 + 7.15106i 0.228268 + 0.272039i 0.868006 0.496554i \(-0.165402\pi\)
−0.639738 + 0.768593i \(0.720957\pi\)
\(692\) 2.07542 3.59473i 0.0788957 0.136651i
\(693\) 24.4397 17.4696i 0.928387 0.663615i
\(694\) −18.9757 32.8669i −0.720307 1.24761i
\(695\) 0.986440 2.71022i 0.0374178 0.102805i
\(696\) 10.8686 + 11.8156i 0.411972 + 0.447869i
\(697\) 7.06562 + 5.92876i 0.267629 + 0.224568i
\(698\) 13.8977 + 11.6616i 0.526036 + 0.441397i
\(699\) −2.42008 + 0.110291i −0.0915358 + 0.00417160i
\(700\) −0.407195 + 2.39190i −0.0153905 + 0.0904051i
\(701\) 9.65322i 0.364597i −0.983243 0.182299i \(-0.941646\pi\)
0.983243 0.182299i \(-0.0583537\pi\)
\(702\) 9.56034 + 3.89604i 0.360832 + 0.147047i
\(703\) −8.84347 + 5.10578i −0.333538 + 0.192568i
\(704\) −1.74860 + 4.80423i −0.0659027 + 0.181066i
\(705\) −23.2001 + 14.8424i −0.873767 + 0.558999i
\(706\) 24.0046 + 4.23267i 0.903427 + 0.159298i
\(707\) 23.0386 + 39.3648i 0.866454 + 1.48047i
\(708\) 11.9183 + 12.9568i 0.447918 + 0.486947i
\(709\) 8.90061 + 3.23956i 0.334269 + 0.121664i 0.503702 0.863878i \(-0.331971\pi\)
−0.169432 + 0.985542i \(0.554193\pi\)
\(710\) 23.5658 40.8171i 0.884408 1.53184i
\(711\) 19.2784 19.4261i 0.722995 0.728536i
\(712\) −7.83929 + 4.52602i −0.293790 + 0.169620i
\(713\) 13.7644 + 5.00982i 0.515479 + 0.187619i
\(714\) −5.62061 + 11.0064i −0.210346 + 0.411903i
\(715\) 7.64219 + 6.41256i 0.285802 + 0.239816i
\(716\) 7.67575 + 21.0889i 0.286856 + 0.788131i
\(717\) 3.11267 + 2.37901i 0.116245 + 0.0888456i
\(718\) 6.93596 + 39.3358i 0.258848 + 1.46800i
\(719\) 21.6490 + 37.4971i 0.807370 + 1.39841i 0.914679 + 0.404180i \(0.132443\pi\)
−0.107309 + 0.994226i \(0.534223\pi\)
\(720\) −14.8537 + 32.1739i −0.553563 + 1.19905i
\(721\) −0.517846 + 1.44937i −0.0192856 + 0.0539772i
\(722\) −3.51741 + 0.620215i −0.130905 + 0.0230820i
\(723\) −38.2117 + 35.1490i −1.42111 + 1.30721i
\(724\) 7.50773 8.94736i 0.279022 0.332526i
\(725\) −1.72398 4.73660i −0.0640271 0.175913i
\(726\) −10.3813 + 0.473112i −0.385287 + 0.0175588i
\(727\) −19.0569 22.7112i −0.706782 0.842310i 0.286494 0.958082i \(-0.407510\pi\)
−0.993276 + 0.115772i \(0.963066\pi\)
\(728\) −3.68393 1.31624i −0.136535 0.0487830i
\(729\) −25.9983 + 7.28632i −0.962898 + 0.269864i
\(730\) −10.6246 + 18.4024i −0.393234 + 0.681102i
\(731\) −15.3818 5.59852i −0.568916 0.207069i
\(732\) 10.5974 20.4525i 0.391689 0.755948i
\(733\) 14.2299 16.9585i 0.525593 0.626377i −0.436301 0.899801i \(-0.643712\pi\)
0.961894 + 0.273424i \(0.0881561\pi\)
\(734\) 60.4638 22.0070i 2.23176 0.812294i
\(735\) 24.2616 15.9287i 0.894902 0.587541i
\(736\) −2.57728 14.6165i −0.0949997 0.538770i
\(737\) 48.2779i 1.77834i
\(738\) 3.03851 + 33.2671i 0.111849 + 1.22458i
\(739\) 25.3543 0.932674 0.466337 0.884607i \(-0.345573\pi\)
0.466337 + 0.884607i \(0.345573\pi\)
\(740\) 5.13396 4.30791i 0.188728 0.158362i
\(741\) 3.35830 + 8.06409i 0.123370 + 0.296242i
\(742\) −13.3579 22.8239i −0.490383 0.837893i
\(743\) −0.184982 + 0.220453i −0.00678632 + 0.00808762i −0.769427 0.638735i \(-0.779458\pi\)
0.762641 + 0.646822i \(0.223903\pi\)
\(744\) −5.48734 13.1764i −0.201176 0.483071i
\(745\) −7.20037 + 1.26962i −0.263801 + 0.0465153i
\(746\) 48.6954i 1.78287i
\(747\) −36.3720 9.59717i −1.33078 0.351142i
\(748\) 6.15210 3.55192i 0.224943 0.129871i
\(749\) −29.0733 + 35.0670i −1.06231 + 1.28132i
\(750\) −23.5097 + 21.6254i −0.858452 + 0.789646i
\(751\) 0.401466 2.27683i 0.0146497 0.0830827i −0.976606 0.215035i \(-0.931013\pi\)
0.991256 + 0.131952i \(0.0421246\pi\)
\(752\) −30.8019 + 11.2110i −1.12323 + 0.408822i
\(753\) 2.06459 + 45.3025i 0.0752378 + 1.65091i
\(754\) −13.5054 + 2.38136i −0.491837 + 0.0867241i
\(755\) 32.2406 1.17335
\(756\) −16.4037 + 5.38269i −0.596596 + 0.195767i
\(757\) 36.6440 1.33185 0.665924 0.746019i \(-0.268037\pi\)
0.665924 + 0.746019i \(0.268037\pi\)
\(758\) −23.8235 + 4.20073i −0.865310 + 0.152577i
\(759\) 13.1807 8.43246i 0.478430 0.306079i
\(760\) −13.8355 + 5.03571i −0.501866 + 0.182664i
\(761\) −0.288517 + 1.63626i −0.0104587 + 0.0593145i −0.989590 0.143912i \(-0.954032\pi\)
0.979132 + 0.203227i \(0.0651428\pi\)
\(762\) −6.80184 30.4064i −0.246405 1.10151i
\(763\) −31.6159 + 11.7193i −1.14457 + 0.424268i
\(764\) 12.4687 7.19878i 0.451100 0.260443i
\(765\) 9.71032 4.57321i 0.351077 0.165345i
\(766\) 6.19694i 0.223905i
\(767\) 8.77666 1.54756i 0.316907 0.0558792i<