Properties

Label 189.2.ba.a.5.5
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98316 + 0.349685i) q^{2} +(-1.71808 - 0.219557i) q^{3} +(1.93127 - 0.702926i) q^{4} +(0.521105 - 2.95533i) q^{5} +(3.48401 - 0.165370i) q^{6} +(-1.49002 + 2.18628i) q^{7} +(-0.0963007 + 0.0555993i) q^{8} +(2.90359 + 0.754431i) q^{9} +O(q^{10})\) \(q+(-1.98316 + 0.349685i) q^{2} +(-1.71808 - 0.219557i) q^{3} +(1.93127 - 0.702926i) q^{4} +(0.521105 - 2.95533i) q^{5} +(3.48401 - 0.165370i) q^{6} +(-1.49002 + 2.18628i) q^{7} +(-0.0963007 + 0.0555993i) q^{8} +(2.90359 + 0.754431i) q^{9} +6.04313i q^{10} +(-2.48751 + 0.438614i) q^{11} +(-3.47241 + 0.783659i) q^{12} +(-0.315597 + 0.376113i) q^{13} +(2.19045 - 4.85680i) q^{14} +(-1.54416 + 4.96308i) q^{15} +(-2.97724 + 2.49820i) q^{16} -6.30061 q^{17} +(-6.02211 - 0.480817i) q^{18} +3.51943i q^{19} +(-1.07098 - 6.07385i) q^{20} +(3.03999 - 3.42906i) q^{21} +(4.77976 - 1.73969i) q^{22} +(-4.17780 + 4.97890i) q^{23} +(0.177659 - 0.0743805i) q^{24} +(-3.76397 - 1.36997i) q^{25} +(0.494358 - 0.856254i) q^{26} +(-4.82296 - 1.93367i) q^{27} +(-1.34085 + 5.26969i) q^{28} +(6.89178 + 8.21331i) q^{29} +(1.32681 - 10.3826i) q^{30} +(-0.294914 - 0.810269i) q^{31} +(5.17373 - 6.16581i) q^{32} +(4.37003 - 0.207426i) q^{33} +(12.4951 - 2.20323i) q^{34} +(5.68473 + 5.54279i) q^{35} +(6.13794 - 0.583997i) q^{36} +(0.524026 + 0.907639i) q^{37} +(-1.23069 - 6.97960i) q^{38} +(0.624798 - 0.576901i) q^{39} +(0.114131 + 0.313574i) q^{40} +(-4.22344 - 3.54389i) q^{41} +(-4.82971 + 7.86343i) q^{42} +(-1.84673 - 0.672155i) q^{43} +(-4.49574 + 2.59562i) q^{44} +(3.74267 - 8.18793i) q^{45} +(6.54421 - 11.3349i) q^{46} +(1.69363 + 0.616432i) q^{47} +(5.66363 - 3.63843i) q^{48} +(-2.55966 - 6.51522i) q^{49} +(7.94362 + 1.40068i) q^{50} +(10.8249 + 1.38334i) q^{51} +(-0.345124 + 0.948219i) q^{52} +(-10.5923 + 6.11546i) q^{53} +(10.2409 + 2.14827i) q^{54} +7.57997i q^{55} +(0.0219346 - 0.293385i) q^{56} +(0.772713 - 6.04665i) q^{57} +(-16.5396 - 13.8784i) q^{58} +(2.61962 + 2.19812i) q^{59} +(0.506481 + 10.6705i) q^{60} +(1.40721 - 3.86627i) q^{61} +(0.868201 + 1.50377i) q^{62} +(-5.97581 + 5.22395i) q^{63} +(-4.21774 + 7.30535i) q^{64} +(0.947080 + 1.12869i) q^{65} +(-8.59396 + 1.93950i) q^{66} +(-0.848137 + 4.81002i) q^{67} +(-12.1682 + 4.42887i) q^{68} +(8.27093 - 7.63689i) q^{69} +(-13.2120 - 9.00440i) q^{70} +(-8.74108 - 5.04667i) q^{71} +(-0.321564 + 0.0887852i) q^{72} +(4.62724 + 2.67154i) q^{73} +(-1.35662 - 1.61675i) q^{74} +(6.16601 + 3.18012i) q^{75} +(2.47390 + 6.79698i) q^{76} +(2.74751 - 6.09194i) q^{77} +(-1.03734 + 1.36257i) q^{78} +(-1.57575 - 8.93651i) q^{79} +(5.83156 + 10.1006i) q^{80} +(7.86167 + 4.38112i) q^{81} +(9.61502 + 5.55124i) q^{82} +(3.29602 - 2.76569i) q^{83} +(3.46068 - 8.75935i) q^{84} +(-3.28328 + 18.6204i) q^{85} +(3.89741 + 0.687219i) q^{86} +(-10.0373 - 15.6242i) q^{87} +(0.215162 - 0.180542i) q^{88} -14.4420 q^{89} +(-4.55912 + 17.5468i) q^{90} +(-0.352044 - 1.25040i) q^{91} +(-4.56867 + 12.5523i) q^{92} +(0.328785 + 1.45686i) q^{93} +(-3.57431 - 0.630247i) q^{94} +(10.4011 + 1.83399i) q^{95} +(-10.2426 + 9.45742i) q^{96} +(-0.764758 + 2.10116i) q^{97} +(7.35451 + 12.0257i) q^{98} +(-7.55360 - 0.603095i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98316 + 0.349685i −1.40231 + 0.247265i −0.823092 0.567908i \(-0.807753\pi\)
−0.579217 + 0.815173i \(0.696642\pi\)
\(3\) −1.71808 0.219557i −0.991933 0.126761i
\(4\) 1.93127 0.702926i 0.965637 0.351463i
\(5\) 0.521105 2.95533i 0.233045 1.32166i −0.613647 0.789581i \(-0.710298\pi\)
0.846692 0.532084i \(-0.178591\pi\)
\(6\) 3.48401 0.165370i 1.42234 0.0675122i
\(7\) −1.49002 + 2.18628i −0.563176 + 0.826337i
\(8\) −0.0963007 + 0.0555993i −0.0340475 + 0.0196573i
\(9\) 2.90359 + 0.754431i 0.967863 + 0.251477i
\(10\) 6.04313i 1.91101i
\(11\) −2.48751 + 0.438614i −0.750011 + 0.132247i −0.535571 0.844490i \(-0.679904\pi\)
−0.214440 + 0.976737i \(0.568793\pi\)
\(12\) −3.47241 + 0.783659i −1.00240 + 0.226223i
\(13\) −0.315597 + 0.376113i −0.0875307 + 0.104315i −0.808032 0.589138i \(-0.799467\pi\)
0.720501 + 0.693453i \(0.243912\pi\)
\(14\) 2.19045 4.85680i 0.585422 1.29803i
\(15\) −1.54416 + 4.96308i −0.398701 + 1.28146i
\(16\) −2.97724 + 2.49820i −0.744310 + 0.624550i
\(17\) −6.30061 −1.52812 −0.764062 0.645143i \(-0.776798\pi\)
−0.764062 + 0.645143i \(0.776798\pi\)
\(18\) −6.02211 0.480817i −1.41942 0.113330i
\(19\) 3.51943i 0.807412i 0.914889 + 0.403706i \(0.132278\pi\)
−0.914889 + 0.403706i \(0.867722\pi\)
\(20\) −1.07098 6.07385i −0.239479 1.35815i
\(21\) 3.03999 3.42906i 0.663380 0.748283i
\(22\) 4.77976 1.73969i 1.01905 0.370903i
\(23\) −4.17780 + 4.97890i −0.871131 + 1.03817i 0.127793 + 0.991801i \(0.459211\pi\)
−0.998924 + 0.0463724i \(0.985234\pi\)
\(24\) 0.177659 0.0743805i 0.0362646 0.0151828i
\(25\) −3.76397 1.36997i −0.752793 0.273994i
\(26\) 0.494358 0.856254i 0.0969517 0.167925i
\(27\) −4.82296 1.93367i −0.928178 0.372136i
\(28\) −1.34085 + 5.26969i −0.253396 + 0.995877i
\(29\) 6.89178 + 8.21331i 1.27977 + 1.52517i 0.712591 + 0.701580i \(0.247522\pi\)
0.567181 + 0.823593i \(0.308034\pi\)
\(30\) 1.32681 10.3826i 0.242241 1.89559i
\(31\) −0.294914 0.810269i −0.0529681 0.145529i 0.910387 0.413758i \(-0.135784\pi\)
−0.963355 + 0.268229i \(0.913562\pi\)
\(32\) 5.17373 6.16581i 0.914594 1.08997i
\(33\) 4.37003 0.207426i 0.760725 0.0361082i
\(34\) 12.4951 2.20323i 2.14290 0.377851i
\(35\) 5.68473 + 5.54279i 0.960895 + 0.936903i
\(36\) 6.13794 0.583997i 1.02299 0.0973329i
\(37\) 0.524026 + 0.907639i 0.0861493 + 0.149215i 0.905880 0.423534i \(-0.139210\pi\)
−0.819731 + 0.572749i \(0.805877\pi\)
\(38\) −1.23069 6.97960i −0.199645 1.13224i
\(39\) 0.624798 0.576901i 0.100048 0.0923781i
\(40\) 0.114131 + 0.313574i 0.0180458 + 0.0495803i
\(41\) −4.22344 3.54389i −0.659591 0.553462i 0.250373 0.968149i \(-0.419447\pi\)
−0.909964 + 0.414687i \(0.863891\pi\)
\(42\) −4.82971 + 7.86343i −0.745240 + 1.21335i
\(43\) −1.84673 0.672155i −0.281624 0.102503i 0.197346 0.980334i \(-0.436768\pi\)
−0.478970 + 0.877831i \(0.658990\pi\)
\(44\) −4.49574 + 2.59562i −0.677759 + 0.391304i
\(45\) 3.74267 8.18793i 0.557924 1.22058i
\(46\) 6.54421 11.3349i 0.964891 1.67124i
\(47\) 1.69363 + 0.616432i 0.247042 + 0.0899158i 0.462573 0.886581i \(-0.346926\pi\)
−0.215532 + 0.976497i \(0.569148\pi\)
\(48\) 5.66363 3.63843i 0.817475 0.525163i
\(49\) −2.55966 6.51522i −0.365666 0.930746i
\(50\) 7.94362 + 1.40068i 1.12340 + 0.198085i
\(51\) 10.8249 + 1.38334i 1.51580 + 0.193706i
\(52\) −0.345124 + 0.948219i −0.0478600 + 0.131494i
\(53\) −10.5923 + 6.11546i −1.45496 + 0.840023i −0.998757 0.0498510i \(-0.984125\pi\)
−0.456206 + 0.889874i \(0.650792\pi\)
\(54\) 10.2409 + 2.14827i 1.39361 + 0.292343i
\(55\) 7.57997i 1.02208i
\(56\) 0.0219346 0.293385i 0.00293114 0.0392052i
\(57\) 0.772713 6.04665i 0.102348 0.800899i
\(58\) −16.5396 13.8784i −2.17176 1.82232i
\(59\) 2.61962 + 2.19812i 0.341045 + 0.286171i 0.797182 0.603739i \(-0.206323\pi\)
−0.456137 + 0.889910i \(0.650767\pi\)
\(60\) 0.506481 + 10.6705i 0.0653865 + 1.37756i
\(61\) 1.40721 3.86627i 0.180174 0.495025i −0.816423 0.577455i \(-0.804046\pi\)
0.996597 + 0.0824302i \(0.0262682\pi\)
\(62\) 0.868201 + 1.50377i 0.110262 + 0.190979i
\(63\) −5.97581 + 5.22395i −0.752882 + 0.658156i
\(64\) −4.21774 + 7.30535i −0.527218 + 0.913168i
\(65\) 0.947080 + 1.12869i 0.117471 + 0.139996i
\(66\) −8.59396 + 1.93950i −1.05784 + 0.238735i
\(67\) −0.848137 + 4.81002i −0.103616 + 0.587638i 0.888148 + 0.459558i \(0.151992\pi\)
−0.991764 + 0.128079i \(0.959119\pi\)
\(68\) −12.1682 + 4.42887i −1.47561 + 0.537079i
\(69\) 8.27093 7.63689i 0.995704 0.919373i
\(70\) −13.2120 9.00440i −1.57913 1.07623i
\(71\) −8.74108 5.04667i −1.03738 0.598929i −0.118287 0.992979i \(-0.537740\pi\)
−0.919089 + 0.394050i \(0.871074\pi\)
\(72\) −0.321564 + 0.0887852i −0.0378966 + 0.0104634i
\(73\) 4.62724 + 2.67154i 0.541578 + 0.312680i 0.745718 0.666262i \(-0.232107\pi\)
−0.204140 + 0.978942i \(0.565440\pi\)
\(74\) −1.35662 1.61675i −0.157704 0.187944i
\(75\) 6.16601 + 3.18012i 0.711989 + 0.367209i
\(76\) 2.47390 + 6.79698i 0.283776 + 0.779667i
\(77\) 2.74751 6.09194i 0.313107 0.694241i
\(78\) −1.03734 + 1.36257i −0.117456 + 0.154281i
\(79\) −1.57575 8.93651i −0.177285 1.00544i −0.935473 0.353399i \(-0.885026\pi\)
0.758187 0.652037i \(-0.226085\pi\)
\(80\) 5.83156 + 10.1006i 0.651988 + 1.12928i
\(81\) 7.86167 + 4.38112i 0.873519 + 0.486791i
\(82\) 9.61502 + 5.55124i 1.06180 + 0.613032i
\(83\) 3.29602 2.76569i 0.361785 0.303574i −0.443717 0.896167i \(-0.646340\pi\)
0.805502 + 0.592593i \(0.201896\pi\)
\(84\) 3.46068 8.75935i 0.377591 0.955723i
\(85\) −3.28328 + 18.6204i −0.356122 + 2.01967i
\(86\) 3.89741 + 0.687219i 0.420269 + 0.0741047i
\(87\) −10.0373 15.6242i −1.07612 1.67509i
\(88\) 0.215162 0.180542i 0.0229364 0.0192459i
\(89\) −14.4420 −1.53085 −0.765423 0.643527i \(-0.777470\pi\)
−0.765423 + 0.643527i \(0.777470\pi\)
\(90\) −4.55912 + 17.5468i −0.480574 + 1.84959i
\(91\) −0.352044 1.25040i −0.0369042 0.131078i
\(92\) −4.56867 + 12.5523i −0.476317 + 1.30867i
\(93\) 0.328785 + 1.45686i 0.0340934 + 0.151069i
\(94\) −3.57431 0.630247i −0.368662 0.0650050i
\(95\) 10.4011 + 1.83399i 1.06713 + 0.188163i
\(96\) −10.2426 + 9.45742i −1.04538 + 0.965244i
\(97\) −0.764758 + 2.10116i −0.0776494 + 0.213340i −0.972443 0.233139i \(-0.925100\pi\)
0.894794 + 0.446479i \(0.147322\pi\)
\(98\) 7.35451 + 12.0257i 0.742918 + 1.21478i
\(99\) −7.55360 0.603095i −0.759166 0.0606133i
\(100\) −8.23224 −0.823224
\(101\) 3.03416 2.54596i 0.301910 0.253333i −0.479228 0.877690i \(-0.659083\pi\)
0.781139 + 0.624357i \(0.214639\pi\)
\(102\) −21.9514 + 1.04193i −2.17351 + 0.103167i
\(103\) −10.4348 1.83994i −1.02818 0.181295i −0.365977 0.930624i \(-0.619265\pi\)
−0.662198 + 0.749329i \(0.730376\pi\)
\(104\) 0.00948056 0.0537669i 0.000929645 0.00527228i
\(105\) −8.54986 10.7711i −0.834381 1.05115i
\(106\) 18.8678 15.8319i 1.83260 1.53773i
\(107\) 5.05714 + 2.91974i 0.488892 + 0.282262i 0.724115 0.689680i \(-0.242249\pi\)
−0.235223 + 0.971941i \(0.575582\pi\)
\(108\) −10.6737 0.344271i −1.02708 0.0331275i
\(109\) −3.51703 6.09167i −0.336870 0.583476i 0.646972 0.762514i \(-0.276035\pi\)
−0.983842 + 0.179037i \(0.942702\pi\)
\(110\) −2.65060 15.0323i −0.252725 1.43328i
\(111\) −0.701040 1.67445i −0.0665397 0.158932i
\(112\) −1.02562 10.2315i −0.0969118 0.966783i
\(113\) −2.56920 7.05881i −0.241690 0.664037i −0.999927 0.0120587i \(-0.996162\pi\)
0.758238 0.651978i \(-0.226061\pi\)
\(114\) 0.582009 + 12.2617i 0.0545101 + 1.14841i
\(115\) 12.5372 + 14.9413i 1.16910 + 1.39328i
\(116\) 19.0833 + 11.0177i 1.77184 + 1.02297i
\(117\) −1.20011 + 0.853983i −0.110951 + 0.0789508i
\(118\) −5.96378 3.44319i −0.549011 0.316972i
\(119\) 9.38806 13.7749i 0.860602 1.26274i
\(120\) −0.127240 0.563802i −0.0116153 0.0514679i
\(121\) −4.34131 + 1.58011i −0.394665 + 0.143646i
\(122\) −1.43874 + 8.15952i −0.130258 + 0.738728i
\(123\) 6.47812 + 7.01596i 0.584113 + 0.632608i
\(124\) −1.13912 1.35755i −0.102296 0.121911i
\(125\) 1.49216 2.58450i 0.133463 0.231165i
\(126\) 10.0243 12.4496i 0.893034 1.10910i
\(127\) −2.80890 4.86515i −0.249249 0.431713i 0.714068 0.700076i \(-0.246851\pi\)
−0.963318 + 0.268363i \(0.913517\pi\)
\(128\) 0.304141 0.835621i 0.0268825 0.0738591i
\(129\) 3.02525 + 1.56028i 0.266359 + 0.137375i
\(130\) −2.27290 1.90719i −0.199347 0.167272i
\(131\) 1.56796 + 1.31567i 0.136993 + 0.114951i 0.708709 0.705501i \(-0.249278\pi\)
−0.571716 + 0.820451i \(0.693722\pi\)
\(132\) 8.29393 3.47241i 0.721894 0.302234i
\(133\) −7.69446 5.24403i −0.667194 0.454715i
\(134\) 9.83565i 0.849670i
\(135\) −8.22791 + 13.2458i −0.708146 + 1.14002i
\(136\) 0.606754 0.350309i 0.0520287 0.0300388i
\(137\) −0.0677287 + 0.186083i −0.00578645 + 0.0158981i −0.942552 0.334059i \(-0.891582\pi\)
0.936766 + 0.349957i \(0.113804\pi\)
\(138\) −13.7321 + 18.0374i −1.16896 + 1.53545i
\(139\) 8.19637 + 1.44524i 0.695207 + 0.122584i 0.510075 0.860130i \(-0.329618\pi\)
0.185132 + 0.982714i \(0.440729\pi\)
\(140\) 14.8750 + 6.70871i 1.25716 + 0.566989i
\(141\) −2.77445 1.43093i −0.233651 0.120506i
\(142\) 19.0997 + 6.95174i 1.60282 + 0.583377i
\(143\) 0.620080 1.07401i 0.0518537 0.0898132i
\(144\) −10.5294 + 5.00763i −0.877451 + 0.417303i
\(145\) 27.8644 16.0875i 2.31401 1.33599i
\(146\) −10.1108 3.68002i −0.836774 0.304561i
\(147\) 2.96724 + 11.7557i 0.244734 + 0.969590i
\(148\) 1.65004 + 1.38455i 0.135633 + 0.113809i
\(149\) 5.32172 + 14.6213i 0.435972 + 1.19782i 0.942090 + 0.335359i \(0.108858\pi\)
−0.506118 + 0.862464i \(0.668920\pi\)
\(150\) −13.3402 4.15054i −1.08923 0.338891i
\(151\) 2.53475 + 14.3753i 0.206275 + 1.16984i 0.895421 + 0.445220i \(0.146875\pi\)
−0.689146 + 0.724622i \(0.742014\pi\)
\(152\) −0.195678 0.338923i −0.0158715 0.0274903i
\(153\) −18.2944 4.75338i −1.47901 0.384288i
\(154\) −3.31849 + 13.0421i −0.267412 + 1.05096i
\(155\) −2.54829 + 0.449333i −0.204684 + 0.0360913i
\(156\) 0.801137 1.55334i 0.0641423 0.124367i
\(157\) 14.6944 17.5121i 1.17274 1.39762i 0.272535 0.962146i \(-0.412138\pi\)
0.900204 0.435469i \(-0.143418\pi\)
\(158\) 6.24993 + 17.1715i 0.497218 + 1.36609i
\(159\) 19.5411 8.18124i 1.54971 0.648814i
\(160\) −15.5259 18.5031i −1.22743 1.46280i
\(161\) −4.66028 16.5525i −0.367281 1.30452i
\(162\) −17.1230 5.93936i −1.34531 0.466640i
\(163\) 3.61347 6.25871i 0.283029 0.490220i −0.689101 0.724666i \(-0.741994\pi\)
0.972129 + 0.234446i \(0.0753275\pi\)
\(164\) −10.6477 3.87545i −0.831447 0.302622i
\(165\) 1.66423 13.0230i 0.129560 1.01384i
\(166\) −5.56943 + 6.63739i −0.432271 + 0.515161i
\(167\) 20.1413 7.33084i 1.55858 0.567277i 0.588170 0.808737i \(-0.299849\pi\)
0.970411 + 0.241460i \(0.0776263\pi\)
\(168\) −0.102100 + 0.499242i −0.00787718 + 0.0385174i
\(169\) 2.21557 + 12.5651i 0.170428 + 0.966546i
\(170\) 38.0754i 2.92025i
\(171\) −2.65516 + 10.2190i −0.203045 + 0.781464i
\(172\) −4.03902 −0.307972
\(173\) −10.3436 + 8.67935i −0.786413 + 0.659878i −0.944855 0.327490i \(-0.893797\pi\)
0.158442 + 0.987368i \(0.449353\pi\)
\(174\) 25.3693 + 27.4755i 1.92324 + 2.08291i
\(175\) 8.60354 6.18781i 0.650367 0.467754i
\(176\) 6.31016 7.52015i 0.475646 0.566853i
\(177\) −4.01810 4.35170i −0.302019 0.327094i
\(178\) 28.6408 5.05015i 2.14672 0.378524i
\(179\) 2.76245i 0.206475i −0.994657 0.103238i \(-0.967080\pi\)
0.994657 0.103238i \(-0.0329202\pi\)
\(180\) 1.47260 18.4440i 0.109761 1.37473i
\(181\) −17.6904 + 10.2136i −1.31492 + 0.759169i −0.982906 0.184105i \(-0.941061\pi\)
−0.332013 + 0.943275i \(0.607728\pi\)
\(182\) 1.13541 + 2.35665i 0.0841620 + 0.174686i
\(183\) −3.26655 + 6.33359i −0.241471 + 0.468192i
\(184\) 0.125502 0.711755i 0.00925210 0.0524712i
\(185\) 2.95545 1.07569i 0.217289 0.0790866i
\(186\) −1.16148 2.77421i −0.0851636 0.203415i
\(187\) 15.6728 2.76354i 1.14611 0.202090i
\(188\) 3.70418 0.270155
\(189\) 11.4139 7.66313i 0.830237 0.557410i
\(190\) −21.2683 −1.54297
\(191\) −16.1647 + 2.85027i −1.16963 + 0.206238i −0.724532 0.689241i \(-0.757944\pi\)
−0.445103 + 0.895479i \(0.646833\pi\)
\(192\) 8.85035 11.6251i 0.638719 0.838971i
\(193\) 17.9669 6.53943i 1.29329 0.470719i 0.398484 0.917175i \(-0.369537\pi\)
0.894805 + 0.446457i \(0.147314\pi\)
\(194\) 0.781898 4.43436i 0.0561370 0.318369i
\(195\) −1.37935 2.14711i −0.0987772 0.153758i
\(196\) −9.52313 10.7834i −0.680224 0.770245i
\(197\) −2.96439 + 1.71149i −0.211204 + 0.121939i −0.601871 0.798593i \(-0.705578\pi\)
0.390667 + 0.920532i \(0.372244\pi\)
\(198\) 15.1909 1.44535i 1.07957 0.102716i
\(199\) 9.83127i 0.696920i −0.937324 0.348460i \(-0.886705\pi\)
0.937324 0.348460i \(-0.113295\pi\)
\(200\) 0.438642 0.0773445i 0.0310167 0.00546908i
\(201\) 2.51324 8.07779i 0.177270 0.569763i
\(202\) −5.12696 + 6.11007i −0.360731 + 0.429903i
\(203\) −28.2255 + 2.82937i −1.98104 + 0.198583i
\(204\) 21.8783 4.93753i 1.53179 0.345696i
\(205\) −12.6742 + 10.6349i −0.885206 + 0.742776i
\(206\) 21.3374 1.48665
\(207\) −15.8868 + 11.3048i −1.10421 + 0.785740i
\(208\) 1.90820i 0.132310i
\(209\) −1.54367 8.75460i −0.106778 0.605568i
\(210\) 20.7223 + 18.3710i 1.42997 + 1.26772i
\(211\) −17.9268 + 6.52483i −1.23413 + 0.449188i −0.875011 0.484103i \(-0.839146\pi\)
−0.359122 + 0.933291i \(0.616924\pi\)
\(212\) −16.1579 + 19.2562i −1.10973 + 1.32252i
\(213\) 13.9098 + 10.5897i 0.953087 + 0.725597i
\(214\) −11.0501 4.02191i −0.755371 0.274932i
\(215\) −2.94878 + 5.10744i −0.201105 + 0.348324i
\(216\) 0.571965 0.0819386i 0.0389173 0.00557521i
\(217\) 2.21090 + 0.562554i 0.150086 + 0.0381887i
\(218\) 9.10501 + 10.8509i 0.616669 + 0.734918i
\(219\) −7.36341 5.60586i −0.497573 0.378809i
\(220\) 5.32816 + 14.6390i 0.359224 + 0.986961i
\(221\) 1.98845 2.36974i 0.133758 0.159406i
\(222\) 1.97581 + 3.07556i 0.132607 + 0.206418i
\(223\) −21.3740 + 3.76881i −1.43131 + 0.252378i −0.834944 0.550336i \(-0.814500\pi\)
−0.596365 + 0.802714i \(0.703389\pi\)
\(224\) 5.77123 + 20.4984i 0.385606 + 1.36961i
\(225\) −9.89547 6.81749i −0.659698 0.454499i
\(226\) 7.56350 + 13.1004i 0.503117 + 0.871424i
\(227\) −0.0693362 0.393225i −0.00460201 0.0260993i 0.982420 0.186683i \(-0.0597736\pi\)
−0.987022 + 0.160583i \(0.948662\pi\)
\(228\) −2.75803 12.2209i −0.182655 0.809349i
\(229\) −0.917133 2.51980i −0.0606059 0.166513i 0.905694 0.423932i \(-0.139350\pi\)
−0.966300 + 0.257418i \(0.917128\pi\)
\(230\) −30.0882 25.2470i −1.98395 1.66474i
\(231\) −6.05796 + 9.86320i −0.398584 + 0.648951i
\(232\) −1.12034 0.407770i −0.0735538 0.0267714i
\(233\) 10.8390 6.25788i 0.710085 0.409968i −0.101008 0.994886i \(-0.532207\pi\)
0.811092 + 0.584918i \(0.198873\pi\)
\(234\) 2.08140 2.11325i 0.136065 0.138148i
\(235\) 2.70432 4.68402i 0.176410 0.305552i
\(236\) 6.60432 + 2.40378i 0.429905 + 0.156473i
\(237\) 0.745190 + 15.6996i 0.0484053 + 1.01980i
\(238\) −13.8012 + 30.6008i −0.894597 + 1.98355i
\(239\) −14.8795 2.62366i −0.962474 0.169710i −0.329734 0.944074i \(-0.606959\pi\)
−0.632741 + 0.774364i \(0.718070\pi\)
\(240\) −7.80144 18.6339i −0.503580 1.20281i
\(241\) −10.0424 + 27.5912i −0.646886 + 1.77730i −0.0179589 + 0.999839i \(0.505717\pi\)
−0.628927 + 0.777465i \(0.716505\pi\)
\(242\) 8.05700 4.65171i 0.517923 0.299023i
\(243\) −12.5451 9.25318i −0.804766 0.593592i
\(244\) 8.45598i 0.541339i
\(245\) −20.5885 + 4.16954i −1.31535 + 0.266382i
\(246\) −15.3006 11.6485i −0.975528 0.742681i
\(247\) −1.32370 1.11072i −0.0842252 0.0706734i
\(248\) 0.0734508 + 0.0616325i 0.00466413 + 0.00391367i
\(249\) −6.27005 + 4.02801i −0.397348 + 0.255265i
\(250\) −2.05544 + 5.64728i −0.129998 + 0.357165i
\(251\) 1.64062 + 2.84163i 0.103555 + 0.179362i 0.913147 0.407631i \(-0.133645\pi\)
−0.809592 + 0.586993i \(0.800312\pi\)
\(252\) −7.86889 + 14.2894i −0.495693 + 0.900150i
\(253\) 8.20848 14.2175i 0.516062 0.893846i
\(254\) 7.27178 + 8.66617i 0.456272 + 0.543764i
\(255\) 9.72916 31.2704i 0.609264 1.95823i
\(256\) 2.61866 14.8511i 0.163666 0.928196i
\(257\) −5.23460 + 1.90524i −0.326526 + 0.118846i −0.500081 0.865978i \(-0.666697\pi\)
0.173556 + 0.984824i \(0.444474\pi\)
\(258\) −6.54518 2.03640i −0.407485 0.126781i
\(259\) −2.76517 0.206735i −0.171819 0.0128459i
\(260\) 2.62246 + 1.51408i 0.162638 + 0.0938990i
\(261\) 13.8145 + 29.0474i 0.855099 + 1.79799i
\(262\) −3.56959 2.06090i −0.220530 0.127323i
\(263\) 16.5524 + 19.7264i 1.02066 + 1.21638i 0.976088 + 0.217374i \(0.0697492\pi\)
0.0445760 + 0.999006i \(0.485806\pi\)
\(264\) −0.409305 + 0.262946i −0.0251910 + 0.0161832i
\(265\) 12.5535 + 34.4905i 0.771157 + 2.11874i
\(266\) 17.0931 + 7.70913i 1.04805 + 0.472677i
\(267\) 24.8124 + 3.17083i 1.51850 + 0.194052i
\(268\) 1.74311 + 9.88565i 0.106477 + 0.603862i
\(269\) −1.10496 1.91384i −0.0673703 0.116689i 0.830373 0.557208i \(-0.188128\pi\)
−0.897743 + 0.440520i \(0.854794\pi\)
\(270\) 11.6854 29.1457i 0.711153 1.77375i
\(271\) −7.89152 4.55617i −0.479376 0.276768i 0.240780 0.970580i \(-0.422597\pi\)
−0.720156 + 0.693812i \(0.755930\pi\)
\(272\) 18.7584 15.7402i 1.13740 0.954390i
\(273\) 0.330306 + 2.22558i 0.0199910 + 0.134698i
\(274\) 0.0692466 0.392717i 0.00418334 0.0237249i
\(275\) 9.96378 + 1.75688i 0.600839 + 0.105944i
\(276\) 10.6053 20.5628i 0.638363 1.23773i
\(277\) 17.5654 14.7391i 1.05540 0.885587i 0.0617499 0.998092i \(-0.480332\pi\)
0.993651 + 0.112505i \(0.0358874\pi\)
\(278\) −16.7601 −1.00521
\(279\) −0.245017 2.57518i −0.0146688 0.154172i
\(280\) −0.855619 0.217708i −0.0511330 0.0130106i
\(281\) −1.64610 + 4.52262i −0.0981980 + 0.269797i −0.979058 0.203579i \(-0.934743\pi\)
0.880860 + 0.473376i \(0.156965\pi\)
\(282\) 6.00257 + 1.86758i 0.357448 + 0.111213i
\(283\) −17.9140 3.15871i −1.06487 0.187766i −0.386356 0.922350i \(-0.626266\pi\)
−0.678518 + 0.734584i \(0.737377\pi\)
\(284\) −20.4289 3.60216i −1.21223 0.213749i
\(285\) −17.4672 5.43456i −1.03467 0.321916i
\(286\) −0.854154 + 2.34677i −0.0505072 + 0.138767i
\(287\) 14.0410 3.95316i 0.828812 0.233348i
\(288\) 19.6741 13.9998i 1.15930 0.824944i
\(289\) 22.6977 1.33516
\(290\) −49.6341 + 41.6479i −2.91461 + 2.44565i
\(291\) 1.77524 3.44204i 0.104066 0.201776i
\(292\) 10.8144 + 1.90687i 0.632863 + 0.111591i
\(293\) −3.38706 + 19.2090i −0.197874 + 1.12220i 0.710391 + 0.703807i \(0.248518\pi\)
−0.908266 + 0.418394i \(0.862593\pi\)
\(294\) −9.99531 22.2758i −0.582938 1.29915i
\(295\) 7.86127 6.59639i 0.457701 0.384057i
\(296\) −0.100928 0.0582709i −0.00586633 0.00338693i
\(297\) 12.8453 + 2.69461i 0.745358 + 0.156357i
\(298\) −15.6667 27.1355i −0.907547 1.57192i
\(299\) −0.554134 3.14265i −0.0320464 0.181744i
\(300\) 14.1436 + 1.80744i 0.816584 + 0.104353i
\(301\) 4.22119 3.03595i 0.243305 0.174989i
\(302\) −10.0536 27.6222i −0.578522 1.58948i
\(303\) −5.77191 + 3.70800i −0.331588 + 0.213019i
\(304\) −8.79224 10.4782i −0.504269 0.600965i
\(305\) −10.6928 6.17349i −0.612268 0.353493i
\(306\) 37.9430 + 3.02944i 2.16906 + 0.173182i
\(307\) −7.72295 4.45885i −0.440772 0.254480i 0.263153 0.964754i \(-0.415238\pi\)
−0.703925 + 0.710274i \(0.748571\pi\)
\(308\) 1.02401 13.6965i 0.0583481 0.780430i
\(309\) 17.5239 + 5.45221i 0.996901 + 0.310165i
\(310\) 4.89656 1.78220i 0.278106 0.101222i
\(311\) −0.152938 + 0.867353i −0.00867230 + 0.0491831i −0.988837 0.149002i \(-0.952394\pi\)
0.980165 + 0.198186i \(0.0635049\pi\)
\(312\) −0.0280932 + 0.0902943i −0.00159047 + 0.00511191i
\(313\) −13.7354 16.3692i −0.776369 0.925240i 0.222395 0.974957i \(-0.428613\pi\)
−0.998763 + 0.0497165i \(0.984168\pi\)
\(314\) −23.0176 + 39.8677i −1.29896 + 2.24986i
\(315\) 12.3245 + 20.3827i 0.694405 + 1.14844i
\(316\) −9.32491 16.1512i −0.524567 0.908577i
\(317\) 8.49523 23.3405i 0.477140 1.31093i −0.434770 0.900541i \(-0.643170\pi\)
0.911910 0.410390i \(-0.134607\pi\)
\(318\) −35.8923 + 23.0580i −2.01274 + 1.29303i
\(319\) −20.7458 17.4078i −1.16154 0.974651i
\(320\) 19.3918 + 16.2717i 1.08404 + 0.909615i
\(321\) −8.04751 6.12667i −0.449168 0.341957i
\(322\) 15.0303 + 31.1967i 0.837604 + 1.73853i
\(323\) 22.1745i 1.23382i
\(324\) 18.2626 + 2.93496i 1.01459 + 0.163053i
\(325\) 1.70316 0.983320i 0.0944743 0.0545448i
\(326\) −4.97752 + 13.6756i −0.275679 + 0.757423i
\(327\) 4.70507 + 11.2382i 0.260191 + 0.621472i
\(328\) 0.603758 + 0.106459i 0.0333370 + 0.00587821i
\(329\) −3.87125 + 2.78426i −0.213429 + 0.153501i
\(330\) 1.25350 + 26.4087i 0.0690030 + 1.45375i
\(331\) 1.66029 + 0.604296i 0.0912577 + 0.0332151i 0.387246 0.921977i \(-0.373427\pi\)
−0.295988 + 0.955192i \(0.595649\pi\)
\(332\) 4.42144 7.65817i 0.242658 0.420296i
\(333\) 0.836805 + 3.03075i 0.0458566 + 0.166084i
\(334\) −37.3800 + 21.5814i −2.04534 + 1.18088i
\(335\) 13.7732 + 5.01305i 0.752513 + 0.273892i
\(336\) −0.484293 + 17.8036i −0.0264204 + 0.971269i
\(337\) 17.5667 + 14.7402i 0.956920 + 0.802951i 0.980449 0.196772i \(-0.0630459\pi\)
−0.0235294 + 0.999723i \(0.507490\pi\)
\(338\) −8.78766 24.1439i −0.477986 1.31326i
\(339\) 2.86428 + 12.6917i 0.155566 + 0.689317i
\(340\) 6.74786 + 38.2690i 0.365954 + 2.07543i
\(341\) 1.08900 + 1.88620i 0.0589724 + 0.102143i
\(342\) 1.69220 21.1944i 0.0915038 1.14606i
\(343\) 18.0581 + 4.11168i 0.975044 + 0.222010i
\(344\) 0.215213 0.0379478i 0.0116035 0.00204601i
\(345\) −18.2595 28.4230i −0.983059 1.53024i
\(346\) 17.4781 20.8296i 0.939628 1.11981i
\(347\) −1.23029 3.38018i −0.0660452 0.181458i 0.902280 0.431151i \(-0.141892\pi\)
−0.968325 + 0.249693i \(0.919670\pi\)
\(348\) −30.3676 23.1192i −1.62787 1.23932i
\(349\) 2.52217 + 3.00581i 0.135009 + 0.160897i 0.829313 0.558785i \(-0.188732\pi\)
−0.694304 + 0.719682i \(0.744288\pi\)
\(350\) −14.8985 + 15.2800i −0.796356 + 0.816749i
\(351\) 2.24939 1.20372i 0.120063 0.0642497i
\(352\) −10.1653 + 17.6068i −0.541810 + 0.938443i
\(353\) 20.5680 + 7.48616i 1.09473 + 0.398448i 0.825370 0.564593i \(-0.190967\pi\)
0.269357 + 0.963040i \(0.413189\pi\)
\(354\) 9.49028 + 7.22506i 0.504403 + 0.384008i
\(355\) −19.4696 + 23.2030i −1.03334 + 1.23148i
\(356\) −27.8914 + 10.1516i −1.47824 + 0.538036i
\(357\) −19.1538 + 21.6052i −1.01373 + 1.14347i
\(358\) 0.965989 + 5.47840i 0.0510541 + 0.289542i
\(359\) 16.7099i 0.881913i −0.897529 0.440956i \(-0.854639\pi\)
0.897529 0.440956i \(-0.145361\pi\)
\(360\) 0.0948214 + 0.996593i 0.00499752 + 0.0525251i
\(361\) 6.61363 0.348086
\(362\) 31.5115 26.4413i 1.65621 1.38972i
\(363\) 7.80564 1.76159i 0.409690 0.0924594i
\(364\) −1.55883 2.16741i −0.0817051 0.113603i
\(365\) 10.3066 12.2829i 0.539470 0.642915i
\(366\) 4.26335 13.7028i 0.222849 0.716258i
\(367\) −26.4746 + 4.66818i −1.38196 + 0.243677i −0.814710 0.579868i \(-0.803104\pi\)
−0.567251 + 0.823545i \(0.691993\pi\)
\(368\) 25.2604i 1.31679i
\(369\) −9.58952 13.4763i −0.499211 0.701548i
\(370\) −5.48498 + 3.16676i −0.285151 + 0.164632i
\(371\) 2.41263 32.2699i 0.125257 1.67537i
\(372\) 1.65904 + 2.58248i 0.0860171 + 0.133895i
\(373\) 2.45572 13.9271i 0.127152 0.721116i −0.852854 0.522149i \(-0.825130\pi\)
0.980006 0.198967i \(-0.0637585\pi\)
\(374\) −30.1154 + 10.9611i −1.55723 + 0.566785i
\(375\) −3.13110 + 4.11276i −0.161689 + 0.212382i
\(376\) −0.197371 + 0.0348019i −0.0101786 + 0.00179477i
\(377\) −5.26416 −0.271118
\(378\) −19.9559 + 19.1885i −1.02642 + 0.986950i
\(379\) 1.54085 0.0791483 0.0395742 0.999217i \(-0.487400\pi\)
0.0395742 + 0.999217i \(0.487400\pi\)
\(380\) 21.3765 3.76925i 1.09659 0.193358i
\(381\) 3.75773 + 8.97543i 0.192514 + 0.459825i
\(382\) 31.0605 11.3051i 1.58919 0.578419i
\(383\) −4.08823 + 23.1855i −0.208899 + 1.18472i 0.682287 + 0.731085i \(0.260986\pi\)
−0.891186 + 0.453639i \(0.850126\pi\)
\(384\) −0.706004 + 1.36889i −0.0360281 + 0.0698557i
\(385\) −16.5720 11.2943i −0.844585 0.575612i
\(386\) −33.3447 + 19.2515i −1.69720 + 0.979878i
\(387\) −4.85505 3.34489i −0.246796 0.170030i
\(388\) 4.59548i 0.233300i
\(389\) −8.41415 + 1.48364i −0.426614 + 0.0752236i −0.382833 0.923818i \(-0.625052\pi\)
−0.0437811 + 0.999041i \(0.513940\pi\)
\(390\) 3.48629 + 3.77573i 0.176535 + 0.191192i
\(391\) 26.3227 31.3701i 1.33120 1.58646i
\(392\) 0.608739 + 0.485105i 0.0307460 + 0.0245015i
\(393\) −2.40501 2.60468i −0.121317 0.131389i
\(394\) 5.28039 4.43077i 0.266022 0.223219i
\(395\) −27.2315 −1.37016
\(396\) −15.0120 + 4.14489i −0.754382 + 0.208288i
\(397\) 24.7255i 1.24094i 0.784231 + 0.620469i \(0.213058\pi\)
−0.784231 + 0.620469i \(0.786942\pi\)
\(398\) 3.43785 + 19.4970i 0.172324 + 0.977297i
\(399\) 12.0683 + 10.6990i 0.604172 + 0.535621i
\(400\) 14.6287 5.32441i 0.731435 0.266221i
\(401\) 3.90125 4.64933i 0.194819 0.232177i −0.659788 0.751452i \(-0.729354\pi\)
0.854607 + 0.519276i \(0.173798\pi\)
\(402\) −2.15948 + 16.8984i −0.107705 + 0.842816i
\(403\) 0.397827 + 0.144797i 0.0198172 + 0.00721285i
\(404\) 4.07017 7.04975i 0.202499 0.350738i
\(405\) 17.0444 20.9508i 0.846943 1.04105i
\(406\) 54.9865 15.4812i 2.72893 0.768317i
\(407\) −1.70162 2.02791i −0.0843462 0.100520i
\(408\) −1.11936 + 0.468642i −0.0554167 + 0.0232013i
\(409\) 2.38417 + 6.55045i 0.117890 + 0.323899i 0.984577 0.174953i \(-0.0559774\pi\)
−0.866687 + 0.498852i \(0.833755\pi\)
\(410\) 21.4162 25.5228i 1.05767 1.26048i
\(411\) 0.157219 0.304835i 0.00775504 0.0150364i
\(412\) −21.4459 + 3.78149i −1.05656 + 0.186301i
\(413\) −8.70901 + 2.45198i −0.428542 + 0.120654i
\(414\) 27.5531 27.9747i 1.35416 1.37488i
\(415\) −6.45596 11.1820i −0.316910 0.548905i
\(416\) 0.686232 + 3.89181i 0.0336453 + 0.190812i
\(417\) −13.7647 4.28260i −0.674060 0.209720i
\(418\) 6.12271 + 16.8220i 0.299471 + 0.822791i
\(419\) −0.853896 0.716503i −0.0417155 0.0350035i 0.621692 0.783262i \(-0.286446\pi\)
−0.663407 + 0.748259i \(0.730890\pi\)
\(420\) −24.0834 14.7920i −1.17515 0.721775i
\(421\) 15.7466 + 5.73128i 0.767441 + 0.279326i 0.695926 0.718114i \(-0.254994\pi\)
0.0715154 + 0.997439i \(0.477217\pi\)
\(422\) 33.2702 19.2085i 1.61957 0.935057i
\(423\) 4.45256 + 3.06759i 0.216491 + 0.149152i
\(424\) 0.680030 1.17785i 0.0330252 0.0572013i
\(425\) 23.7153 + 8.63166i 1.15036 + 0.418697i
\(426\) −31.2886 16.1371i −1.51594 0.781846i
\(427\) 6.35598 + 8.83738i 0.307588 + 0.427671i
\(428\) 11.8191 + 2.08402i 0.571297 + 0.100735i
\(429\) −1.30115 + 1.70909i −0.0628202 + 0.0825157i
\(430\) 4.06192 11.1600i 0.195883 0.538184i
\(431\) 17.9406 10.3580i 0.864167 0.498927i −0.00123821 0.999999i \(-0.500394\pi\)
0.865406 + 0.501072i \(0.167061\pi\)
\(432\) 19.1898 6.29171i 0.923270 0.302710i
\(433\) 18.6305i 0.895324i 0.894203 + 0.447662i \(0.147743\pi\)
−0.894203 + 0.447662i \(0.852257\pi\)
\(434\) −4.58130 0.342517i −0.219910 0.0164413i
\(435\) −51.4053 + 21.5218i −2.46470 + 1.03189i
\(436\) −11.0743 9.29248i −0.530365 0.445029i
\(437\) −17.5229 14.7034i −0.838233 0.703361i
\(438\) 16.5631 + 8.54246i 0.791417 + 0.408174i
\(439\) 1.20161 3.30140i 0.0573497 0.157567i −0.907709 0.419600i \(-0.862171\pi\)
0.965059 + 0.262032i \(0.0843927\pi\)
\(440\) −0.421441 0.729957i −0.0200914 0.0347993i
\(441\) −2.51693 20.8486i −0.119854 0.992792i
\(442\) −3.11476 + 5.39492i −0.148154 + 0.256610i
\(443\) 23.6051 + 28.1315i 1.12151 + 1.33657i 0.935217 + 0.354075i \(0.115204\pi\)
0.186297 + 0.982494i \(0.440351\pi\)
\(444\) −2.53091 2.74104i −0.120112 0.130084i
\(445\) −7.52578 + 42.6808i −0.356756 + 2.02326i
\(446\) 41.0702 14.9483i 1.94473 0.707824i
\(447\) −5.93293 26.2890i −0.280618 1.24342i
\(448\) −9.68702 20.1063i −0.457669 0.949934i
\(449\) 1.43645 + 0.829336i 0.0677904 + 0.0391388i 0.533512 0.845792i \(-0.320872\pi\)
−0.465722 + 0.884931i \(0.654205\pi\)
\(450\) 22.0083 + 10.0599i 1.03748 + 0.474228i
\(451\) 12.0602 + 6.96298i 0.567895 + 0.327874i
\(452\) −9.92365 11.8265i −0.466769 0.556274i
\(453\) −1.19871 25.2544i −0.0563204 1.18655i
\(454\) 0.275010 + 0.755584i 0.0129069 + 0.0354613i
\(455\) −3.87880 + 0.388817i −0.181841 + 0.0182280i
\(456\) 0.261777 + 0.625259i 0.0122588 + 0.0292805i
\(457\) 4.22534 + 23.9631i 0.197653 + 1.12095i 0.908590 + 0.417690i \(0.137160\pi\)
−0.710937 + 0.703256i \(0.751729\pi\)
\(458\) 2.69996 + 4.67647i 0.126161 + 0.218517i
\(459\) 30.3876 + 12.1833i 1.41837 + 0.568669i
\(460\) 34.7155 + 20.0430i 1.61862 + 0.934509i
\(461\) 4.64297 3.89592i 0.216245 0.181451i −0.528230 0.849101i \(-0.677144\pi\)
0.744475 + 0.667650i \(0.232700\pi\)
\(462\) 8.56491 21.6787i 0.398476 1.00859i
\(463\) 4.54433 25.7722i 0.211193 1.19773i −0.676199 0.736719i \(-0.736374\pi\)
0.887392 0.461015i \(-0.152515\pi\)
\(464\) −41.0370 7.23593i −1.90509 0.335920i
\(465\) 4.47682 0.212495i 0.207608 0.00985422i
\(466\) −19.3072 + 16.2006i −0.894388 + 0.750480i
\(467\) 15.2497 0.705674 0.352837 0.935685i \(-0.385217\pi\)
0.352837 + 0.935685i \(0.385217\pi\)
\(468\) −1.71746 + 2.49287i −0.0793898 + 0.115233i
\(469\) −9.25233 9.02131i −0.427233 0.416566i
\(470\) −3.72518 + 10.2348i −0.171830 + 0.472098i
\(471\) −29.0910 + 26.8609i −1.34044 + 1.23768i
\(472\) −0.374485 0.0660318i −0.0172371 0.00303936i
\(473\) 4.88857 + 0.861987i 0.224777 + 0.0396342i
\(474\) −6.96775 30.8743i −0.320039 1.41810i
\(475\) 4.82152 13.2470i 0.221226 0.607814i
\(476\) 8.44816 33.2023i 0.387221 1.52182i
\(477\) −35.3694 + 9.76564i −1.61945 + 0.447138i
\(478\) 30.4259 1.39165
\(479\) 25.1953 21.1414i 1.15120 0.965976i 0.151458 0.988464i \(-0.451603\pi\)
0.999747 + 0.0224882i \(0.00715881\pi\)
\(480\) 22.6123 + 35.1986i 1.03211 + 1.60659i
\(481\) −0.506756 0.0893547i −0.0231061 0.00407423i
\(482\) 10.2674 58.2295i 0.467669 2.65228i
\(483\) 4.37251 + 29.4617i 0.198956 + 1.34056i
\(484\) −7.27357 + 6.10325i −0.330617 + 0.277420i
\(485\) 5.81109 + 3.35504i 0.263868 + 0.152344i
\(486\) 28.1146 + 13.9638i 1.27531 + 0.633409i
\(487\) −8.71327 15.0918i −0.394836 0.683876i 0.598244 0.801314i \(-0.295865\pi\)
−0.993080 + 0.117438i \(0.962532\pi\)
\(488\) 0.0794466 + 0.450564i 0.00359638 + 0.0203961i
\(489\) −7.58236 + 9.95959i −0.342886 + 0.450388i
\(490\) 39.3723 15.4684i 1.77866 0.698790i
\(491\) 3.91810 + 10.7649i 0.176821 + 0.485813i 0.996165 0.0874893i \(-0.0278844\pi\)
−0.819344 + 0.573302i \(0.805662\pi\)
\(492\) 17.4427 + 8.99611i 0.786379 + 0.405576i
\(493\) −43.4225 51.7489i −1.95565 2.33065i
\(494\) 3.01352 + 1.73986i 0.135585 + 0.0782799i
\(495\) −5.71856 + 22.0091i −0.257030 + 0.989236i
\(496\) 2.90224 + 1.67561i 0.130315 + 0.0752372i
\(497\) 24.0579 11.5908i 1.07914 0.519920i
\(498\) 11.0260 10.1807i 0.494087 0.456210i
\(499\) −3.66396 + 1.33357i −0.164021 + 0.0596989i −0.422726 0.906258i \(-0.638927\pi\)
0.258704 + 0.965957i \(0.416704\pi\)
\(500\) 1.06506 6.04026i 0.0476310 0.270129i
\(501\) −36.2139 + 8.17280i −1.61792 + 0.365134i
\(502\) −4.24729 5.06172i −0.189566 0.225916i
\(503\) −4.19074 + 7.25858i −0.186856 + 0.323644i −0.944200 0.329372i \(-0.893163\pi\)
0.757344 + 0.653016i \(0.226496\pi\)
\(504\) 0.285028 0.835321i 0.0126961 0.0372082i
\(505\) −5.94305 10.2937i −0.264462 0.458062i
\(506\) −11.3071 + 31.0660i −0.502662 + 1.38105i
\(507\) −1.04777 22.0743i −0.0465330 0.980353i
\(508\) −8.84460 7.42150i −0.392416 0.329276i
\(509\) 33.9754 + 28.5087i 1.50593 + 1.26363i 0.871234 + 0.490867i \(0.163320\pi\)
0.634698 + 0.772760i \(0.281124\pi\)
\(510\) −8.35970 + 65.4166i −0.370174 + 2.89669i
\(511\) −12.7354 + 6.13580i −0.563383 + 0.271432i
\(512\) 32.1465i 1.42069i
\(513\) 6.80542 16.9740i 0.300467 0.749422i
\(514\) 9.71484 5.60887i 0.428503 0.247397i
\(515\) −10.8753 + 29.8796i −0.479222 + 1.31665i
\(516\) 6.93935 + 0.886793i 0.305488 + 0.0390389i
\(517\) −4.48330 0.790526i −0.197175 0.0347673i
\(518\) 5.55607 0.556949i 0.244120 0.0244709i
\(519\) 19.6768 12.6408i 0.863716 0.554869i
\(520\) −0.153959 0.0560364i −0.00675154 0.00245736i
\(521\) −9.17120 + 15.8850i −0.401798 + 0.695934i −0.993943 0.109897i \(-0.964948\pi\)
0.592145 + 0.805831i \(0.298281\pi\)
\(522\) −37.5540 52.7751i −1.64369 2.30990i
\(523\) −6.16402 + 3.55880i −0.269534 + 0.155615i −0.628676 0.777668i \(-0.716403\pi\)
0.359142 + 0.933283i \(0.383069\pi\)
\(524\) 3.95297 + 1.43876i 0.172686 + 0.0628527i
\(525\) −16.1401 + 8.74218i −0.704413 + 0.381540i
\(526\) −39.7241 33.3325i −1.73205 1.45337i
\(527\) 1.85814 + 5.10519i 0.0809417 + 0.222386i
\(528\) −12.4924 + 11.5348i −0.543664 + 0.501987i
\(529\) −3.34159 18.9511i −0.145287 0.823962i
\(530\) −36.9565 64.0106i −1.60529 2.78044i
\(531\) 5.94797 + 8.35876i 0.258120 + 0.362739i
\(532\) −18.5463 4.71902i −0.804083 0.204595i
\(533\) 2.66581 0.470054i 0.115469 0.0203603i
\(534\) −50.3159 + 2.38827i −2.17738 + 0.103351i
\(535\) 11.2641 13.4240i 0.486989 0.580371i
\(536\) −0.185758 0.510365i −0.00802350 0.0220444i
\(537\) −0.606514 + 4.74611i −0.0261730 + 0.204810i
\(538\) 2.86055 + 3.40907i 0.123327 + 0.146975i
\(539\) 9.22485 + 15.0840i 0.397342 + 0.649712i
\(540\) −6.57954 + 31.3649i −0.283138 + 1.34973i
\(541\) −6.49394 + 11.2478i −0.279196 + 0.483582i −0.971185 0.238326i \(-0.923401\pi\)
0.691989 + 0.721908i \(0.256735\pi\)
\(542\) 17.2434 + 6.27609i 0.740668 + 0.269581i
\(543\) 32.6360 13.6637i 1.40055 0.586365i
\(544\) −32.5976 + 38.8484i −1.39761 + 1.66561i
\(545\) −19.8356 + 7.21959i −0.849666 + 0.309253i
\(546\) −1.43330 4.29819i −0.0613397 0.183945i
\(547\) 0.155111 + 0.879676i 0.00663205 + 0.0376122i 0.987944 0.154810i \(-0.0494767\pi\)
−0.981312 + 0.192423i \(0.938366\pi\)
\(548\) 0.406986i 0.0173856i
\(549\) 7.00278 10.1644i 0.298871 0.433807i
\(550\) −20.3742 −0.868758
\(551\) −28.9061 + 24.2551i −1.23144 + 1.03330i
\(552\) −0.371892 + 1.19530i −0.0158288 + 0.0508752i
\(553\) 21.8856 + 9.87057i 0.930672 + 0.419739i
\(554\) −29.6810 + 35.3724i −1.26102 + 1.50283i
\(555\) −5.31387 + 1.19924i −0.225561 + 0.0509049i
\(556\) 16.8453 2.97029i 0.714401 0.125968i
\(557\) 39.5370i 1.67523i 0.546258 + 0.837617i \(0.316052\pi\)
−0.546258 + 0.837617i \(0.683948\pi\)
\(558\) 1.38641 + 5.02133i 0.0586915 + 0.212570i
\(559\) 0.835628 0.482450i 0.0353433 0.0204055i
\(560\) −30.7718 2.30063i −1.30035 0.0972192i
\(561\) −27.5339 + 1.30691i −1.16248 + 0.0551778i
\(562\) 1.68299 9.54471i 0.0709927 0.402619i
\(563\) 0.466161 0.169669i 0.0196464 0.00715069i −0.332178 0.943217i \(-0.607784\pi\)
0.351825 + 0.936066i \(0.385561\pi\)
\(564\) −6.36407 0.813276i −0.267976 0.0342451i
\(565\) −22.1999 + 3.91445i −0.933959 + 0.164682i
\(566\) 36.6309 1.53971
\(567\) −21.2924 + 10.6599i −0.894198 + 0.447672i
\(568\) 1.12236 0.0470933
\(569\) −27.9584 + 4.92982i −1.17208 + 0.206669i −0.725594 0.688123i \(-0.758435\pi\)
−0.446483 + 0.894792i \(0.647324\pi\)
\(570\) 36.5407 + 4.66960i 1.53052 + 0.195588i
\(571\) 12.8351 4.67158i 0.537131 0.195500i −0.0591885 0.998247i \(-0.518851\pi\)
0.596320 + 0.802747i \(0.296629\pi\)
\(572\) 0.442594 2.51008i 0.0185058 0.104952i
\(573\) 28.3980 1.34793i 1.18634 0.0563104i
\(574\) −26.4632 + 12.7497i −1.10455 + 0.532162i
\(575\) 22.5460 13.0170i 0.940235 0.542845i
\(576\) −17.7580 + 18.0297i −0.739916 + 0.751239i
\(577\) 19.0746i 0.794084i 0.917800 + 0.397042i \(0.129963\pi\)
−0.917800 + 0.397042i \(0.870037\pi\)
\(578\) −45.0133 + 7.93706i −1.87231 + 0.330138i
\(579\) −32.3044 + 7.29050i −1.34253 + 0.302983i
\(580\) 42.5054 50.6560i 1.76494 2.10338i
\(581\) 1.13543 + 11.3270i 0.0471057 + 0.469922i
\(582\) −2.31695 + 7.44691i −0.0960409 + 0.308684i
\(583\) 23.6661 19.8582i 0.980148 0.822442i
\(584\) −0.594142 −0.0245858
\(585\) 1.89842 + 3.99175i 0.0784899 + 0.165039i
\(586\) 39.2790i 1.62260i
\(587\) 5.92168 + 33.5835i 0.244414 + 1.38614i 0.821850 + 0.569704i \(0.192942\pi\)
−0.577436 + 0.816436i \(0.695947\pi\)
\(588\) 13.9939 + 20.6176i 0.577100 + 0.850257i
\(589\) 2.85168 1.03793i 0.117502 0.0427671i
\(590\) −13.2835 + 15.8307i −0.546874 + 0.651739i
\(591\) 5.46883 2.28963i 0.224958 0.0941827i
\(592\) −3.82762 1.39314i −0.157314 0.0572576i
\(593\) −19.3036 + 33.4348i −0.792703 + 1.37300i 0.131584 + 0.991305i \(0.457994\pi\)
−0.924287 + 0.381697i \(0.875340\pi\)
\(594\) −26.4165 0.852045i −1.08388 0.0349598i
\(595\) −35.8173 34.9230i −1.46837 1.43170i
\(596\) 20.5554 + 24.4970i 0.841982 + 1.00343i
\(597\) −2.15852 + 16.8909i −0.0883423 + 0.691298i
\(598\) 2.19788 + 6.03862i 0.0898779 + 0.246937i
\(599\) 8.57758 10.2224i 0.350471 0.417675i −0.561793 0.827278i \(-0.689888\pi\)
0.912264 + 0.409603i \(0.134333\pi\)
\(600\) −0.770604 + 0.0365771i −0.0314598 + 0.00149326i
\(601\) −17.6264 + 3.10801i −0.718997 + 0.126778i −0.521163 0.853457i \(-0.674502\pi\)
−0.197834 + 0.980236i \(0.563391\pi\)
\(602\) −7.30969 + 7.49687i −0.297921 + 0.305550i
\(603\) −6.09147 + 13.3265i −0.248064 + 0.542696i
\(604\) 15.0001 + 25.9809i 0.610343 + 1.05715i
\(605\) 2.40747 + 13.6534i 0.0978774 + 0.555090i
\(606\) 10.1500 9.37192i 0.412316 0.380708i
\(607\) −8.84588 24.3038i −0.359043 0.986463i −0.979362 0.202113i \(-0.935219\pi\)
0.620319 0.784349i \(-0.287003\pi\)
\(608\) 21.7001 + 18.2086i 0.880056 + 0.738454i
\(609\) 49.1149 + 1.33602i 1.99024 + 0.0541382i
\(610\) 23.3643 + 8.50393i 0.945995 + 0.344314i
\(611\) −0.766353 + 0.442454i −0.0310033 + 0.0178998i
\(612\) −38.6728 + 3.67954i −1.56325 + 0.148737i
\(613\) −1.37739 + 2.38571i −0.0556323 + 0.0963579i −0.892500 0.451047i \(-0.851051\pi\)
0.836868 + 0.547405i \(0.184384\pi\)
\(614\) 16.8751 + 6.14203i 0.681023 + 0.247872i
\(615\) 24.1103 15.4889i 0.972220 0.624575i
\(616\) 0.0741203 + 0.739417i 0.00298639 + 0.0297920i
\(617\) −7.51530 1.32515i −0.302554 0.0533485i 0.0203100 0.999794i \(-0.493535\pi\)
−0.322864 + 0.946445i \(0.604646\pi\)
\(618\) −36.6593 4.68477i −1.47466 0.188449i
\(619\) −2.71403 + 7.45673i −0.109086 + 0.299711i −0.982210 0.187787i \(-0.939868\pi\)
0.873124 + 0.487499i \(0.162091\pi\)
\(620\) −4.60561 + 2.65905i −0.184966 + 0.106790i
\(621\) 29.7769 15.9345i 1.19491 0.639431i
\(622\) 1.77358i 0.0711142i
\(623\) 21.5189 31.5742i 0.862135 1.26500i
\(624\) −0.418959 + 3.27844i −0.0167718 + 0.131243i
\(625\) −22.2026 18.6302i −0.888102 0.745206i
\(626\) 32.9635 + 27.6597i 1.31749 + 1.10550i
\(627\) 0.730021 + 15.3800i 0.0291542 + 0.614218i
\(628\) 16.0692 44.1497i 0.641230 1.76176i
\(629\) −3.30168 5.71868i −0.131647 0.228019i
\(630\) −31.5690 36.1126i −1.25774 1.43876i
\(631\) 11.5353 19.9797i 0.459213 0.795380i −0.539706 0.841853i \(-0.681465\pi\)
0.998920 + 0.0464728i \(0.0147981\pi\)
\(632\) 0.648609 + 0.772982i 0.0258003 + 0.0307476i
\(633\) 32.2322 7.27422i 1.28112 0.289124i
\(634\) −8.68562 + 49.2586i −0.344950 + 1.95631i
\(635\) −15.8419 + 5.76597i −0.628665 + 0.228815i
\(636\) 31.9884 29.5362i 1.26842 1.17118i
\(637\) 3.25828 + 1.09346i 0.129098 + 0.0433244i
\(638\) 47.2296 + 27.2680i 1.86984 + 1.07955i
\(639\) −21.5732 21.2480i −0.853421 0.840558i
\(640\) −2.31105 1.33428i −0.0913521 0.0527422i
\(641\) −19.1988 22.8802i −0.758307 0.903715i 0.239432 0.970913i \(-0.423039\pi\)
−0.997740 + 0.0671977i \(0.978594\pi\)
\(642\) 18.1019 + 9.33609i 0.714426 + 0.368466i
\(643\) 5.32645 + 14.6343i 0.210055 + 0.577120i 0.999318 0.0369349i \(-0.0117594\pi\)
−0.789263 + 0.614055i \(0.789537\pi\)
\(644\) −20.6355 28.6916i −0.813152 1.13061i
\(645\) 6.18761 8.12756i 0.243637 0.320022i
\(646\) 7.75411 + 43.9758i 0.305082 + 1.73020i
\(647\) −10.4580 18.1138i −0.411148 0.712128i 0.583868 0.811849i \(-0.301539\pi\)
−0.995016 + 0.0997202i \(0.968205\pi\)
\(648\) −1.00067 + 0.0151983i −0.0393101 + 0.000597046i
\(649\) −7.48045 4.31884i −0.293633 0.169529i
\(650\) −3.03379 + 2.54565i −0.118995 + 0.0998488i
\(651\) −3.67500 1.45193i −0.144034 0.0569057i
\(652\) 2.57919 14.6273i 0.101009 0.572849i
\(653\) 25.7874 + 4.54701i 1.00914 + 0.177938i 0.653693 0.756760i \(-0.273219\pi\)
0.355444 + 0.934698i \(0.384330\pi\)
\(654\) −13.2607 20.6418i −0.518536 0.807159i
\(655\) 4.70531 3.94823i 0.183852 0.154270i
\(656\) 21.4276 0.836605
\(657\) 11.4201 + 11.2480i 0.445541 + 0.438826i
\(658\) 6.70370 6.87537i 0.261337 0.268030i
\(659\) 6.02259 16.5469i 0.234607 0.644577i −0.765393 0.643564i \(-0.777455\pi\)
0.999999 0.00101351i \(-0.000322611\pi\)
\(660\) −5.94011 26.3208i −0.231219 1.02454i
\(661\) −33.6531 5.93395i −1.30895 0.230804i −0.524723 0.851273i \(-0.675831\pi\)
−0.784231 + 0.620469i \(0.786942\pi\)
\(662\) −3.50394 0.617839i −0.136184 0.0240130i
\(663\) −3.93661 + 3.63483i −0.152885 + 0.141165i
\(664\) −0.163639 + 0.449594i −0.00635042 + 0.0174476i
\(665\) −19.5075 + 20.0070i −0.756467 + 0.775838i
\(666\) −2.71933 5.71786i −0.105372 0.221563i
\(667\) −69.6857 −2.69824
\(668\) 33.7454 28.3157i 1.30565 1.09557i
\(669\) 37.5497 1.78232i 1.45175 0.0689083i
\(670\) −29.0676 5.12540i −1.12298 0.198011i
\(671\) −1.80463 + 10.2346i −0.0696671 + 0.395102i
\(672\) −5.41486 36.4850i −0.208883 1.40744i
\(673\) −0.789136 + 0.662163i −0.0304189 + 0.0255245i −0.657870 0.753131i \(-0.728543\pi\)
0.627451 + 0.778656i \(0.284098\pi\)
\(674\) −39.9921 23.0895i −1.54044 0.889373i
\(675\) 15.5044 + 13.8856i 0.596764 + 0.534457i
\(676\) 13.1112 + 22.7093i 0.504277 + 0.873434i
\(677\) −6.77842 38.4423i −0.260516 1.47746i −0.781507 0.623897i \(-0.785548\pi\)
0.520991 0.853562i \(-0.325563\pi\)
\(678\) −10.1184 24.1681i −0.388596 0.928170i
\(679\) −3.45421 4.80275i −0.132561 0.184313i
\(680\) −0.719098 1.97571i −0.0275762 0.0757649i
\(681\) 0.0327899 + 0.690815i 0.00125651 + 0.0264721i
\(682\) −2.81923 3.35983i −0.107954 0.128655i
\(683\) 37.7150 + 21.7748i 1.44312 + 0.833188i 0.998057 0.0623096i \(-0.0198466\pi\)
0.445067 + 0.895497i \(0.353180\pi\)
\(684\) 2.05534 + 21.6020i 0.0785877 + 0.825974i
\(685\) 0.514643 + 0.297129i 0.0196635 + 0.0113527i
\(686\) −37.2499 1.83950i −1.42221 0.0702325i
\(687\) 1.02247 + 4.53058i 0.0390096 + 0.172852i
\(688\) 7.17734 2.61234i 0.273634 0.0995945i
\(689\) 1.04278 5.91392i 0.0397269 0.225302i
\(690\) 46.1507 + 49.9823i 1.75693 + 1.90279i
\(691\) 8.36147 + 9.96481i 0.318085 + 0.379079i 0.901268 0.433262i \(-0.142637\pi\)
−0.583183 + 0.812341i \(0.698193\pi\)
\(692\) −13.8755 + 24.0330i −0.527466 + 0.913598i
\(693\) 12.5736 15.6157i 0.477631 0.593191i
\(694\) 3.62186 + 6.27324i 0.137484 + 0.238129i
\(695\) 8.54233 23.4699i 0.324029 0.890262i
\(696\) 1.83530 + 0.946558i 0.0695669 + 0.0358792i
\(697\) 26.6103 + 22.3287i 1.00794 + 0.845759i
\(698\) −6.05296 5.07904i −0.229108 0.192245i
\(699\) −19.9962 + 8.37177i −0.756325 + 0.316649i
\(700\) 12.2662 17.9980i 0.463620 0.680261i
\(701\) 15.3053i 0.578074i −0.957318 0.289037i \(-0.906665\pi\)
0.957318 0.289037i \(-0.0933351\pi\)
\(702\) −4.03998 + 3.17375i −0.152479 + 0.119785i
\(703\) −3.19437 + 1.84427i −0.120478 + 0.0695580i
\(704\) 7.28743 20.0221i 0.274656 0.754610i
\(705\) −5.67464 + 7.45376i −0.213719 + 0.280725i
\(706\) −43.4076 7.65393i −1.63367 0.288060i
\(707\) 1.04523 + 10.4271i 0.0393098 + 0.392151i
\(708\) −10.8190 5.57990i −0.406602 0.209705i
\(709\) 22.4964 + 8.18802i 0.844870 + 0.307507i 0.727947 0.685634i \(-0.240475\pi\)
0.116923 + 0.993141i \(0.462697\pi\)
\(710\) 30.4977 52.8235i 1.14456 1.98243i
\(711\) 2.16665 27.1367i 0.0812558 1.01771i
\(712\) 1.39077 0.802963i 0.0521214 0.0300923i
\(713\) 5.26634 + 1.91679i 0.197226 + 0.0717844i
\(714\) 30.4301 49.5444i 1.13882 1.85415i
\(715\) −2.85093 2.39221i −0.106619 0.0894636i
\(716\) −1.94180 5.33505i −0.0725685 0.199380i
\(717\) 24.9881 + 7.77454i 0.933198 + 0.290345i
\(718\) 5.84319 + 33.1384i 0.218066 + 1.23671i
\(719\) −18.8581 32.6631i −0.703287 1.21813i −0.967306 0.253612i \(-0.918381\pi\)
0.264019 0.964518i \(-0.414952\pi\)
\(720\) 9.31228 + 33.7274i 0.347048 + 1.25695i
\(721\) 19.5708 20.0720i 0.728854 0.747519i
\(722\) −13.1159 + 2.31269i −0.488124 + 0.0860694i
\(723\) 23.3114 45.1989i 0.866960 1.68097i
\(724\) −26.9857 + 32.1603i −1.00292 + 1.19523i
\(725\) −14.6884 40.3562i −0.545515 1.49879i
\(726\) −14.8639 + 6.22304i −0.551650 + 0.230959i
\(727\) 7.32384 + 8.72821i 0.271626 + 0.323712i 0.884563 0.466420i \(-0.154457\pi\)
−0.612937 + 0.790132i \(0.710012\pi\)
\(728\) 0.103423 + 0.100841i 0.00383313 + 0.00373742i
\(729\) 19.5218 + 18.6520i 0.723030 + 0.690817i
\(730\) −16.1445 + 27.9630i −0.597533 + 1.03496i
\(731\) 11.6355 + 4.23499i 0.430356 + 0.156637i
\(732\) −1.85657 + 14.5280i −0.0686207 + 0.536972i
\(733\) 18.6067 22.1746i 0.687255 0.819038i −0.303766 0.952747i \(-0.598244\pi\)
0.991021 + 0.133708i \(0.0426885\pi\)
\(734\) 50.8710 18.5155i 1.87768 0.683421i
\(735\) 36.2881 2.64326i 1.33851 0.0974981i
\(736\) 9.08419 + 51.5190i 0.334848 + 1.89901i
\(737\) 12.3370i 0.454438i
\(738\) 23.7301 + 23.3724i 0.873516 + 0.860349i
\(739\) −35.3795 −1.30146 −0.650728 0.759311i \(-0.725536\pi\)
−0.650728 + 0.759311i \(0.725536\pi\)
\(740\) 4.95164 4.15492i 0.182026 0.152738i
\(741\) 2.03036 + 2.19893i 0.0745872 + 0.0807797i
\(742\) 6.49968 + 64.8402i 0.238611 + 2.38036i
\(743\) 16.4643 19.6213i 0.604015 0.719837i −0.374220 0.927340i \(-0.622089\pi\)
0.978234 + 0.207503i \(0.0665338\pi\)
\(744\) −0.112662 0.122016i −0.00413040 0.00447333i
\(745\) 45.9839 8.10821i 1.68472 0.297062i
\(746\) 28.4784i 1.04267i
\(747\) 11.6568 5.54381i 0.426500 0.202837i
\(748\) 28.3259 16.3540i 1.03570 0.597961i
\(749\) −13.9186 + 6.70585i −0.508575 + 0.245026i
\(750\) 4.77131 9.25118i 0.174223 0.337805i
\(751\) 0.185856 1.05404i 0.00678197 0.0384625i −0.981229 0.192846i \(-0.938228\pi\)
0.988011 + 0.154384i \(0.0493392\pi\)
\(752\) −6.58232 + 2.39577i −0.240033 + 0.0873647i
\(753\) −2.19481 5.24235i −0.0799833 0.191042i
\(754\) 10.4397 1.84080i 0.380191 0.0670379i
\(755\) 43.8045 1.59421
\(756\) 16.6567 22.8227i 0.605799 0.830054i
\(757\) −10.1445 −0.368708 −0.184354 0.982860i \(-0.559019\pi\)
−0.184354 + 0.982860i \(0.559019\pi\)
\(758\) −3.05577 + 0.538814i −0.110990 + 0.0195706i
\(759\) −17.2244 + 22.6246i −0.625204 + 0.821219i
\(760\) −1.10360 + 0.401677i −0.0400318 + 0.0145704i
\(761\) −4.89427 + 27.7568i −0.177417 + 1.00618i 0.757900 + 0.652371i \(0.226225\pi\)
−0.935317 + 0.353811i \(0.884886\pi\)
\(762\) −10.5908 16.4857i −0.383663 0.597215i
\(763\) 18.5586 + 1.38751i 0.671865 + 0.0502314i
\(764\) −29.2149 + 16.8672i −1.05696 + 0.610235i
\(765\) −23.5811 + 51.5890i −0.852576 + 1.86520i
\(766\) 47.4102i 1.71300i
\(767\) −1.65349 + 0.291554i −0.0597039 + 0.0105274i