Properties

Label 189.2.ba.a.5.20
Level $189$
Weight $2$
Character 189.5
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 5.20
Character \(\chi\) \(=\) 189.5
Dual form 189.2.ba.a.38.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.95754 - 0.345166i) q^{2} +(-1.39494 + 1.02672i) q^{3} +(1.83342 - 0.667310i) q^{4} +(-0.649669 + 3.68445i) q^{5} +(-2.37625 + 2.49133i) q^{6} +(2.58740 - 0.552593i) q^{7} +(-0.0842052 + 0.0486159i) q^{8} +(0.891690 - 2.86442i) q^{9} +O(q^{10})\) \(q+(1.95754 - 0.345166i) q^{2} +(-1.39494 + 1.02672i) q^{3} +(1.83342 - 0.667310i) q^{4} +(-0.649669 + 3.68445i) q^{5} +(-2.37625 + 2.49133i) q^{6} +(2.58740 - 0.552593i) q^{7} +(-0.0842052 + 0.0486159i) q^{8} +(0.891690 - 2.86442i) q^{9} +7.43669i q^{10} +(0.526860 - 0.0928996i) q^{11} +(-1.87236 + 2.81326i) q^{12} +(3.22666 - 3.84539i) q^{13} +(4.87419 - 1.97480i) q^{14} +(-2.87666 - 5.80660i) q^{15} +(-3.13729 + 2.63250i) q^{16} -4.53776 q^{17} +(0.756814 - 5.91498i) q^{18} -1.20759i q^{19} +(1.26756 + 7.18868i) q^{20} +(-3.04190 + 3.42737i) q^{21} +(0.999281 - 0.363709i) q^{22} +(5.35042 - 6.37638i) q^{23} +(0.0675459 - 0.154271i) q^{24} +(-8.45466 - 3.07725i) q^{25} +(4.98901 - 8.64122i) q^{26} +(1.69711 + 4.91119i) q^{27} +(4.37504 - 2.73973i) q^{28} +(2.30869 + 2.75138i) q^{29} +(-7.63540 - 10.3737i) q^{30} +(-0.0334941 - 0.0920242i) q^{31} +(-5.10770 + 6.08713i) q^{32} +(-0.639554 + 0.670527i) q^{33} +(-8.88283 + 1.56628i) q^{34} +(0.355050 + 9.89216i) q^{35} +(-0.276613 - 5.84671i) q^{36} +(-0.267738 - 0.463737i) q^{37} +(-0.416820 - 2.36390i) q^{38} +(-0.552849 + 8.67695i) q^{39} +(-0.124418 - 0.341834i) q^{40} +(-5.79016 - 4.85852i) q^{41} +(-4.77161 + 7.75916i) q^{42} +(-0.0316146 - 0.0115068i) q^{43} +(0.903962 - 0.521903i) q^{44} +(9.97451 + 5.14631i) q^{45} +(8.27273 - 14.3288i) q^{46} +(5.19200 + 1.88973i) q^{47} +(1.67348 - 6.89328i) q^{48} +(6.38928 - 2.85956i) q^{49} +(-17.6125 - 3.10555i) q^{50} +(6.32988 - 4.65901i) q^{51} +(3.34976 - 9.20340i) q^{52} +(-8.57774 + 4.95236i) q^{53} +(5.01732 + 9.02805i) q^{54} +2.00154i q^{55} +(-0.191008 + 0.172320i) q^{56} +(1.23986 + 1.68451i) q^{57} +(5.46902 + 4.58905i) q^{58} +(0.583744 + 0.489820i) q^{59} +(-9.14892 - 8.72631i) q^{60} +(2.21618 - 6.08890i) q^{61} +(-0.0973295 - 0.168580i) q^{62} +(0.724302 - 7.90414i) q^{63} +(-3.80200 + 6.58526i) q^{64} +(12.0719 + 14.3867i) q^{65} +(-1.02051 + 1.53333i) q^{66} +(-1.14393 + 6.48754i) q^{67} +(-8.31962 + 3.02809i) q^{68} +(-0.916728 + 14.3880i) q^{69} +(4.10946 + 19.2417i) q^{70} +(3.13261 + 1.80861i) q^{71} +(0.0641713 + 0.284549i) q^{72} +(-5.76249 - 3.32698i) q^{73} +(-0.684174 - 0.815366i) q^{74} +(14.9532 - 4.38802i) q^{75} +(-0.805838 - 2.21402i) q^{76} +(1.31186 - 0.531508i) q^{77} +(1.91277 + 17.1763i) q^{78} +(-0.909744 - 5.15941i) q^{79} +(-7.66112 - 13.2694i) q^{80} +(-7.40978 - 5.10834i) q^{81} +(-13.0114 - 7.51215i) q^{82} +(-1.39005 + 1.16639i) q^{83} +(-3.28996 + 8.31369i) q^{84} +(2.94804 - 16.7192i) q^{85} +(-0.0658585 - 0.0116126i) q^{86} +(-6.04537 - 1.46763i) q^{87} +(-0.0398480 + 0.0334364i) q^{88} -9.21301 q^{89} +(21.3018 + 6.63122i) q^{90} +(6.22374 - 11.7326i) q^{91} +(5.55454 - 15.2610i) q^{92} +(0.141205 + 0.0939788i) q^{93} +(10.8158 + 1.90712i) q^{94} +(4.44931 + 0.784534i) q^{95} +(0.875142 - 13.7353i) q^{96} +(-4.37434 + 12.0184i) q^{97} +(11.5202 - 7.80305i) q^{98} +(0.203692 - 1.59198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.95754 0.345166i 1.38419 0.244069i 0.568557 0.822644i \(-0.307502\pi\)
0.815630 + 0.578575i \(0.196391\pi\)
\(3\) −1.39494 + 1.02672i −0.805366 + 0.592777i
\(4\) 1.83342 0.667310i 0.916710 0.333655i
\(5\) −0.649669 + 3.68445i −0.290541 + 1.64774i 0.394254 + 0.919001i \(0.371003\pi\)
−0.684795 + 0.728736i \(0.740108\pi\)
\(6\) −2.37625 + 2.49133i −0.970098 + 1.01708i
\(7\) 2.58740 0.552593i 0.977945 0.208860i
\(8\) −0.0842052 + 0.0486159i −0.0297710 + 0.0171883i
\(9\) 0.891690 2.86442i 0.297230 0.954806i
\(10\) 7.43669i 2.35169i
\(11\) 0.526860 0.0928996i 0.158854 0.0280103i −0.0936554 0.995605i \(-0.529855\pi\)
0.252510 + 0.967594i \(0.418744\pi\)
\(12\) −1.87236 + 2.81326i −0.540504 + 0.812119i
\(13\) 3.22666 3.84539i 0.894916 1.06652i −0.102504 0.994733i \(-0.532686\pi\)
0.997420 0.0717866i \(-0.0228700\pi\)
\(14\) 4.87419 1.97480i 1.30268 0.527788i
\(15\) −2.87666 5.80660i −0.742750 1.49926i
\(16\) −3.13729 + 2.63250i −0.784322 + 0.658124i
\(17\) −4.53776 −1.10057 −0.550284 0.834977i \(-0.685481\pi\)
−0.550284 + 0.834977i \(0.685481\pi\)
\(18\) 0.756814 5.91498i 0.178383 1.39417i
\(19\) 1.20759i 0.277041i −0.990360 0.138520i \(-0.955765\pi\)
0.990360 0.138520i \(-0.0442346\pi\)
\(20\) 1.26756 + 7.18868i 0.283435 + 1.60744i
\(21\) −3.04190 + 3.42737i −0.663797 + 0.747913i
\(22\) 0.999281 0.363709i 0.213047 0.0775429i
\(23\) 5.35042 6.37638i 1.11564 1.32957i 0.177180 0.984178i \(-0.443302\pi\)
0.938459 0.345389i \(-0.112253\pi\)
\(24\) 0.0675459 0.154271i 0.0137878 0.0314905i
\(25\) −8.45466 3.07725i −1.69093 0.615449i
\(26\) 4.98901 8.64122i 0.978426 1.69468i
\(27\) 1.69711 + 4.91119i 0.326608 + 0.945160i
\(28\) 4.37504 2.73973i 0.826805 0.517761i
\(29\) 2.30869 + 2.75138i 0.428712 + 0.510919i 0.936550 0.350533i \(-0.114000\pi\)
−0.507838 + 0.861452i \(0.669555\pi\)
\(30\) −7.63540 10.3737i −1.39403 1.89397i
\(31\) −0.0334941 0.0920242i −0.00601571 0.0165280i 0.936648 0.350271i \(-0.113910\pi\)
−0.942664 + 0.333743i \(0.891688\pi\)
\(32\) −5.10770 + 6.08713i −0.902923 + 1.07606i
\(33\) −0.639554 + 0.670527i −0.111332 + 0.116724i
\(34\) −8.88283 + 1.56628i −1.52339 + 0.268615i
\(35\) 0.355050 + 9.89216i 0.0600144 + 1.67208i
\(36\) −0.276613 5.84671i −0.0461022 0.974452i
\(37\) −0.267738 0.463737i −0.0440159 0.0762378i 0.843178 0.537634i \(-0.180682\pi\)
−0.887194 + 0.461397i \(0.847349\pi\)
\(38\) −0.416820 2.36390i −0.0676171 0.383476i
\(39\) −0.552849 + 8.67695i −0.0885267 + 1.38942i
\(40\) −0.124418 0.341834i −0.0196721 0.0540488i
\(41\) −5.79016 4.85852i −0.904271 0.758773i 0.0667499 0.997770i \(-0.478737\pi\)
−0.971020 + 0.238997i \(0.923181\pi\)
\(42\) −4.77161 + 7.75916i −0.736276 + 1.19726i
\(43\) −0.0316146 0.0115068i −0.00482118 0.00175477i 0.339608 0.940567i \(-0.389705\pi\)
−0.344430 + 0.938812i \(0.611928\pi\)
\(44\) 0.903962 0.521903i 0.136277 0.0786798i
\(45\) 9.97451 + 5.14631i 1.48691 + 0.767167i
\(46\) 8.27273 14.3288i 1.21975 2.11266i
\(47\) 5.19200 + 1.88973i 0.757331 + 0.275646i 0.691687 0.722197i \(-0.256868\pi\)
0.0656440 + 0.997843i \(0.479090\pi\)
\(48\) 1.67348 6.89328i 0.241545 0.994960i
\(49\) 6.38928 2.85956i 0.912755 0.408508i
\(50\) −17.6125 3.10555i −2.49078 0.439191i
\(51\) 6.32988 4.65901i 0.886361 0.652392i
\(52\) 3.34976 9.20340i 0.464528 1.27628i
\(53\) −8.57774 + 4.95236i −1.17824 + 0.680259i −0.955608 0.294642i \(-0.904799\pi\)
−0.222636 + 0.974902i \(0.571466\pi\)
\(54\) 5.01732 + 9.02805i 0.682771 + 1.22856i
\(55\) 2.00154i 0.269888i
\(56\) −0.191008 + 0.172320i −0.0255245 + 0.0230272i
\(57\) 1.23986 + 1.68451i 0.164223 + 0.223119i
\(58\) 5.46902 + 4.58905i 0.718117 + 0.602572i
\(59\) 0.583744 + 0.489820i 0.0759970 + 0.0637691i 0.679995 0.733217i \(-0.261982\pi\)
−0.603998 + 0.796986i \(0.706426\pi\)
\(60\) −9.14892 8.72631i −1.18112 1.12656i
\(61\) 2.21618 6.08890i 0.283753 0.779604i −0.713154 0.701008i \(-0.752734\pi\)
0.996906 0.0785967i \(-0.0250439\pi\)
\(62\) −0.0973295 0.168580i −0.0123609 0.0214096i
\(63\) 0.724302 7.90414i 0.0912535 0.995828i
\(64\) −3.80200 + 6.58526i −0.475250 + 0.823158i
\(65\) 12.0719 + 14.3867i 1.49733 + 1.78445i
\(66\) −1.02051 + 1.53333i −0.125616 + 0.188740i
\(67\) −1.14393 + 6.48754i −0.139753 + 0.792579i 0.831678 + 0.555258i \(0.187380\pi\)
−0.971431 + 0.237321i \(0.923731\pi\)
\(68\) −8.31962 + 3.02809i −1.00890 + 0.367210i
\(69\) −0.916728 + 14.3880i −0.110361 + 1.73212i
\(70\) 4.10946 + 19.2417i 0.491175 + 2.29982i
\(71\) 3.13261 + 1.80861i 0.371772 + 0.214643i 0.674232 0.738519i \(-0.264475\pi\)
−0.302460 + 0.953162i \(0.597808\pi\)
\(72\) 0.0641713 + 0.284549i 0.00756266 + 0.0335345i
\(73\) −5.76249 3.32698i −0.674449 0.389393i 0.123312 0.992368i \(-0.460649\pi\)
−0.797760 + 0.602975i \(0.793982\pi\)
\(74\) −0.684174 0.815366i −0.0795336 0.0947844i
\(75\) 14.9532 4.38802i 1.72664 0.506685i
\(76\) −0.805838 2.21402i −0.0924360 0.253966i
\(77\) 1.31186 0.531508i 0.149501 0.0605709i
\(78\) 1.91277 + 17.1763i 0.216579 + 1.94483i
\(79\) −0.909744 5.15941i −0.102354 0.580480i −0.992244 0.124304i \(-0.960330\pi\)
0.889890 0.456175i \(-0.150781\pi\)
\(80\) −7.66112 13.2694i −0.856539 1.48357i
\(81\) −7.40978 5.10834i −0.823309 0.567594i
\(82\) −13.0114 7.51215i −1.43687 0.829579i
\(83\) −1.39005 + 1.16639i −0.152578 + 0.128028i −0.715881 0.698222i \(-0.753975\pi\)
0.563303 + 0.826250i \(0.309530\pi\)
\(84\) −3.28996 + 8.31369i −0.358964 + 0.907098i
\(85\) 2.94804 16.7192i 0.319760 1.81345i
\(86\) −0.0658585 0.0116126i −0.00710170 0.00125222i
\(87\) −6.04537 1.46763i −0.648132 0.157346i
\(88\) −0.0398480 + 0.0334364i −0.00424781 + 0.00356433i
\(89\) −9.21301 −0.976577 −0.488289 0.872682i \(-0.662379\pi\)
−0.488289 + 0.872682i \(0.662379\pi\)
\(90\) 21.3018 + 6.63122i 2.24541 + 0.698992i
\(91\) 6.22374 11.7326i 0.652425 1.22991i
\(92\) 5.55454 15.2610i 0.579101 1.59107i
\(93\) 0.141205 + 0.0939788i 0.0146423 + 0.00974515i
\(94\) 10.8158 + 1.90712i 1.11556 + 0.196704i
\(95\) 4.44931 + 0.784534i 0.456490 + 0.0804915i
\(96\) 0.875142 13.7353i 0.0893188 1.40186i
\(97\) −4.37434 + 12.0184i −0.444147 + 1.22028i 0.492593 + 0.870260i \(0.336049\pi\)
−0.936741 + 0.350025i \(0.886173\pi\)
\(98\) 11.5202 7.80305i 1.16372 0.788227i
\(99\) 0.203692 1.59198i 0.0204719 0.160000i
\(100\) −17.5544 −1.75544
\(101\) −1.63246 + 1.36979i −0.162436 + 0.136300i −0.720383 0.693577i \(-0.756034\pi\)
0.557947 + 0.829877i \(0.311589\pi\)
\(102\) 10.7828 11.3050i 1.06766 1.11937i
\(103\) −11.7534 2.07244i −1.15810 0.204204i −0.438588 0.898688i \(-0.644521\pi\)
−0.719508 + 0.694485i \(0.755632\pi\)
\(104\) −0.0847549 + 0.480669i −0.00831091 + 0.0471335i
\(105\) −10.6518 13.4344i −1.03950 1.31106i
\(106\) −15.0818 + 12.6552i −1.46488 + 1.22918i
\(107\) 13.4523 + 7.76670i 1.30048 + 0.750835i 0.980487 0.196583i \(-0.0629845\pi\)
0.319998 + 0.947418i \(0.396318\pi\)
\(108\) 6.38880 + 7.87178i 0.614762 + 0.757463i
\(109\) −1.01428 1.75678i −0.0971503 0.168269i 0.813354 0.581770i \(-0.197639\pi\)
−0.910504 + 0.413500i \(0.864306\pi\)
\(110\) 0.690866 + 3.91809i 0.0658715 + 0.373576i
\(111\) 0.849606 + 0.371990i 0.0806410 + 0.0353077i
\(112\) −6.66272 + 8.54497i −0.629568 + 0.807424i
\(113\) −2.57486 7.07437i −0.242222 0.665501i −0.999917 0.0128913i \(-0.995896\pi\)
0.757694 0.652610i \(-0.226326\pi\)
\(114\) 3.00850 + 2.86953i 0.281772 + 0.268757i
\(115\) 20.0175 + 23.8559i 1.86664 + 2.22458i
\(116\) 6.06881 + 3.50383i 0.563475 + 0.325323i
\(117\) −8.13762 12.6714i −0.752323 1.17147i
\(118\) 1.31177 + 0.757350i 0.120758 + 0.0697197i
\(119\) −11.7410 + 2.50753i −1.07630 + 0.229865i
\(120\) 0.524523 + 0.349095i 0.0478822 + 0.0318679i
\(121\) −10.0677 + 3.66433i −0.915243 + 0.333121i
\(122\) 2.23657 12.6842i 0.202489 1.14837i
\(123\) 13.0652 + 0.832447i 1.17805 + 0.0750592i
\(124\) −0.122817 0.146368i −0.0110293 0.0131442i
\(125\) 7.47747 12.9514i 0.668805 1.15840i
\(126\) −1.31040 15.7226i −0.116739 1.40068i
\(127\) 9.23798 + 16.0006i 0.819738 + 1.41983i 0.905875 + 0.423545i \(0.139214\pi\)
−0.0861371 + 0.996283i \(0.527452\pi\)
\(128\) 0.265962 0.730726i 0.0235080 0.0645876i
\(129\) 0.0559146 0.0164082i 0.00492301 0.00144466i
\(130\) 28.5970 + 23.9957i 2.50812 + 2.10456i
\(131\) 0.439975 + 0.369183i 0.0384408 + 0.0322556i 0.661806 0.749675i \(-0.269790\pi\)
−0.623365 + 0.781931i \(0.714235\pi\)
\(132\) −0.725121 + 1.65614i −0.0631137 + 0.144148i
\(133\) −0.667307 3.12452i −0.0578628 0.270931i
\(134\) 13.0944i 1.13119i
\(135\) −19.1976 + 3.06226i −1.65227 + 0.263558i
\(136\) 0.382103 0.220607i 0.0327651 0.0189169i
\(137\) −0.799505 + 2.19662i −0.0683063 + 0.187670i −0.969149 0.246476i \(-0.920727\pi\)
0.900843 + 0.434146i \(0.142950\pi\)
\(138\) 3.17174 + 28.4815i 0.269996 + 2.42451i
\(139\) 0.461702 + 0.0814105i 0.0391610 + 0.00690515i 0.193194 0.981161i \(-0.438115\pi\)
−0.154033 + 0.988066i \(0.549226\pi\)
\(140\) 7.25209 + 17.8995i 0.612914 + 1.51279i
\(141\) −9.18274 + 2.69468i −0.773326 + 0.226933i
\(142\) 6.75646 + 2.45915i 0.566989 + 0.206367i
\(143\) 1.34277 2.32574i 0.112288 0.194488i
\(144\) 4.74308 + 11.3339i 0.395257 + 0.944490i
\(145\) −11.6372 + 6.71875i −0.966419 + 0.557962i
\(146\) −12.4286 4.52365i −1.02860 0.374380i
\(147\) −5.97667 + 10.5489i −0.492947 + 0.870059i
\(148\) −0.800333 0.671559i −0.0657870 0.0552018i
\(149\) −3.51315 9.65231i −0.287809 0.790748i −0.996372 0.0851012i \(-0.972879\pi\)
0.708564 0.705647i \(-0.249344\pi\)
\(150\) 27.7568 13.7510i 2.26633 1.12277i
\(151\) 0.0992784 + 0.563036i 0.00807916 + 0.0458192i 0.988581 0.150692i \(-0.0481500\pi\)
−0.980502 + 0.196511i \(0.937039\pi\)
\(152\) 0.0587082 + 0.101686i 0.00476186 + 0.00824779i
\(153\) −4.04628 + 12.9980i −0.327122 + 1.05083i
\(154\) 2.38456 1.49326i 0.192153 0.120330i
\(155\) 0.360819 0.0636221i 0.0289817 0.00511025i
\(156\) 4.77661 + 16.2774i 0.382435 + 1.30324i
\(157\) −5.09539 + 6.07244i −0.406656 + 0.484634i −0.930037 0.367465i \(-0.880226\pi\)
0.523381 + 0.852099i \(0.324670\pi\)
\(158\) −3.56171 9.78572i −0.283355 0.778510i
\(159\) 6.88071 15.7152i 0.545675 1.24629i
\(160\) −19.1094 22.7737i −1.51073 1.80042i
\(161\) 10.3201 19.4549i 0.813341 1.53326i
\(162\) −16.2681 7.44216i −1.27815 0.584711i
\(163\) −2.96576 + 5.13684i −0.232296 + 0.402349i −0.958483 0.285148i \(-0.907957\pi\)
0.726187 + 0.687497i \(0.241290\pi\)
\(164\) −13.8579 5.04387i −1.08212 0.393860i
\(165\) −2.05503 2.79203i −0.159984 0.217359i
\(166\) −2.31847 + 2.76305i −0.179948 + 0.214454i
\(167\) 10.6282 3.86836i 0.822438 0.299343i 0.103687 0.994610i \(-0.466936\pi\)
0.718752 + 0.695267i \(0.244714\pi\)
\(168\) 0.0895191 0.436487i 0.00690655 0.0336757i
\(169\) −2.11823 12.0131i −0.162941 0.924082i
\(170\) 33.7459i 2.58819i
\(171\) −3.45905 1.07680i −0.264520 0.0823447i
\(172\) −0.0656414 −0.00500511
\(173\) −7.90197 + 6.63054i −0.600776 + 0.504111i −0.891695 0.452637i \(-0.850483\pi\)
0.290919 + 0.956748i \(0.406039\pi\)
\(174\) −12.3406 0.786277i −0.935538 0.0596075i
\(175\) −23.5761 3.29008i −1.78218 0.248707i
\(176\) −1.40835 + 1.67841i −0.106159 + 0.126515i
\(177\) −1.31719 0.0839245i −0.0990063 0.00630815i
\(178\) −18.0348 + 3.18002i −1.35177 + 0.238353i
\(179\) 7.50492i 0.560944i −0.959862 0.280472i \(-0.909509\pi\)
0.959862 0.280472i \(-0.0904910\pi\)
\(180\) 21.7216 + 2.77926i 1.61904 + 0.207154i
\(181\) 15.7096 9.06992i 1.16768 0.674162i 0.214549 0.976713i \(-0.431172\pi\)
0.953133 + 0.302552i \(0.0978385\pi\)
\(182\) 8.13349 25.1152i 0.602895 1.86166i
\(183\) 3.16018 + 10.7690i 0.233607 + 0.796069i
\(184\) −0.140540 + 0.797040i −0.0103607 + 0.0587586i
\(185\) 1.88256 0.685195i 0.138408 0.0503765i
\(186\) 0.308853 + 0.135228i 0.0226462 + 0.00991536i
\(187\) −2.39076 + 0.421556i −0.174830 + 0.0308272i
\(188\) 10.7802 0.786224
\(189\) 7.10499 + 11.7694i 0.516812 + 0.856099i
\(190\) 8.98049 0.651513
\(191\) −11.7224 + 2.06698i −0.848203 + 0.149561i −0.580823 0.814030i \(-0.697269\pi\)
−0.267380 + 0.963591i \(0.586158\pi\)
\(192\) −1.45767 13.0896i −0.105199 0.944661i
\(193\) 6.92404 2.52014i 0.498403 0.181404i −0.0805725 0.996749i \(-0.525675\pi\)
0.578976 + 0.815345i \(0.303453\pi\)
\(194\) −4.41458 + 25.0363i −0.316948 + 1.79750i
\(195\) −31.6107 7.67409i −2.26369 0.549553i
\(196\) 9.80602 9.50640i 0.700430 0.679029i
\(197\) 7.81959 4.51464i 0.557123 0.321655i −0.194867 0.980830i \(-0.562428\pi\)
0.751990 + 0.659175i \(0.229094\pi\)
\(198\) −0.150764 3.18667i −0.0107144 0.226467i
\(199\) 27.0924i 1.92053i −0.279093 0.960264i \(-0.590034\pi\)
0.279093 0.960264i \(-0.409966\pi\)
\(200\) 0.861530 0.151911i 0.0609194 0.0107417i
\(201\) −5.06518 10.2242i −0.357270 0.721159i
\(202\) −2.72279 + 3.24489i −0.191575 + 0.228310i
\(203\) 7.49389 + 5.84317i 0.525968 + 0.410110i
\(204\) 8.49633 12.7659i 0.594862 0.893793i
\(205\) 21.6627 18.1771i 1.51299 1.26955i
\(206\) −23.7230 −1.65286
\(207\) −13.4937 21.0116i −0.937878 1.46041i
\(208\) 20.5583i 1.42546i
\(209\) −0.112185 0.636232i −0.00775998 0.0440091i
\(210\) −25.4883 22.6217i −1.75886 1.56104i
\(211\) 4.05592 1.47623i 0.279221 0.101628i −0.198614 0.980078i \(-0.563644\pi\)
0.477835 + 0.878450i \(0.341422\pi\)
\(212\) −12.4218 + 14.8038i −0.853135 + 1.01673i
\(213\) −6.22672 + 0.693415i −0.426648 + 0.0475120i
\(214\) 29.0142 + 10.5603i 1.98337 + 0.721887i
\(215\) 0.0629352 0.109007i 0.00429215 0.00743421i
\(216\) −0.381667 0.331042i −0.0259692 0.0225245i
\(217\) −0.137515 0.219595i −0.00933509 0.0149071i
\(218\) −2.59187 3.08887i −0.175544 0.209205i
\(219\) 11.4542 1.27555i 0.774002 0.0861938i
\(220\) 1.33565 + 3.66967i 0.0900496 + 0.247409i
\(221\) −14.6418 + 17.4495i −0.984916 + 1.17378i
\(222\) 1.79153 + 0.434928i 0.120240 + 0.0291905i
\(223\) 1.40482 0.247708i 0.0940737 0.0165877i −0.126413 0.991978i \(-0.540347\pi\)
0.220487 + 0.975390i \(0.429235\pi\)
\(224\) −9.85197 + 18.5723i −0.658263 + 1.24091i
\(225\) −16.3535 + 21.4737i −1.09023 + 1.43158i
\(226\) −7.48221 12.9596i −0.497709 0.862058i
\(227\) −3.36736 19.0973i −0.223500 1.26753i −0.865533 0.500853i \(-0.833020\pi\)
0.642033 0.766677i \(-0.278091\pi\)
\(228\) 3.39727 + 2.26105i 0.224990 + 0.149741i
\(229\) 0.882943 + 2.42587i 0.0583465 + 0.160306i 0.965441 0.260621i \(-0.0839272\pi\)
−0.907095 + 0.420927i \(0.861705\pi\)
\(230\) 47.4192 + 39.7894i 3.12673 + 2.62364i
\(231\) −1.28425 + 2.08833i −0.0844976 + 0.137402i
\(232\) −0.328164 0.119442i −0.0215450 0.00784176i
\(233\) −21.1555 + 12.2141i −1.38594 + 0.800173i −0.992855 0.119329i \(-0.961926\pi\)
−0.393085 + 0.919502i \(0.628592\pi\)
\(234\) −20.3034 21.9959i −1.32728 1.43792i
\(235\) −10.3357 + 17.9020i −0.674228 + 1.16780i
\(236\) 1.39711 + 0.508506i 0.0909441 + 0.0331009i
\(237\) 6.56631 + 6.26300i 0.426528 + 0.406825i
\(238\) −22.1179 + 8.96119i −1.43369 + 0.580867i
\(239\) −23.2178 4.09392i −1.50183 0.264813i −0.638568 0.769566i \(-0.720473\pi\)
−0.863264 + 0.504752i \(0.831584\pi\)
\(240\) 24.3108 + 10.6442i 1.56925 + 0.687080i
\(241\) −3.27955 + 9.01050i −0.211255 + 0.580418i −0.999384 0.0350921i \(-0.988828\pi\)
0.788129 + 0.615510i \(0.211050\pi\)
\(242\) −18.4430 + 10.6481i −1.18556 + 0.684484i
\(243\) 15.5810 0.481960i 0.999522 0.0309178i
\(244\) 12.6424i 0.809346i
\(245\) 6.38499 + 25.3988i 0.407922 + 1.62267i
\(246\) 25.8630 2.88013i 1.64896 0.183631i
\(247\) −4.64366 3.89649i −0.295469 0.247928i
\(248\) 0.00729422 + 0.00612058i 0.000463183 + 0.000388657i
\(249\) 0.741473 3.05423i 0.0469889 0.193554i
\(250\) 10.1670 27.9337i 0.643020 1.76668i
\(251\) −6.84105 11.8491i −0.431803 0.747906i 0.565225 0.824937i \(-0.308789\pi\)
−0.997029 + 0.0770311i \(0.975456\pi\)
\(252\) −3.94656 14.9749i −0.248610 0.943332i
\(253\) 2.22656 3.85651i 0.139983 0.242457i
\(254\) 23.6066 + 28.1332i 1.48121 + 1.76523i
\(255\) 13.0536 + 26.3490i 0.817447 + 1.65004i
\(256\) 2.90925 16.4992i 0.181828 1.03120i
\(257\) 28.7802 10.4751i 1.79526 0.653421i 0.796446 0.604710i \(-0.206711\pi\)
0.998813 0.0487109i \(-0.0155113\pi\)
\(258\) 0.103791 0.0514194i 0.00646176 0.00320123i
\(259\) −0.949004 1.05192i −0.0589682 0.0653632i
\(260\) 31.7333 + 18.3212i 1.96801 + 1.13623i
\(261\) 9.93974 4.15966i 0.615255 0.257476i
\(262\) 0.988696 + 0.570824i 0.0610818 + 0.0352656i
\(263\) 2.34116 + 2.79009i 0.144362 + 0.172044i 0.833380 0.552700i \(-0.186402\pi\)
−0.689018 + 0.724744i \(0.741958\pi\)
\(264\) 0.0212555 0.0875544i 0.00130818 0.00538860i
\(265\) −12.6741 34.8217i −0.778561 2.13908i
\(266\) −2.38476 5.88603i −0.146219 0.360896i
\(267\) 12.8516 9.45919i 0.786503 0.578893i
\(268\) 2.23190 + 12.6577i 0.136335 + 0.773194i
\(269\) 16.1461 + 27.9659i 0.984446 + 1.70511i 0.644374 + 0.764710i \(0.277118\pi\)
0.340071 + 0.940400i \(0.389549\pi\)
\(270\) −36.5230 + 12.6209i −2.22272 + 0.768081i
\(271\) 21.4767 + 12.3996i 1.30462 + 0.753220i 0.981192 0.193034i \(-0.0618328\pi\)
0.323424 + 0.946254i \(0.395166\pi\)
\(272\) 14.2363 11.9456i 0.863200 0.724311i
\(273\) 3.36438 + 22.7563i 0.203622 + 1.37727i
\(274\) −0.806859 + 4.57593i −0.0487441 + 0.276442i
\(275\) −4.74030 0.835842i −0.285851 0.0504032i
\(276\) 7.92053 + 26.9910i 0.476760 + 1.62467i
\(277\) −12.0197 + 10.0857i −0.722191 + 0.605990i −0.927990 0.372604i \(-0.878465\pi\)
0.205799 + 0.978594i \(0.434021\pi\)
\(278\) 0.931898 0.0558915
\(279\) −0.293462 + 0.0138840i −0.0175691 + 0.000831211i
\(280\) −0.510813 0.815710i −0.0305269 0.0487480i
\(281\) 4.41595 12.1327i 0.263433 0.723777i −0.735497 0.677528i \(-0.763051\pi\)
0.998930 0.0462486i \(-0.0147266\pi\)
\(282\) −17.0454 + 8.44450i −1.01504 + 0.502863i
\(283\) 22.4248 + 3.95410i 1.33302 + 0.235047i 0.794344 0.607469i \(-0.207815\pi\)
0.538672 + 0.842515i \(0.318926\pi\)
\(284\) 6.95028 + 1.22552i 0.412423 + 0.0727214i
\(285\) −7.01200 + 3.47383i −0.415355 + 0.205772i
\(286\) 1.82574 5.01619i 0.107959 0.296614i
\(287\) −17.6662 9.37133i −1.04280 0.553172i
\(288\) 12.8816 + 20.0584i 0.759054 + 1.18195i
\(289\) 3.59128 0.211252
\(290\) −20.4612 + 17.1690i −1.20152 + 1.00820i
\(291\) −6.23762 21.2561i −0.365656 1.24606i
\(292\) −12.7852 2.25437i −0.748196 0.131927i
\(293\) 0.0377838 0.214282i 0.00220735 0.0125185i −0.983684 0.179904i \(-0.942421\pi\)
0.985892 + 0.167385i \(0.0535324\pi\)
\(294\) −8.05841 + 22.7128i −0.469976 + 1.32464i
\(295\) −2.18396 + 1.83256i −0.127155 + 0.106696i
\(296\) 0.0450900 + 0.0260327i 0.00262080 + 0.00151312i
\(297\) 1.35039 + 2.42985i 0.0783573 + 0.140994i
\(298\) −10.2088 17.6821i −0.591379 1.02430i
\(299\) −7.25566 41.1489i −0.419606 2.37970i
\(300\) 24.4873 18.0235i 1.41377 1.04059i
\(301\) −0.0881582 0.0123026i −0.00508136 0.000709112i
\(302\) 0.388682 + 1.06789i 0.0223661 + 0.0614504i
\(303\) 0.870777 3.58685i 0.0500248 0.206059i
\(304\) 3.17898 + 3.78856i 0.182327 + 0.217289i
\(305\) 20.9945 + 12.1212i 1.20214 + 0.694057i
\(306\) −3.43424 + 26.8408i −0.196322 + 1.53438i
\(307\) 17.3825 + 10.0358i 0.992072 + 0.572773i 0.905893 0.423506i \(-0.139201\pi\)
0.0861792 + 0.996280i \(0.472534\pi\)
\(308\) 2.05051 1.84989i 0.116839 0.105408i
\(309\) 18.5230 9.17653i 1.05374 0.522034i
\(310\) 0.684356 0.249085i 0.0388688 0.0141471i
\(311\) −0.0344600 + 0.195432i −0.00195405 + 0.0110820i −0.985769 0.168104i \(-0.946235\pi\)
0.983815 + 0.179186i \(0.0573465\pi\)
\(312\) −0.375285 0.757522i −0.0212463 0.0428862i
\(313\) 10.5334 + 12.5532i 0.595385 + 0.709552i 0.976631 0.214922i \(-0.0689496\pi\)
−0.381247 + 0.924473i \(0.624505\pi\)
\(314\) −7.87839 + 13.6458i −0.444604 + 0.770076i
\(315\) 28.6519 + 7.80373i 1.61435 + 0.439690i
\(316\) −5.11087 8.85229i −0.287509 0.497980i
\(317\) −4.79018 + 13.1609i −0.269043 + 0.739190i 0.729436 + 0.684050i \(0.239783\pi\)
−0.998479 + 0.0551403i \(0.982439\pi\)
\(318\) 8.04488 33.1380i 0.451134 1.85829i
\(319\) 1.47196 + 1.23512i 0.0824137 + 0.0691533i
\(320\) −21.7930 18.2865i −1.21827 1.02225i
\(321\) −26.7394 + 2.97773i −1.49245 + 0.166201i
\(322\) 13.4869 41.6457i 0.751594 2.32083i
\(323\) 5.47976i 0.304902i
\(324\) −16.9941 4.42112i −0.944116 0.245618i
\(325\) −39.1136 + 22.5822i −2.16963 + 1.25264i
\(326\) −4.03251 + 11.0792i −0.223340 + 0.613622i
\(327\) 3.21858 + 1.40922i 0.177988 + 0.0779299i
\(328\) 0.723763 + 0.127619i 0.0399631 + 0.00704658i
\(329\) 14.4780 + 2.02044i 0.798200 + 0.111390i
\(330\) −4.98650 4.75616i −0.274498 0.261818i
\(331\) 13.7531 + 5.00572i 0.755939 + 0.275139i 0.691102 0.722757i \(-0.257125\pi\)
0.0648361 + 0.997896i \(0.479348\pi\)
\(332\) −1.77020 + 3.06608i −0.0971524 + 0.168273i
\(333\) −1.56707 + 0.353406i −0.0858752 + 0.0193665i
\(334\) 19.4699 11.2410i 1.06535 0.615079i
\(335\) −23.1598 8.42950i −1.26536 0.460553i
\(336\) 0.520773 18.7604i 0.0284105 1.02347i
\(337\) 15.3298 + 12.8633i 0.835070 + 0.700707i 0.956449 0.291899i \(-0.0942873\pi\)
−0.121379 + 0.992606i \(0.538732\pi\)
\(338\) −8.29301 22.7849i −0.451080 1.23933i
\(339\) 10.8552 + 7.22463i 0.589572 + 0.392388i
\(340\) −5.75187 32.6205i −0.311939 1.76910i
\(341\) −0.0261957 0.0453723i −0.00141858 0.00245705i
\(342\) −7.14288 0.913922i −0.386243 0.0494193i
\(343\) 14.9515 10.9295i 0.807303 0.590137i
\(344\) 0.00322153 0.000568042i 0.000173693 3.06268e-5i
\(345\) −52.4165 12.7251i −2.82201 0.685096i
\(346\) −13.1797 + 15.7070i −0.708547 + 0.844414i
\(347\) −3.69757 10.1590i −0.198496 0.545363i 0.800011 0.599985i \(-0.204827\pi\)
−0.998507 + 0.0546221i \(0.982605\pi\)
\(348\) −12.0631 + 1.34336i −0.646648 + 0.0720115i
\(349\) 18.8455 + 22.4591i 1.00877 + 1.20221i 0.979252 + 0.202646i \(0.0649541\pi\)
0.0295221 + 0.999564i \(0.490601\pi\)
\(350\) −47.2866 + 1.69721i −2.52758 + 0.0907199i
\(351\) 24.3614 + 9.32074i 1.30032 + 0.497504i
\(352\) −2.12555 + 3.68157i −0.113292 + 0.196228i
\(353\) 18.9495 + 6.89706i 1.00858 + 0.367094i 0.792888 0.609368i \(-0.208577\pi\)
0.215693 + 0.976461i \(0.430799\pi\)
\(354\) −2.60742 + 0.290366i −0.138583 + 0.0154328i
\(355\) −8.69890 + 10.3669i −0.461689 + 0.550220i
\(356\) −16.8913 + 6.14794i −0.895238 + 0.325840i
\(357\) 13.8034 15.5526i 0.730554 0.823130i
\(358\) −2.59045 14.6911i −0.136909 0.776451i
\(359\) 16.7354i 0.883260i 0.897197 + 0.441630i \(0.145600\pi\)
−0.897197 + 0.441630i \(0.854400\pi\)
\(360\) −1.09010 + 0.0515736i −0.0574532 + 0.00271817i
\(361\) 17.5417 0.923249
\(362\) 27.6214 23.1771i 1.45175 1.21816i
\(363\) 10.2815 15.4482i 0.539639 0.810820i
\(364\) 3.58145 25.6639i 0.187719 1.34516i
\(365\) 16.0018 19.0702i 0.837572 0.998180i
\(366\) 9.90326 + 19.9900i 0.517652 + 1.04489i
\(367\) −8.10506 + 1.42914i −0.423081 + 0.0746005i −0.381135 0.924519i \(-0.624467\pi\)
−0.0419455 + 0.999120i \(0.513356\pi\)
\(368\) 34.0895i 1.77704i
\(369\) −19.0798 + 12.2531i −0.993257 + 0.637873i
\(370\) 3.44867 1.99109i 0.179288 0.103512i
\(371\) −19.4574 + 17.5537i −1.01018 + 0.911345i
\(372\) 0.321601 + 0.0780749i 0.0166743 + 0.00404799i
\(373\) 2.60691 14.7845i 0.134981 0.765513i −0.839892 0.542753i \(-0.817382\pi\)
0.974873 0.222761i \(-0.0715068\pi\)
\(374\) −4.53450 + 1.65042i −0.234473 + 0.0853413i
\(375\) 2.86684 + 25.7436i 0.148043 + 1.32939i
\(376\) −0.529065 + 0.0932884i −0.0272844 + 0.00481098i
\(377\) 18.0295 0.928566
\(378\) 17.9707 + 20.5866i 0.924311 + 1.05886i
\(379\) −23.6638 −1.21553 −0.607763 0.794118i \(-0.707933\pi\)
−0.607763 + 0.794118i \(0.707933\pi\)
\(380\) 8.68099 1.53069i 0.445325 0.0785229i
\(381\) −29.3146 12.8351i −1.50183 0.657560i
\(382\) −22.2336 + 8.09235i −1.13757 + 0.414041i
\(383\) 0.334399 1.89647i 0.0170870 0.0969052i −0.975072 0.221890i \(-0.928777\pi\)
0.992159 + 0.124985i \(0.0398884\pi\)
\(384\) 0.379251 + 1.29238i 0.0193536 + 0.0659517i
\(385\) 1.10604 + 5.17880i 0.0563690 + 0.263936i
\(386\) 12.6842 7.32321i 0.645608 0.372742i
\(387\) −0.0611507 + 0.0802970i −0.00310846 + 0.00408173i
\(388\) 24.9538i 1.26684i
\(389\) −28.0414 + 4.94446i −1.42176 + 0.250694i −0.831053 0.556193i \(-0.812261\pi\)
−0.590705 + 0.806888i \(0.701150\pi\)
\(390\) −64.5278 4.11137i −3.26749 0.208187i
\(391\) −24.2789 + 28.9345i −1.22784 + 1.46328i
\(392\) −0.398991 + 0.551411i −0.0201521 + 0.0278504i
\(393\) −0.992784 0.0632549i −0.0500793 0.00319079i
\(394\) 13.7488 11.5366i 0.692656 0.581207i
\(395\) 19.6007 0.986216
\(396\) −0.688894 3.05470i −0.0346182 0.153505i
\(397\) 17.7545i 0.891073i 0.895264 + 0.445536i \(0.146987\pi\)
−0.895264 + 0.445536i \(0.853013\pi\)
\(398\) −9.35138 53.0343i −0.468742 2.65837i
\(399\) 4.13886 + 3.67337i 0.207202 + 0.183899i
\(400\) 34.6256 12.6027i 1.73128 0.630134i
\(401\) 15.5181 18.4938i 0.774939 0.923536i −0.223754 0.974646i \(-0.571831\pi\)
0.998693 + 0.0511095i \(0.0162758\pi\)
\(402\) −13.4443 18.2659i −0.670542 0.911019i
\(403\) −0.461943 0.168134i −0.0230110 0.00837533i
\(404\) −2.07890 + 3.60076i −0.103429 + 0.179145i
\(405\) 23.6354 23.9823i 1.17445 1.19169i
\(406\) 16.6864 + 8.85157i 0.828133 + 0.439296i
\(407\) −0.184142 0.219451i −0.00912756 0.0108778i
\(408\) −0.306507 + 0.700046i −0.0151744 + 0.0346575i
\(409\) −6.50514 17.8727i −0.321659 0.883750i −0.990148 0.140028i \(-0.955281\pi\)
0.668489 0.743722i \(-0.266941\pi\)
\(410\) 36.1313 43.0596i 1.78440 2.12656i
\(411\) −1.14006 3.88501i −0.0562349 0.191634i
\(412\) −22.9319 + 4.04350i −1.12977 + 0.199209i
\(413\) 1.78105 + 0.944787i 0.0876398 + 0.0464899i
\(414\) −33.6669 36.4734i −1.65464 1.79257i
\(415\) −3.39444 5.87934i −0.166626 0.288605i
\(416\) 6.92652 + 39.2822i 0.339600 + 1.92597i
\(417\) −0.727630 + 0.360476i −0.0356322 + 0.0176526i
\(418\) −0.439211 1.20672i −0.0214825 0.0590228i
\(419\) −24.5217 20.5762i −1.19796 1.00521i −0.999686 0.0250662i \(-0.992020\pi\)
−0.198279 0.980146i \(-0.563535\pi\)
\(420\) −28.4940 17.5228i −1.39037 0.855027i
\(421\) −11.0428 4.01925i −0.538193 0.195886i 0.0585997 0.998282i \(-0.481336\pi\)
−0.596793 + 0.802395i \(0.703559\pi\)
\(422\) 7.43006 4.28975i 0.361689 0.208822i
\(423\) 10.0426 13.1870i 0.488290 0.641174i
\(424\) 0.481527 0.834030i 0.0233850 0.0405041i
\(425\) 38.3652 + 13.9638i 1.86099 + 0.677344i
\(426\) −11.9497 + 3.50664i −0.578964 + 0.169897i
\(427\) 2.36946 16.9791i 0.114666 0.821675i
\(428\) 29.8465 + 5.26275i 1.44269 + 0.254385i
\(429\) 0.514812 + 4.62290i 0.0248553 + 0.223196i
\(430\) 0.0855724 0.235108i 0.00412667 0.0113379i
\(431\) −8.85449 + 5.11214i −0.426506 + 0.246243i −0.697857 0.716237i \(-0.745863\pi\)
0.271351 + 0.962480i \(0.412530\pi\)
\(432\) −18.2530 10.9402i −0.878199 0.526361i
\(433\) 2.62462i 0.126131i 0.998009 + 0.0630656i \(0.0200877\pi\)
−0.998009 + 0.0630656i \(0.979912\pi\)
\(434\) −0.344986 0.382399i −0.0165599 0.0183558i
\(435\) 9.33489 21.3204i 0.447574 1.02224i
\(436\) −3.03192 2.54408i −0.145203 0.121839i
\(437\) −7.70007 6.46112i −0.368344 0.309077i
\(438\) 21.9817 6.45053i 1.05033 0.308218i
\(439\) −0.310662 + 0.853536i −0.0148271 + 0.0407371i −0.946885 0.321571i \(-0.895789\pi\)
0.932058 + 0.362308i \(0.118011\pi\)
\(440\) −0.0973069 0.168541i −0.00463893 0.00803486i
\(441\) −2.49371 20.8514i −0.118748 0.992924i
\(442\) −22.6389 + 39.2118i −1.07682 + 1.86512i
\(443\) −7.50939 8.94934i −0.356782 0.425196i 0.557562 0.830136i \(-0.311737\pi\)
−0.914344 + 0.404939i \(0.867293\pi\)
\(444\) 1.80592 + 0.115063i 0.0857050 + 0.00546066i
\(445\) 5.98540 33.9449i 0.283735 1.60914i
\(446\) 2.66448 0.969793i 0.126167 0.0459210i
\(447\) 14.8109 + 9.85732i 0.700529 + 0.466235i
\(448\) −6.19833 + 19.1397i −0.292844 + 0.904264i
\(449\) 8.77509 + 5.06630i 0.414122 + 0.239094i 0.692559 0.721361i \(-0.256483\pi\)
−0.278437 + 0.960454i \(0.589816\pi\)
\(450\) −24.6005 + 47.6803i −1.15968 + 2.24767i
\(451\) −3.50196 2.02186i −0.164901 0.0952054i
\(452\) −9.44160 11.2521i −0.444095 0.529252i
\(453\) −0.716567 0.683467i −0.0336673 0.0321121i
\(454\) −13.1835 36.2213i −0.618731 1.69995i
\(455\) 39.1848 + 30.5534i 1.83701 + 1.43236i
\(456\) −0.186297 0.0815679i −0.00872414 0.00381977i
\(457\) 4.79126 + 27.1726i 0.224126 + 1.27108i 0.864349 + 0.502892i \(0.167731\pi\)
−0.640223 + 0.768189i \(0.721158\pi\)
\(458\) 2.56572 + 4.44395i 0.119888 + 0.207652i
\(459\) −7.70106 22.2858i −0.359455 1.04021i
\(460\) 52.6197 + 30.3800i 2.45341 + 1.41648i
\(461\) 14.3944 12.0783i 0.670413 0.562543i −0.242775 0.970083i \(-0.578058\pi\)
0.913188 + 0.407540i \(0.133613\pi\)
\(462\) −1.79315 + 4.53127i −0.0834248 + 0.210814i
\(463\) 0.164111 0.930721i 0.00762690 0.0432543i −0.980757 0.195233i \(-0.937454\pi\)
0.988384 + 0.151979i \(0.0485647\pi\)
\(464\) −14.4860 2.55428i −0.672497 0.118579i
\(465\) −0.437997 + 0.459209i −0.0203116 + 0.0212953i
\(466\) −37.1966 + 31.2117i −1.72310 + 1.44585i
\(467\) −10.5286 −0.487204 −0.243602 0.969875i \(-0.578329\pi\)
−0.243602 + 0.969875i \(0.578329\pi\)
\(468\) −23.3754 17.8017i −1.08053 0.822884i
\(469\) 0.625167 + 17.4180i 0.0288675 + 0.804288i
\(470\) −14.0534 + 38.6113i −0.648234 + 1.78101i
\(471\) 0.873031 13.7022i 0.0402271 0.631364i
\(472\) −0.0729674 0.0128661i −0.00335859 0.000592211i
\(473\) −0.0177254 0.00312548i −0.000815017 0.000143709i
\(474\) 15.0156 + 9.99357i 0.689688 + 0.459020i
\(475\) −3.71606 + 10.2098i −0.170504 + 0.468457i
\(476\) −19.8529 + 12.4323i −0.909955 + 0.569831i
\(477\) 6.53695 + 28.9862i 0.299306 + 1.32719i
\(478\) −46.8627 −2.14345
\(479\) −3.38457 + 2.83999i −0.154645 + 0.129763i −0.716827 0.697251i \(-0.754406\pi\)
0.562182 + 0.827013i \(0.309962\pi\)
\(480\) 50.0386 + 12.1478i 2.28394 + 0.554470i
\(481\) −2.64715 0.466764i −0.120700 0.0212826i
\(482\) −3.30972 + 18.7704i −0.150754 + 0.854967i
\(483\) 5.57878 + 37.7342i 0.253843 + 1.71696i
\(484\) −16.0130 + 13.4365i −0.727864 + 0.610751i
\(485\) −41.4394 23.9250i −1.88167 1.08638i
\(486\) 30.3340 6.32149i 1.37598 0.286749i
\(487\) 17.8504 + 30.9178i 0.808879 + 1.40102i 0.913641 + 0.406523i \(0.133259\pi\)
−0.104761 + 0.994497i \(0.533408\pi\)
\(488\) 0.109404 + 0.620459i 0.00495247 + 0.0280869i
\(489\) −1.13706 10.2106i −0.0514197 0.461738i
\(490\) 21.2656 + 47.5151i 0.960684 + 2.14651i
\(491\) 7.59387 + 20.8640i 0.342707 + 0.941579i 0.984606 + 0.174790i \(0.0559246\pi\)
−0.641899 + 0.766789i \(0.721853\pi\)
\(492\) 24.5096 7.19234i 1.10498 0.324256i
\(493\) −10.4763 12.4851i −0.471827 0.562302i
\(494\) −10.4351 6.02469i −0.469496 0.271064i
\(495\) 5.73326 + 1.78476i 0.257691 + 0.0802189i
\(496\) 0.347334 + 0.200533i 0.0155958 + 0.00900422i
\(497\) 9.10473 + 2.94854i 0.408403 + 0.132260i
\(498\) 0.397242 6.23470i 0.0178008 0.279383i
\(499\) 34.0726 12.4014i 1.52530 0.555164i 0.562835 0.826569i \(-0.309710\pi\)
0.962465 + 0.271405i \(0.0874882\pi\)
\(500\) 5.06676 28.7351i 0.226593 1.28507i
\(501\) −10.8540 + 16.3084i −0.484920 + 0.728604i
\(502\) −17.4815 20.8336i −0.780237 0.929851i
\(503\) −1.90297 + 3.29604i −0.0848491 + 0.146963i −0.905327 0.424715i \(-0.860374\pi\)
0.820478 + 0.571678i \(0.193708\pi\)
\(504\) 0.323277 + 0.700782i 0.0143999 + 0.0312153i
\(505\) −3.98639 6.90463i −0.177392 0.307252i
\(506\) 3.02743 8.31779i 0.134586 0.369771i
\(507\) 15.2889 + 14.5826i 0.679002 + 0.647637i
\(508\) 27.6145 + 23.1713i 1.22519 + 1.02806i
\(509\) −8.19879 6.87960i −0.363405 0.304933i 0.442741 0.896649i \(-0.354006\pi\)
−0.806146 + 0.591717i \(0.798450\pi\)
\(510\) 34.6476 + 47.0734i 1.53422 + 2.08444i
\(511\) −16.7483 5.42391i −0.740903 0.239940i
\(512\) 31.7467i 1.40302i
\(513\) 5.93072 2.04941i 0.261848 0.0904837i
\(514\) 52.7226 30.4394i 2.32549 1.34262i
\(515\) 15.2716 41.9584i 0.672948 1.84891i
\(516\) 0.0915656 0.0673954i 0.00403095 0.00296692i
\(517\) 2.91101 + 0.513290i 0.128026 + 0.0225745i
\(518\) −2.22080 1.73161i −0.0975762 0.0760826i
\(519\) 4.21503 17.3623i 0.185019 0.762120i
\(520\) −1.71594 0.624551i −0.0752490 0.0273884i
\(521\) 20.5421 35.5799i 0.899965 1.55878i 0.0724277 0.997374i \(-0.476925\pi\)
0.827537 0.561411i \(-0.189741\pi\)
\(522\) 18.0216 11.5735i 0.788785 0.506560i
\(523\) −31.7383 + 18.3241i −1.38782 + 0.801258i −0.993069 0.117530i \(-0.962502\pi\)
−0.394751 + 0.918788i \(0.629169\pi\)
\(524\) 1.05302 + 0.383267i 0.0460013 + 0.0167431i
\(525\) 36.2651 19.6166i 1.58274 0.856138i
\(526\) 5.54595 + 4.65360i 0.241815 + 0.202907i
\(527\) 0.151988 + 0.417584i 0.00662071 + 0.0181902i
\(528\) 0.241304 3.78726i 0.0105014 0.164819i
\(529\) −8.03735 45.5821i −0.349450 1.98183i
\(530\) −36.8292 63.7900i −1.59976 2.77086i
\(531\) 1.92357 1.23532i 0.0834757 0.0536083i
\(532\) −3.30848 5.28326i −0.143441 0.229058i
\(533\) −37.3658 + 6.58860i −1.61849 + 0.285384i
\(534\) 21.8924 22.9526i 0.947376 0.993257i
\(535\) −37.3556 + 44.5187i −1.61502 + 1.92471i
\(536\) −0.219073 0.601898i −0.00946250 0.0259980i
\(537\) 7.70546 + 10.4689i 0.332515 + 0.451765i
\(538\) 41.2595 + 49.1711i 1.77882 + 2.11992i
\(539\) 3.10060 2.10015i 0.133553 0.0904598i
\(540\) −33.1538 + 18.4252i −1.42671 + 0.792893i
\(541\) −17.5845 + 30.4573i −0.756018 + 1.30946i 0.188849 + 0.982006i \(0.439524\pi\)
−0.944867 + 0.327455i \(0.893809\pi\)
\(542\) 46.3213 + 16.8596i 1.98967 + 0.724180i
\(543\) −12.6015 + 28.7813i −0.540784 + 1.23512i
\(544\) 23.1775 27.6219i 0.993729 1.18428i
\(545\) 7.13173 2.59574i 0.305490 0.111189i
\(546\) 14.4406 + 43.3849i 0.618000 + 1.85670i
\(547\) −5.94589 33.7208i −0.254228 1.44180i −0.798046 0.602596i \(-0.794133\pi\)
0.543818 0.839203i \(-0.316978\pi\)
\(548\) 4.56085i 0.194830i
\(549\) −15.4650 11.7775i −0.660031 0.502651i
\(550\) −9.56781 −0.407973
\(551\) 3.32255 2.78795i 0.141545 0.118771i
\(552\) −0.622294 1.25612i −0.0264866 0.0534638i
\(553\) −5.20493 12.8468i −0.221336 0.546300i
\(554\) −20.0477 + 23.8919i −0.851743 + 1.01507i
\(555\) −1.92254 + 2.88866i −0.0816074 + 0.122617i
\(556\) 0.900819 0.158839i 0.0382032 0.00673626i
\(557\) 34.3108i 1.45379i 0.686746 + 0.726897i \(0.259038\pi\)
−0.686746 + 0.726897i \(0.740962\pi\)
\(558\) −0.569670 + 0.128472i −0.0241161 + 0.00543864i
\(559\) −0.146258 + 0.0844420i −0.00618605 + 0.00357152i
\(560\) −27.1550 30.0999i −1.14751 1.27195i
\(561\) 2.90214 3.04269i 0.122529 0.128462i
\(562\) 4.45657 25.2744i 0.187989 1.06614i
\(563\) −12.0895 + 4.40022i −0.509512 + 0.185447i −0.583967 0.811777i \(-0.698500\pi\)
0.0744555 + 0.997224i \(0.476278\pi\)
\(564\) −15.0376 + 11.0682i −0.633198 + 0.466056i
\(565\) 27.7380 4.89096i 1.16695 0.205764i
\(566\) 45.2622 1.90251
\(567\) −21.9949 9.12274i −0.923699 0.383119i
\(568\) −0.351709 −0.0147574
\(569\) −2.71061 + 0.477954i −0.113635 + 0.0200369i −0.230176 0.973149i \(-0.573930\pi\)
0.116542 + 0.993186i \(0.462819\pi\)
\(570\) −12.5272 + 9.22045i −0.524707 + 0.386202i
\(571\) −25.9325 + 9.43866i −1.08524 + 0.394996i −0.821856 0.569695i \(-0.807061\pi\)
−0.263386 + 0.964691i \(0.584839\pi\)
\(572\) 0.909864 5.16009i 0.0380433 0.215754i
\(573\) 14.2298 14.9189i 0.594458 0.623247i
\(574\) −37.8169 12.2469i −1.57845 0.511177i
\(575\) −64.8577 + 37.4456i −2.70475 + 1.56159i
\(576\) 15.4727 + 16.7625i 0.644697 + 0.698439i
\(577\) 8.16361i 0.339856i 0.985457 + 0.169928i \(0.0543535\pi\)
−0.985457 + 0.169928i \(0.945647\pi\)
\(578\) 7.03005 1.23959i 0.292412 0.0515600i
\(579\) −7.07110 + 10.6245i −0.293865 + 0.441539i
\(580\) −16.8524 + 20.0839i −0.699759 + 0.833940i
\(581\) −2.95208 + 3.78605i −0.122473 + 0.157072i
\(582\) −19.5473 39.4566i −0.810260 1.63553i
\(583\) −4.05920 + 3.40607i −0.168115 + 0.141065i
\(584\) 0.646976 0.0267721
\(585\) 51.9740 21.7505i 2.14886 0.899271i
\(586\) 0.432507i 0.0178667i
\(587\) 4.51916 + 25.6294i 0.186526 + 1.05784i 0.923979 + 0.382442i \(0.124917\pi\)
−0.737454 + 0.675398i \(0.763972\pi\)
\(588\) −3.91835 + 23.3289i −0.161590 + 0.962066i
\(589\) −0.111128 + 0.0404472i −0.00457894 + 0.00166660i
\(590\) −3.64264 + 4.34113i −0.149965 + 0.178721i
\(591\) −6.27255 + 14.3262i −0.258018 + 0.589300i
\(592\) 2.06076 + 0.750055i 0.0846966 + 0.0308271i
\(593\) −11.0942 + 19.2157i −0.455584 + 0.789095i −0.998722 0.0505489i \(-0.983903\pi\)
0.543137 + 0.839644i \(0.317236\pi\)
\(594\) 3.48213 + 4.29041i 0.142874 + 0.176038i
\(595\) −1.61113 44.8883i −0.0660500 1.84024i
\(596\) −12.8822 15.3524i −0.527674 0.628858i
\(597\) 27.8163 + 37.7921i 1.13845 + 1.54673i
\(598\) −28.4064 78.0460i −1.16163 3.19154i
\(599\) 10.5607 12.5858i 0.431500 0.514242i −0.505854 0.862619i \(-0.668823\pi\)
0.937354 + 0.348377i \(0.113267\pi\)
\(600\) −1.04581 + 1.09646i −0.0426950 + 0.0447627i
\(601\) −23.4204 + 4.12965i −0.955338 + 0.168452i −0.629523 0.776982i \(-0.716750\pi\)
−0.325815 + 0.945434i \(0.605639\pi\)
\(602\) −0.176819 + 0.00634641i −0.00720662 + 0.000258660i
\(603\) 17.5630 + 9.06156i 0.715220 + 0.369015i
\(604\) 0.557738 + 0.966031i 0.0226940 + 0.0393072i
\(605\) −6.96041 39.4745i −0.282981 1.60486i
\(606\) 0.466516 7.32196i 0.0189509 0.297434i
\(607\) 7.02430 + 19.2991i 0.285108 + 0.783327i 0.996733 + 0.0807677i \(0.0257372\pi\)
−0.711625 + 0.702559i \(0.752041\pi\)
\(608\) 7.35076 + 6.16802i 0.298113 + 0.250146i
\(609\) −16.4528 0.456715i −0.666701 0.0185070i
\(610\) 45.2813 + 16.4810i 1.83339 + 0.667298i
\(611\) 24.0196 13.8677i 0.971730 0.561028i
\(612\) 1.25521 + 26.5310i 0.0507387 + 1.07245i
\(613\) 3.78576 6.55712i 0.152905 0.264840i −0.779389 0.626540i \(-0.784470\pi\)
0.932294 + 0.361701i \(0.117804\pi\)
\(614\) 37.4909 + 13.6456i 1.51301 + 0.550690i
\(615\) −11.5552 + 47.5974i −0.465950 + 1.91931i
\(616\) −0.0846259 + 0.108533i −0.00340968 + 0.00437292i
\(617\) −20.9804 3.69941i −0.844639 0.148933i −0.265448 0.964125i \(-0.585520\pi\)
−0.579190 + 0.815192i \(0.696631\pi\)
\(618\) 33.0921 24.3569i 1.33116 0.979778i
\(619\) 14.3321 39.3772i 0.576057 1.58270i −0.218712 0.975789i \(-0.570185\pi\)
0.794768 0.606913i \(-0.207592\pi\)
\(620\) 0.619077 0.357424i 0.0248627 0.0143545i
\(621\) 40.3959 + 15.4556i 1.62103 + 0.620210i
\(622\) 0.394460i 0.0158164i
\(623\) −23.8378 + 5.09104i −0.955039 + 0.203968i
\(624\) −21.1076 28.6775i −0.844981 1.14802i
\(625\) 8.39926 + 7.04781i 0.335970 + 0.281913i
\(626\) 24.9525 + 20.9376i 0.997303 + 0.836837i
\(627\) 0.809723 + 0.772320i 0.0323372 + 0.0308435i
\(628\) −5.28978 + 14.5335i −0.211085 + 0.579951i
\(629\) 1.21493 + 2.10433i 0.0484426 + 0.0839050i
\(630\) 58.7806 + 5.38641i 2.34188 + 0.214600i
\(631\) 15.3609 26.6058i 0.611507 1.05916i −0.379479 0.925200i \(-0.623897\pi\)
0.990987 0.133961i \(-0.0427698\pi\)
\(632\) 0.327435 + 0.390222i 0.0130247 + 0.0155222i
\(633\) −4.14206 + 6.22354i −0.164632 + 0.247364i
\(634\) −4.83424 + 27.4163i −0.191992 + 1.08884i
\(635\) −64.9553 + 23.6418i −2.57767 + 0.938196i
\(636\) 2.12833 33.4041i 0.0843937 1.32456i
\(637\) 9.61996 33.7961i 0.381157 1.33905i
\(638\) 3.30773 + 1.90972i 0.130954 + 0.0756064i
\(639\) 7.97393 7.36037i 0.315444 0.291172i
\(640\) 2.51954 + 1.45466i 0.0995935 + 0.0575003i
\(641\) −6.04399 7.20295i −0.238723 0.284499i 0.633359 0.773858i \(-0.281675\pi\)
−0.872083 + 0.489358i \(0.837231\pi\)
\(642\) −51.3154 + 15.0585i −2.02526 + 0.594313i
\(643\) 11.5765 + 31.8061i 0.456531 + 1.25431i 0.928051 + 0.372454i \(0.121484\pi\)
−0.471519 + 0.881856i \(0.656294\pi\)
\(644\) 5.93871 42.5557i 0.234018 1.67693i
\(645\) 0.0241292 + 0.216675i 0.000950084 + 0.00853155i
\(646\) 1.89143 + 10.7268i 0.0744173 + 0.422041i
\(647\) −13.4560 23.3065i −0.529011 0.916274i −0.999428 0.0338292i \(-0.989230\pi\)
0.470417 0.882444i \(-0.344104\pi\)
\(648\) 0.872289 + 0.0699162i 0.0342667 + 0.00274657i
\(649\) 0.353055 + 0.203837i 0.0138586 + 0.00800129i
\(650\) −68.7716 + 57.7062i −2.69744 + 2.26342i
\(651\) 0.417286 + 0.165132i 0.0163547 + 0.00647202i
\(652\) −2.00961 + 11.3971i −0.0787024 + 0.446344i
\(653\) −38.0056 6.70141i −1.48727 0.262247i −0.629793 0.776763i \(-0.716860\pi\)
−0.857481 + 0.514516i \(0.827972\pi\)
\(654\) 6.78690 + 1.64765i 0.265389 + 0.0644282i
\(655\) −1.64607 + 1.38122i −0.0643175 + 0.0539688i
\(656\) 30.9554 1.20861
\(657\) −14.6682 + 13.5396i −0.572261 + 0.528228i
\(658\) 29.0387 1.04226i 1.13205 0.0406314i
\(659\) −4.48755 + 12.3294i −0.174810 + 0.480287i −0.995895 0.0905197i \(-0.971147\pi\)
0.821085 + 0.570807i \(0.193369\pi\)
\(660\) −5.63087 3.74761i −0.219181 0.145876i
\(661\) −44.5728 7.85938i −1.73368 0.305695i −0.784430 0.620217i \(-0.787044\pi\)
−0.949250 + 0.314523i \(0.898156\pi\)
\(662\) 28.6500 + 5.05176i 1.11351 + 0.196342i
\(663\) 2.50870 39.3739i 0.0974297 1.52916i
\(664\) 0.0603443 0.165795i 0.00234181 0.00643408i
\(665\) 11.9457 0.428755i 0.463234 0.0166264i
\(666\) −2.94562 + 1.23271i −0.114140 + 0.0477664i
\(667\) 29.8963 1.15759
\(668\) 16.9046 14.1847i 0.654060 0.548821i
\(669\) −1.70531 + 1.78789i −0.0659310 + 0.0691240i
\(670\) −48.2458 8.50704i −1.86390 0.328655i
\(671\) 0.601960 3.41388i 0.0232384 0.131791i
\(672\) −5.32570 36.0224i −0.205444 1.38959i
\(673\) 13.0981 10.9906i 0.504895 0.423657i −0.354434 0.935081i \(-0.615326\pi\)
0.859328 + 0.511424i \(0.170882\pi\)
\(674\) 34.4487 + 19.8890i 1.32691 + 0.766094i
\(675\) 0.764486 46.7449i 0.0294251 1.79921i
\(676\) −11.9000 20.6115i −0.457694 0.792749i
\(677\) 2.82362 + 16.0135i 0.108520 + 0.615450i 0.989756 + 0.142772i \(0.0456016\pi\)
−0.881235 + 0.472678i \(0.843287\pi\)
\(678\) 23.7431 + 10.3956i 0.911847 + 0.399242i
\(679\) −4.67689 + 33.5137i −0.179483 + 1.28614i
\(680\) 0.564577 + 1.55116i 0.0216505 + 0.0594844i
\(681\) 24.3048 + 23.1821i 0.931362 + 0.888340i
\(682\) −0.0669400 0.0797760i −0.00256326 0.00305478i
\(683\) 15.1999 + 8.77566i 0.581608 + 0.335791i 0.761772 0.647845i \(-0.224330\pi\)
−0.180164 + 0.983637i \(0.557663\pi\)
\(684\) −7.06044 + 0.334036i −0.269963 + 0.0127722i
\(685\) −7.57394 4.37281i −0.289385 0.167077i
\(686\) 25.4955 26.5556i 0.973423 1.01390i
\(687\) −3.72233 2.47739i −0.142016 0.0945183i
\(688\) 0.129476 0.0471253i 0.00493622 0.00179664i
\(689\) −8.63374 + 48.9644i −0.328919 + 1.86539i
\(690\) −106.999 6.81742i −4.07339 0.259535i
\(691\) −9.66628 11.5198i −0.367723 0.438235i 0.550177 0.835048i \(-0.314560\pi\)
−0.917899 + 0.396814i \(0.870116\pi\)
\(692\) −10.0630 + 17.4296i −0.382538 + 0.662575i
\(693\) −0.352686 4.23166i −0.0133974 0.160747i
\(694\) −10.7447 18.6103i −0.407862 0.706437i
\(695\) −0.599906 + 1.64823i −0.0227557 + 0.0625209i
\(696\) 0.580402 0.170319i 0.0220001 0.00645593i
\(697\) 26.2743 + 22.0468i 0.995212 + 0.835082i
\(698\) 44.6428 + 37.4597i 1.68975 + 1.41787i
\(699\) 16.9700 38.7586i 0.641865 1.46599i
\(700\) −45.4203 + 9.70045i −1.71673 + 0.366642i
\(701\) 29.7179i 1.12243i −0.827670 0.561215i \(-0.810334\pi\)
0.827670 0.561215i \(-0.189666\pi\)
\(702\) 50.9056 + 9.83693i 1.92131 + 0.371271i
\(703\) −0.560004 + 0.323319i −0.0211210 + 0.0121942i
\(704\) −1.39135 + 3.82271i −0.0524386 + 0.144074i
\(705\) −3.96268 35.5840i −0.149243 1.34017i
\(706\) 39.4750 + 6.96051i 1.48566 + 0.261962i
\(707\) −3.46688 + 4.44629i −0.130386 + 0.167220i
\(708\) −2.47097 + 0.725108i −0.0928648 + 0.0272512i
\(709\) 12.7351 + 4.63518i 0.478275 + 0.174078i 0.569897 0.821716i \(-0.306983\pi\)
−0.0916221 + 0.995794i \(0.529205\pi\)
\(710\) −13.4501 + 23.2962i −0.504772 + 0.874292i
\(711\) −15.5899 1.99471i −0.584668 0.0748075i
\(712\) 0.775784 0.447899i 0.0290737 0.0167857i
\(713\) −0.765989 0.278797i −0.0286865 0.0104410i
\(714\) 21.6524 35.2092i 0.810322 1.31767i
\(715\) 7.69672 + 6.45831i 0.287841 + 0.241527i
\(716\) −5.00811 13.7597i −0.187162 0.514223i
\(717\) 36.5906 18.1274i 1.36650 0.676980i
\(718\) 5.77649 + 32.7601i 0.215577 + 1.22260i
\(719\) −6.04872 10.4767i −0.225579 0.390714i 0.730914 0.682470i \(-0.239094\pi\)
−0.956493 + 0.291755i \(0.905761\pi\)
\(720\) −44.8406 + 10.1124i −1.67111 + 0.376867i
\(721\) −31.5559 + 1.13261i −1.17520 + 0.0421805i
\(722\) 34.3385 6.05481i 1.27795 0.225337i
\(723\) −4.67650 15.9363i −0.173921 0.592676i
\(724\) 22.7498 27.1121i 0.845488 1.00761i
\(725\) −11.0525 30.3664i −0.410478 1.12778i
\(726\) 14.7942 33.7892i 0.549065 1.25403i
\(727\) −12.2167 14.5592i −0.453091 0.539973i 0.490345 0.871529i \(-0.336871\pi\)
−0.943436 + 0.331556i \(0.892426\pi\)
\(728\) 0.0463194 + 1.29052i 0.00171671 + 0.0478298i
\(729\) −21.2397 + 16.6696i −0.786654 + 0.617394i
\(730\) 24.7417 42.8539i 0.915731 1.58609i
\(731\) 0.143460 + 0.0522150i 0.00530604 + 0.00193124i
\(732\) 12.9802 + 17.6353i 0.479762 + 0.651820i
\(733\) −0.281308 + 0.335249i −0.0103903 + 0.0123827i −0.771215 0.636575i \(-0.780350\pi\)
0.760824 + 0.648958i \(0.224795\pi\)
\(734\) −15.3726 + 5.59518i −0.567415 + 0.206522i
\(735\) −34.9841 28.8741i −1.29041 1.06504i
\(736\) 11.4855 + 65.1374i 0.423360 + 2.40100i
\(737\) 3.52429i 0.129819i
\(738\) −33.1201 + 30.5717i −1.21917 + 1.12536i
\(739\) −23.5322 −0.865644 −0.432822 0.901479i \(-0.642482\pi\)
−0.432822 + 0.901479i \(0.642482\pi\)
\(740\) 2.99428 2.51250i 0.110072 0.0923613i
\(741\) 10.4782 + 0.667616i 0.384927 + 0.0245255i
\(742\) −32.0296 + 41.0781i −1.17584 + 1.50803i
\(743\) 24.1698 28.8045i 0.886705 1.05673i −0.111312 0.993786i \(-0.535505\pi\)
0.998017 0.0629481i \(-0.0200503\pi\)
\(744\) −0.0164591 0.00104868i −0.000603419 3.84466e-5i
\(745\) 37.8459 6.67325i 1.38657 0.244489i
\(746\) 29.8410i 1.09256i
\(747\) 2.10154 + 5.02174i 0.0768912 + 0.183736i
\(748\) −4.10196 + 2.36827i −0.149983 + 0.0865925i
\(749\) 39.0984 + 12.6619i 1.42862 + 0.462656i
\(750\) 14.4977 + 49.4044i 0.529383 + 1.80399i
\(751\) 7.27989 41.2863i 0.265647 1.50656i −0.501540 0.865134i \(-0.667233\pi\)
0.767187 0.641424i \(-0.221656\pi\)
\(752\) −21.2635 + 7.73929i −0.775401 + 0.282223i
\(753\) 21.7085 + 9.50481i 0.791101 + 0.346375i
\(754\) 35.2934 6.22317i 1.28531 0.226635i
\(755\) −2.13898 −0.0778453
\(756\) 20.8803 + 16.8370i 0.759408 + 0.612358i
\(757\) −48.7358 −1.77133 −0.885667 0.464321i \(-0.846298\pi\)
−0.885667 + 0.464321i \(0.846298\pi\)
\(758\) −46.3227 + 8.16794i −1.68252 + 0.296673i
\(759\) 0.853655 + 7.66564i 0.0309857 + 0.278245i
\(760\) −0.412796 + 0.150246i −0.0149737 + 0.00544998i
\(761\) −3.97930 + 22.5677i −0.144250 + 0.818080i 0.823717 + 0.567001i \(0.191896\pi\)
−0.967967 + 0.251079i \(0.919215\pi\)
\(762\) −61.8146 15.0067i −2.23930 0.543634i
\(763\) −3.59513 3.98502i −0.130153 0.144267i
\(764\) −20.1128 + 11.6121i −0.727654 + 0.420111i
\(765\) −45.2619 23.3527i −1.63645 0.844320i
\(766\) 3.82783i 0.138305i
\(767\) 3.76709 0.664240i 0.136022