Properties

Label 4-792e2-1.1-c1e2-0-67
Degree $4$
Conductor $627264$
Sign $-1$
Analytic cond. $39.9948$
Root an. cond. $2.51478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 2·11-s − 16-s + 4·17-s − 12·19-s + 2·22-s + 6·25-s − 5·32-s − 4·34-s + 12·38-s − 20·41-s + 12·43-s + 2·44-s − 10·49-s − 6·50-s + 8·59-s + 7·64-s + 16·67-s − 4·68-s − 4·73-s + 12·76-s + 20·82-s + 24·83-s − 12·86-s − 6·88-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 0.603·11-s − 1/4·16-s + 0.970·17-s − 2.75·19-s + 0.426·22-s + 6/5·25-s − 0.883·32-s − 0.685·34-s + 1.94·38-s − 3.12·41-s + 1.82·43-s + 0.301·44-s − 1.42·49-s − 0.848·50-s + 1.04·59-s + 7/8·64-s + 1.95·67-s − 0.485·68-s − 0.468·73-s + 1.37·76-s + 2.20·82-s + 2.63·83-s − 1.29·86-s − 0.639·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627264\)    =    \(2^{6} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(39.9948\)
Root analytic conductor: \(2.51478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 627264,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + T + p T^{2} \)
3 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.a_ag
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.7.a_k
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.13.a_w
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.17.ae_bm
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.19.m_cw
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.23.a_be
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.a_w
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.31.a_bu
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.37.a_bm
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.41.u_ha
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.43.am_es
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.47.a_be
53$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.53.a_ec
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.59.ai_fe
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.61.a_di
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.67.aq_hq
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.73.e_fu
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.79.a_cg
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \) 2.83.ay_ly
89$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.89.a_gw
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.97.ae_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.260138251728680192604135127290, −7.961683082550188402583017938038, −7.27022881279725805626051242126, −6.97386872789196147048059276608, −6.34857031179357428065033331601, −6.01498693401219722406513353700, −5.23958824031598169744798928584, −4.78797800594017334892308373003, −4.61946805305387949572036434228, −3.59973356121945604164533342379, −3.54703633209054620311690270016, −2.39548155950574695209674731954, −1.98903608968509031781883451426, −0.997534810581681490091790170028, 0, 0.997534810581681490091790170028, 1.98903608968509031781883451426, 2.39548155950574695209674731954, 3.54703633209054620311690270016, 3.59973356121945604164533342379, 4.61946805305387949572036434228, 4.78797800594017334892308373003, 5.23958824031598169744798928584, 6.01498693401219722406513353700, 6.34857031179357428065033331601, 6.97386872789196147048059276608, 7.27022881279725805626051242126, 7.961683082550188402583017938038, 8.260138251728680192604135127290

Graph of the $Z$-function along the critical line