Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 73 x^{2} )^{2}$ |
| $1 + 4 x + 150 x^{2} + 292 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.537340940774$, $\pm0.537340940774$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $112$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 19$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5776$ | $29942784$ | $151000633744$ | $805920331677696$ | $4297834810299024016$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $5614$ | $388158$ | $28379230$ | $2073172398$ | $151335412558$ | $11047388787870$ | $806460024758974$ | $58871587552917774$ | $4297625832915120814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=9 x^6+19 x^5+20 x^4+38 x^3+66 x^2+36 x+58$
- $y^2=51 x^6+4 x^4+4 x^2+51$
- $y^2=63 x^6+8 x^5+49 x^4+72 x^3+56 x^2+18 x+69$
- $y^2=25 x^6+3 x^5+23 x^4+41 x^3+30 x^2+19 x+52$
- $y^2=16 x^6+4 x^5+25 x^4+58 x^3+34 x^2+9 x+39$
- $y^2=60 x^6+32 x^4+32 x^2+60$
- $y^2=32 x^6+38 x^5+59 x^4+14 x^3+69 x^2+13 x+19$
- $y^2=68 x^6+13 x^5+43 x^4+x^3+47 x^2+43 x+31$
- $y^2=21 x^6+52 x^5+15 x^4+62 x^3+10 x^2+28 x+22$
- $y^2=26 x^6+61 x^5+63 x^4+67 x^3+42 x^2+19 x+5$
- $y^2=50 x^6+28 x^5+49 x^4+40 x^3+18 x^2+58 x+50$
- $y^2=64 x^6+10 x^5+22 x^4+60 x^3+16 x^2+32 x+13$
- $y^2=68 x^6+22 x^5+56 x^4+56 x^3+56 x^2+22 x+68$
- $y^2=21 x^6+62 x^5+22 x^4+71 x^3+22 x^2+62 x+21$
- $y^2=42 x^6+21 x^5+30 x^4+38 x^3+22 x^2+22 x+42$
- $y^2=57 x^6+32 x^5+66 x^4+67 x^3+66 x^2+32 x+57$
- $y^2=48 x^6+10 x^5+53 x^4+65 x^3+34 x^2+36 x+31$
- $y^2=27 x^6+17 x^5+2 x^4+11 x^3+9 x^2+34 x+24$
- $y^2=57 x^6+32 x^5+11 x^4+71 x^3+42 x^2+8 x+71$
- $y^2=21 x^5+19 x^4+34 x^3+12 x^2+24 x+71$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.