Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$5184$ |
$47775744$ |
$328384010304$ |
$2253554325651456$ |
$15516474082913830464$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$60$ |
$6934$ |
$574308$ |
$47484910$ |
$3939150540$ |
$326939485318$ |
$27136031211636$ |
$2252292068511454$ |
$186940254945582684$ |
$15516041196923450614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 105 curves (of which all are hyperelliptic):
- $y^2=23 x^6+72 x^5+58 x^4+5 x^3+58 x^2+72 x+23$
- $y^2=52 x^6+2 x^5+12 x^4+8 x^3+12 x^2+2 x+52$
- $y^2=31 x^6+81 x^5+3 x^4+53 x^3+x^2+9 x+78$
- $y^2=39 x^6+3 x^5+44 x^4+6 x^3+44 x^2+3 x+39$
- $y^2=6 x^6+69 x^4+69 x^2+6$
- $y^2=36 x^6+71 x^5+53 x^4+63 x^3+53 x^2+71 x+36$
- $y^2=60 x^6+64 x^5+36 x^4+82 x^3+81 x^2+75 x+35$
- $y^2=38 x^6+73 x^5+72 x^4+38 x^3+67 x^2+20 x+63$
- $y^2=x^6+23 x^5+62 x^4+31 x^3+2 x^2+61 x+69$
- $y^2=18 x^6+18 x^5+27 x^4+8 x^3+64 x^2+54 x+45$
- $y^2=2 x^6+79 x^5+36 x^4+9 x^3+68 x^2+80 x+72$
- $y^2=15 x^6+38 x^5+18 x^4+x^3+45 x^2+30 x+58$
- $y^2=32 x^6+66 x^5+30 x^4+7 x^3+16 x^2+73 x+67$
- $y^2=25 x^6+59 x^5+44 x^4+71 x^3+44 x^2+59 x+25$
- $y^2=81 x^6+18 x^4+18 x^2+81$
- $y^2=21 x^6+69 x^4+69 x^2+21$
- $y^2=72 x^6+10 x^5+75 x^4+43 x^3+3 x^2+4 x+39$
- $y^2=71 x^6+76 x^4+76 x^2+71$
- $y^2=51 x^6+2 x^4+2 x^2+51$
- $y^2=49 x^6+55 x^5+43 x^4+35 x^3+20 x^2+76 x+25$
- and 85 more
- $y^2=7 x^5+69 x^4+35 x^3+69 x^2+7 x$
- $y^2=80 x^6+31 x^4+31 x^2+80$
- $y^2=53 x^6+57 x^5+10 x^4+37 x^3+77 x^2+67 x+43$
- $y^2=x^6+82 x^5+x^4+38 x^3+70 x^2+80 x+44$
- $y^2=27 x^6+52 x^5+82 x^4+11 x^3+45 x^2+56 x+77$
- $y^2=55 x^6+8 x^5+7 x^4+39 x^3+7 x^2+8 x+55$
- $y^2=67 x^6+57 x^5+44 x^4+8 x^3+75 x^2+9 x+67$
- $y^2=60 x^6+10 x^5+16 x^4+18 x^3+16 x^2+10 x+60$
- $y^2=7 x^6+33 x^5+20 x^4+28 x^3+20 x^2+33 x+7$
- $y^2=75 x^6+53 x^5+39 x^4+43 x^3+39 x^2+53 x+75$
- $y^2=8 x^5+65 x^4+29 x^3+64 x^2+54 x$
- $y^2=55 x^6+50 x^5+70 x^4+76 x^3+70 x^2+50 x+55$
- $y^2=55 x^6+12 x^5+36 x^4+34 x^3+33 x^2+28 x+24$
- $y^2=60 x^5+59 x^4+39 x^3+16 x^2+82 x$
- $y^2=35 x^6+21 x^5+72 x^4+28 x^3+57 x^2+11 x+71$
- $y^2=16 x^6+11 x^4+11 x^2+16$
- $y^2=74 x^6+13 x^5+4 x^4+18 x^3+4 x^2+13 x+74$
- $y^2=13 x^6+9 x^5+19 x^4+35 x^3+19 x^2+9 x+13$
- $y^2=67 x^6+10 x^5+16 x^4+76 x^3+16 x^2+10 x+67$
- $y^2=51 x^6+60 x^5+35 x^4+25 x^3+81 x^2+13 x+25$
- $y^2=74 x^6+51 x^5+18 x^4+82 x^3+55 x^2+65 x+39$
- $y^2=37 x^6+66 x^5+51 x^4+59 x^3+78 x^2+53 x+16$
- $y^2=15 x^6+76 x^5+28 x^4+35 x^3+65 x^2+6 x+54$
- $y^2=60 x^6+30 x^5+8 x^4+7 x^3+56 x^2+59 x+79$
- $y^2=2 x^6+29 x^5+8 x^4+73 x^3+14 x^2+11 x+60$
- $y^2=20 x^6+28 x^5+20 x^4+28 x^3+20 x^2+28 x+20$
- $y^2=72 x^6+71 x^4+71 x^2+72$
- $y^2=74 x^6+43 x^5+10 x^4+15 x^3+12 x^2+42 x+13$
- $y^2=53 x^6+13 x^5+68 x^4+51 x^3+68 x^2+13 x+53$
- $y^2=9 x^6+38 x^5+26 x^4+74 x^3+26 x^2+38 x+9$
- $y^2=54 x^6+58 x^5+35 x^4+50 x^3+50 x^2+54 x+80$
- $y^2=41 x^5+60 x^4+64 x^3+60 x^2+41 x$
- $y^2=37 x^6+41 x^5+x^4+65 x^3+x^2+41 x+37$
- $y^2=34 x^6+40 x^5+69 x^4+78 x^3+33 x^2+41 x+80$
- $y^2=49 x^6+10 x^5+69 x^4+82 x^3+69 x^2+10 x+49$
- $y^2=55 x^6+29 x^5+45 x^4+55 x^3+40 x^2+43 x+17$
- $y^2=55 x^6+29 x^5+69 x^4+72 x^3+61 x^2+75 x+15$
- $y^2=58 x^6+60 x^5+10 x^4+38 x^3+42 x^2+4 x+7$
- $y^2=2 x^6+9 x^5+49 x^4+79 x^3+49 x^2+9 x+2$
- $y^2=43 x^6+82 x^5+18 x^4+80 x^3+52 x^2+6 x+57$
- $y^2=37 x^6+57 x^5+59 x^4+21 x^3+59 x^2+57 x+37$
- $y^2=56 x^6+41 x^5+20 x^4+76 x^3+67 x^2+3 x+53$
- $y^2=41 x^6+60 x^5+40 x^4+18 x^3+46 x^2+3 x+57$
- $y^2=54 x^6+53 x^5+40 x^4+82 x^3+22 x^2+82 x+42$
- $y^2=43 x^6+50 x^5+82 x^4+10 x^3+82 x^2+50 x+43$
- $y^2=36 x^6+24 x^5+56 x^4+5 x^3+56 x^2+24 x+36$
- $y^2=41 x^6+18 x^5+28 x^4+65 x^3+17 x^2+6 x+33$
- $y^2=31 x^6+15 x^5+12 x^4+80 x^3+36 x^2+52 x+7$
- $y^2=x^6+14 x^5+54 x^4+81 x^3+14 x^2+8 x+77$
- $y^2=74 x^6+65 x^5+34 x^4+37 x^3+82 x^2+3 x+50$
- $y^2=44 x^6+60 x^5+75 x^4+60 x^3+75 x^2+60 x+44$
- $y^2=29 x^6+23 x^5+19 x^4+17 x^3+19 x^2+23 x+29$
- $y^2=53 x^6+72 x^5+51 x^4+44 x^3+51 x^2+72 x+53$
- $y^2=44 x^5+74 x^4+2 x^3+22 x^2+59 x$
- $y^2=35 x^6+46 x^5+30 x^4+54 x^3+30 x^2+46 x+35$
- $y^2=15 x^6+59 x^5+66 x^4+76 x^3+20 x^2+9 x+53$
- $y^2=77 x^6+66 x^5+7 x^4+25 x^3+7 x^2+66 x+77$
- $y^2=32 x^6+2 x^5+69 x^4+63 x^3+21 x^2+46 x+58$
- $y^2=17 x^6+8 x^5+69 x^4+72 x^3+64 x^2+52 x+64$
- $y^2=80 x^6+39 x^5+62 x^4+14 x^3+70 x^2+33 x+14$
- $y^2=2 x^5+38 x^4+x^3+7 x^2+8 x$
- $y^2=75 x^6+61 x^5+11 x^4+49 x^3+21 x^2+33 x+38$
- $y^2=80 x^6+25 x^5+25 x^4+51 x^3+25 x^2+25 x+80$
- $y^2=50 x^6+73 x^5+x^4+51 x^3+51 x^2+64 x+60$
- $y^2=76 x^6+x^5+40 x^4+33 x^3+40 x^2+x+76$
- $y^2=70 x^6+31 x^5+14 x^4+2 x^3+14 x^2+31 x+70$
- $y^2=28 x^5+72 x^4+72 x^3+79 x^2+38 x$
- $y^2=77 x^6+69 x^5+82 x^4+40 x^3+82 x^2+69 x+77$
- $y^2=18 x^6+9 x^4+9 x^2+18$
- $y^2=66 x^6+19 x^5+47 x^4+3 x^3+17 x^2+4 x+2$
- $y^2=33 x^6+2 x^5+74 x^4+74 x^2+2 x+33$
- $y^2=36 x^6+3 x^5+70 x^4+30 x^3+63 x^2+68 x+4$
- $y^2=78 x^6+39 x^5+75 x^4+40 x^3+75 x^2+39 x+78$
- $y^2=21 x^6+80 x^5+67 x^4+19 x^3+67 x^2+80 x+21$
- $y^2=8 x^6+65 x^5+41 x^4+72 x^3+30 x^2+23 x+60$
- $y^2=74 x^6+20 x^5+33 x^4+27 x^3+33 x^2+20 x+74$
- $y^2=67 x^6+5 x^4+5 x^2+67$
- $y^2=12 x^6+80 x^4+3 x^3+47 x^2+69$
- $y^2=64 x^6+36 x^5+60 x^4+22 x^3+60 x^2+36 x+64$
- $y^2=32 x^6+48 x^5+66 x^4+21 x^3+66 x^2+48 x+32$
- $y^2=13 x^6+43 x^5+80 x^4+x^3+80 x^2+43 x+13$
- $y^2=50 x^6+55 x^5+60 x^4+45 x^3+60 x^2+55 x+50$
- $y^2=65 x^6+50 x^4+8 x^3+58 x^2+23$
- $y^2=29 x^6+24 x^5+22 x^4+13 x^3+22 x^2+24 x+29$
- $y^2=13 x^6+75 x^5+34 x^4+73 x^3+18 x^2+17 x+58$
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$
Base change
This is a primitive isogeny class.
Twists