Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 47 x^{2} )( 1 + 8 x + 47 x^{2} )$ |
$1 + 30 x^{2} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.301698511018$, $\pm0.698301488982$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $279$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2240$ | $5017600$ | $10779043520$ | $23845642240000$ | $52599132693867200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2270$ | $103824$ | $4886718$ | $229345008$ | $10778871710$ | $506623120464$ | $23811281427838$ | $1119130473102768$ | $52599133151904350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 279 curves (of which all are hyperelliptic):
- $y^2=43 x^6+38 x^5+21 x^4+7 x^3+44 x^2+8 x+46$
- $y^2=27 x^6+2 x^5+11 x^4+35 x^3+32 x^2+40 x+42$
- $y^2=22 x^6+43 x^5+20 x^4+20 x^3+16 x^2+20 x+6$
- $y^2=16 x^6+17 x^5+29 x^4+34 x^3+29 x^2+17 x+16$
- $y^2=33 x^6+38 x^5+4 x^4+29 x^3+4 x^2+38 x+33$
- $y^2=10 x^6+33 x^5+6 x^4+25 x^3+28 x^2+45 x+38$
- $y^2=3 x^6+24 x^5+30 x^4+31 x^3+46 x^2+37 x+2$
- $y^2=17 x^6+34 x^5+9 x^4+46 x^3+12 x^2+42 x+39$
- $y^2=38 x^6+29 x^5+45 x^4+42 x^3+13 x^2+22 x+7$
- $y^2=16 x^6+45 x^5+30 x^4+38 x^3+13 x^2+14 x+9$
- $y^2=33 x^6+37 x^5+9 x^4+2 x^3+18 x^2+23 x+45$
- $y^2=12 x^6+28 x^5+2 x^4+11 x^3+19 x^2+12 x+28$
- $y^2=13 x^6+46 x^5+10 x^4+8 x^3+x^2+13 x+46$
- $y^2=17 x^6+38 x^4+2 x^2+10$
- $y^2=32 x^6+39 x^4+7 x^2+5$
- $y^2=34 x^6+46 x^5+26 x^4+26 x^3+25 x^2+13 x+2$
- $y^2=29 x^6+42 x^5+36 x^4+36 x^3+31 x^2+18 x+10$
- $y^2=20 x^6+15 x^5+22 x^4+45 x^3+41 x^2+5 x+11$
- $y^2=6 x^6+28 x^5+16 x^4+37 x^3+17 x^2+25 x+8$
- $y^2=18 x^6+45 x^5+23 x^4+22 x^3+29 x^2+7 x+42$
- and 259 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.ai $\times$ 1.47.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-31}) \)$)$ |
Base change
This is a primitive isogeny class.