Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 43 x^{2} )^{2}$ |
| $1 - 12 x + 122 x^{2} - 516 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.348746511119$, $\pm0.348746511119$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $26$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 19$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1444$ | $3610000$ | $6410564356$ | $11696400000000$ | $21606541641923044$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $1950$ | $80624$ | $3421198$ | $146974832$ | $6321058350$ | $271818228224$ | $11688211082398$ | $502592693229632$ | $21611482336434750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=18 x^5+x^4+18 x^3+12 x^2+42 x+24$
- $y^2=3 x^6+12 x^5+33 x^4+38 x^3+33 x^2+12 x+3$
- $y^2=27 x^6+29 x^5+26 x^4+7 x^3+28 x^2+26 x+32$
- $y^2=5 x^6+26 x^5+24 x^4+23 x^3+16 x^2+9 x+13$
- $y^2=41 x^6+27 x^5+12 x^4+22 x^3+18 x^2+7 x+4$
- $y^2=34 x^6+42 x^5+38 x^4+x^3+14 x^2+8 x+2$
- $y^2=37 x^6+23 x^5+2 x^4+8 x^3+18 x^2+14 x+12$
- $y^2=7 x^6+3 x^5+35 x^4+29 x^3+33 x^2+5 x+17$
- $y^2=41 x^6+34 x^4+34 x^2+41$
- $y^2=34 x^6+32 x^5+32 x^4+11 x^3+14 x^2+11 x+22$
- $y^2=29 x^6+5 x^5+x^4+8 x^3+x^2+5 x+29$
- $y^2=29 x^6+18 x^5+26 x^4+42 x^3+18 x^2+30 x+7$
- $y^2=41 x^6+26 x^5+27 x^4+3 x^3+27 x^2+26 x+41$
- $y^2=2 x^6+8 x^5+34 x^4+22 x^3+7 x^2+42 x+42$
- $y^2=20 x^6+21 x^5+21 x^4+6 x^2+41 x+3$
- $y^2=37 x^6+12 x^5+32 x^4+17 x^3+5 x^2+41 x+7$
- $y^2=20 x^6+23 x^4+5 x^3+23 x^2+20$
- $y^2=18 x^6+6 x^5+5 x^4+22 x^3+30 x^2+30 x+29$
- $y^2=21 x^6+16 x^5+39 x^4+12 x^3+39 x^2+15 x+27$
- $y^2=27 x^6+30 x^5+22 x^4+28 x^3+29 x^2+42 x+8$
- $y^2=22 x^6+28 x^5+6 x^4+37 x^3+6 x^2+28 x+22$
- $y^2=32 x^6+15 x^5+17 x^4+16 x^3+x^2+32 x+32$
- $y^2=42 x^6+42 x^5+5 x^4+30 x^3+22 x^2+6 x+35$
- $y^2=38 x^5+42 x^4+3 x^3+40 x^2+10 x+24$
- $y^2=30 x^6+30 x^4+30 x^2+30$
- $y^2=29 x^6+18 x^5+20 x^4+11 x^3+20 x^2+18 x+29$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-34}) \)$)$ |
Base change
This is a primitive isogeny class.