Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 97 x^{2} )^{2}$ |
| $1 - 4 x + 198 x^{2} - 388 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.467624736821$, $\pm0.467624736821$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $257$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9216$ | $92160000$ | $834021909504$ | $7834374144000000$ | $73740862837292000256$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $94$ | $9790$ | $913822$ | $88494718$ | $8587159774$ | $832974996670$ | $80798307968542$ | $7837433351159038$ | $760231055889557854$ | $73742412707554949950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 257 curves (of which all are hyperelliptic):
- $y^2=60 x^6+47 x^5+30 x^4+69 x^3+94 x^2+38 x+79$
- $y^2=38 x^6+66 x^5+32 x^4+96 x^3+27 x^2+28 x+78$
- $y^2=39 x^6+44 x^5+12 x^4+25 x^3+96 x^2+3 x+83$
- $y^2=11 x^6+34 x^5+52 x^4+76 x^3+52 x^2+34 x+11$
- $y^2=44 x^6+48 x^5+74 x^4+88 x^3+13 x^2+8 x+31$
- $y^2=84 x^6+85 x^5+9 x^4+60 x^3+89 x^2+61 x+8$
- $y^2=46 x^6+59 x^5+8 x^4+75 x^3+8 x^2+59 x+46$
- $y^2=60 x^6+53 x^5+22 x^4+38 x^3+77 x^2+x+9$
- $y^2=70 x^6+13 x^5+43 x^4+88 x^3+11 x^2+52 x+22$
- $y^2=46 x^6+81 x^5+96 x^4+51 x^3+x^2+81 x+51$
- $y^2=62 x^6+94 x^5+80 x^4+21 x^3+52 x^2+79 x+9$
- $y^2=42 x^6+81 x^5+91 x^4+20 x^3+67 x^2+35 x+87$
- $y^2=51 x^6+17 x^5+34 x^4+21 x^3+23 x^2+52 x+77$
- $y^2=73 x^6+66 x^4+18 x^3+22 x^2+78 x$
- $y^2=76 x^6+52 x^5+32 x^4+23 x^3+49 x^2+20 x+83$
- $y^2=94 x^6+69 x^5+82 x^4+65 x^3+82 x^2+69 x+94$
- $y^2=2 x^6+88 x^5+55 x^4+90 x^3+55 x^2+88 x+2$
- $y^2=3 x^6+94 x^5+73 x^4+9 x^3+11 x^2+12 x+54$
- $y^2=32 x^6+28 x^5+87 x^4+36 x^3+59 x^2+59 x+65$
- $y^2=92 x^6+11 x^5+80 x^4+12 x^2+32 x+1$
- and 237 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.