Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 19 x^{2} )^{2}$ |
$1 + 12 x + 74 x^{2} + 228 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.741619551917$, $\pm0.741619551917$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $4$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $676$ | $132496$ | $45346756$ | $17171481600$ | $6121596362596$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $32$ | $366$ | $6608$ | $131758$ | $2472272$ | $47041566$ | $893970368$ | $16983053278$ | $322688882432$ | $6131068835406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=11 x^6+18 x^4+18 x^2+11$
- $y^2=x^6+9 x^5+18 x^4+3 x^3+18 x^2+9 x+1$
- $y^2=9 x^6+9 x^4+10 x^3+10 x^2+11 x$
- $y^2=17 x^6+12 x^5+4 x^4+12 x^3+7 x^2+13 x+16$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.