L(s) = 1 | − 2-s − 4-s + 3·8-s − 2·11-s − 16-s + 4·17-s − 12·19-s + 2·22-s + 6·25-s − 5·32-s − 4·34-s + 12·38-s − 20·41-s + 12·43-s + 2·44-s − 10·49-s − 6·50-s + 8·59-s + 7·64-s + 16·67-s − 4·68-s − 4·73-s + 12·76-s + 20·82-s + 24·83-s − 12·86-s − 6·88-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 1.06·8-s − 0.603·11-s − 1/4·16-s + 0.970·17-s − 2.75·19-s + 0.426·22-s + 6/5·25-s − 0.883·32-s − 0.685·34-s + 1.94·38-s − 3.12·41-s + 1.82·43-s + 0.301·44-s − 1.42·49-s − 0.848·50-s + 1.04·59-s + 7/8·64-s + 1.95·67-s − 0.485·68-s − 0.468·73-s + 1.37·76-s + 2.20·82-s + 2.63·83-s − 1.29·86-s − 0.639·88-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.260138251728680192604135127290, −7.961683082550188402583017938038, −7.27022881279725805626051242126, −6.97386872789196147048059276608, −6.34857031179357428065033331601, −6.01498693401219722406513353700, −5.23958824031598169744798928584, −4.78797800594017334892308373003, −4.61946805305387949572036434228, −3.59973356121945604164533342379, −3.54703633209054620311690270016, −2.39548155950574695209674731954, −1.98903608968509031781883451426, −0.997534810581681490091790170028, 0,
0.997534810581681490091790170028, 1.98903608968509031781883451426, 2.39548155950574695209674731954, 3.54703633209054620311690270016, 3.59973356121945604164533342379, 4.61946805305387949572036434228, 4.78797800594017334892308373003, 5.23958824031598169744798928584, 6.01498693401219722406513353700, 6.34857031179357428065033331601, 6.97386872789196147048059276608, 7.27022881279725805626051242126, 7.961683082550188402583017938038, 8.260138251728680192604135127290