Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 23 x^{2} )( 1 + 4 x + 23 x^{2} )$ |
| $1 + 30 x^{2} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.363071407864$, $\pm0.636928592136$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $77$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $560$ | $313600$ | $148015280$ | $78400000000$ | $41426506074800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $590$ | $12168$ | $280158$ | $6436344$ | $147994670$ | $3404825448$ | $78312054718$ | $1801152661464$ | $41426500935950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 77 curves (of which all are hyperelliptic):
- $y^2=18 x^6+15 x^5+15 x^4+x^3+7 x^2+2 x+15$
- $y^2=21 x^6+6 x^5+6 x^4+5 x^3+12 x^2+10 x+6$
- $y^2=21 x^6+4 x^5+12 x^4+8 x^3+12 x^2+4 x+21$
- $y^2=13 x^6+20 x^5+14 x^4+17 x^3+14 x^2+20 x+13$
- $y^2=16 x^6+12 x^5+8 x^4+17 x^3+2 x^2+16 x+13$
- $y^2=x^6+22 x^5+11 x^4+22 x^3+5 x^2+10 x+4$
- $y^2=11 x^6+8 x^5+21 x^4+22 x^3+12 x^2+12$
- $y^2=9 x^6+17 x^5+13 x^4+18 x^3+14 x^2+14$
- $y^2=9 x^6+22 x^4+18 x^2+21$
- $y^2=16 x^6+8 x^4+17 x^2+22$
- $y^2=13 x^6+15 x^5+18 x^4+21 x^3+11 x^2+x+4$
- $y^2=19 x^6+6 x^5+21 x^4+13 x^3+9 x^2+5 x+20$
- $y^2=20 x^6+22 x^5+2 x^4+9 x^2+17 x+3$
- $y^2=8 x^6+18 x^5+10 x^4+22 x^2+16 x+15$
- $y^2=17 x^6+18 x^4+15 x^3+18 x^2+2 x+19$
- $y^2=16 x^6+21 x^4+6 x^3+21 x^2+10 x+3$
- $y^2=18 x^6+16 x^5+4 x^4+20 x^3+4 x^2+16 x+18$
- $y^2=21 x^6+11 x^5+20 x^4+8 x^3+20 x^2+11 x+21$
- $y^2=21 x^6+2 x^5+x^4+x^2+2 x+21$
- $y^2=13 x^6+10 x^5+5 x^4+5 x^2+10 x+13$
- and 57 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.ae $\times$ 1.23.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.