Properties

Label 2.59.ai_fe
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 59 x^{2} )^{2}$
  $1 - 8 x + 134 x^{2} - 472 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.416152878126$, $\pm0.416152878126$
Angle rank:  $1$ (numerical)
Jacobians:  $88$
Cyclic group of points:    no
Non-cyclic primes:   $2, 7$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3136$ $12845056$ $42445888576$ $146747057766400$ $511042742727071296$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $52$ $3686$ $206668$ $12110478$ $714820772$ $42180525686$ $2488657561148$ $146830462379038$ $8662995559250452$ $511116750801315206$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 88 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-55}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_dy$2$(not in LMFDB)
2.59.i_fe$2$(not in LMFDB)
2.59.e_abr$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.a_dy$2$(not in LMFDB)
2.59.i_fe$2$(not in LMFDB)
2.59.e_abr$3$(not in LMFDB)
2.59.a_ady$4$(not in LMFDB)
2.59.ae_abr$6$(not in LMFDB)