Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 37 x^{2} )( 1 + 6 x + 37 x^{2} )$ |
| $1 + 38 x^{2} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.335828188403$, $\pm0.664171811597$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $146$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1408$ | $1982464$ | $2565625216$ | $3517335207936$ | $4808584432144768$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1446$ | $50654$ | $1876750$ | $69343958$ | $2565524022$ | $94931877134$ | $3512483601694$ | $129961739795078$ | $4808584491871686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 146 curves (of which all are hyperelliptic):
- $y^2=x^6+25 x^5+31 x^4+7 x^3+6 x^2+31 x+13$
- $y^2=2 x^6+13 x^5+25 x^4+14 x^3+12 x^2+25 x+26$
- $y^2=3 x^6+13 x^5+27 x^4+26 x^3+19 x^2+19 x+11$
- $y^2=6 x^6+26 x^5+17 x^4+15 x^3+x^2+x+22$
- $y^2=35 x^6+5 x^5+x^4+3 x^3+6 x^2+32 x+12$
- $y^2=17 x^6+31 x^4+25 x^2+25$
- $y^2=22 x^6+18 x^4+36 x^2+28$
- $y^2=13 x^6+34 x^5+35 x^4+31 x^3+9 x^2+5 x+7$
- $y^2=26 x^6+31 x^5+33 x^4+25 x^3+18 x^2+10 x+14$
- $y^2=24 x^6+10 x^5+19 x^4+31 x^3+6 x^2+19 x+9$
- $y^2=27 x^6+35 x^5+13 x^4+28 x^3+36 x^2+14 x+6$
- $y^2=30 x^6+18 x^5+x^4+10 x^3+21 x^2+19 x+23$
- $y^2=23 x^6+36 x^5+2 x^4+20 x^3+5 x^2+x+9$
- $y^2=10 x^6+3 x^5+3 x^4+2 x^3+36 x^2+33 x+26$
- $y^2=20 x^6+6 x^5+6 x^4+4 x^3+35 x^2+29 x+15$
- $y^2=15 x^6+32 x^5+29 x^4+11 x^3+2 x^2+11 x+20$
- $y^2=31 x^6+33 x^5+6 x^4+33 x^3+9 x^2+14 x+11$
- $y^2=17 x^6+6 x^5+12 x^4+33 x^3+34 x^2+11 x+23$
- $y^2=35 x^6+12 x^5+5 x^4+6 x^3+22 x^2+34 x+17$
- $y^2=33 x^6+24 x^5+10 x^4+12 x^3+7 x^2+31 x+34$
- and 126 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ag $\times$ 1.37.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.bm 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.