Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 89 x^{2} )^{2}$ |
| $1 + 178 x^{2} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$ |
| Angle rank: | $0$ (numerical) |
| Jacobians: | $209$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8100$ | $65610000$ | $496982700900$ | $3934601256960000$ | $31181719941134302500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $8278$ | $704970$ | $62710558$ | $5584059450$ | $496984110838$ | $44231334895530$ | $3936588554733118$ | $350356403707485210$ | $31181719952302421398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 209 curves (of which all are hyperelliptic):
- $y^2=x^5+88$
- $y^2=3 x^5+86$
- $y^2=11 x^6+9 x^5+74 x^4+50 x^3+31 x^2+46 x+35$
- $y^2=33 x^6+27 x^5+44 x^4+61 x^3+4 x^2+49 x+16$
- $y^2=70 x^6+x^5+63 x^4+50 x^3+37 x^2+60 x+50$
- $y^2=32 x^6+3 x^5+11 x^4+61 x^3+22 x^2+2 x+61$
- $y^2=67 x^6+44 x^5+67 x^4+27 x^3+74 x^2+x$
- $y^2=53 x^6+15 x^5+24 x^4+58 x^3+71 x^2+32 x+20$
- $y^2=70 x^6+45 x^5+72 x^4+85 x^3+35 x^2+7 x+60$
- $y^2=46 x^6+61 x^5+46 x^4+49 x^2+74 x+85$
- $y^2=79 x^6+15 x^5+29 x^4+17 x^3+29 x^2+15 x+79$
- $y^2=59 x^6+45 x^5+87 x^4+51 x^3+87 x^2+45 x+59$
- $y^2=27 x^6+50 x^5+44 x^4+65 x^3+44 x^2+50 x+27$
- $y^2=81 x^6+61 x^5+43 x^4+17 x^3+43 x^2+61 x+81$
- $y^2=2 x^6+39 x^5+74 x^4+38 x^3+80 x^2+5 x+55$
- $y^2=6 x^6+28 x^5+44 x^4+25 x^3+62 x^2+15 x+76$
- $y^2=18 x^6+76 x^5+53 x^4+34 x^3+45 x^2+52 x+1$
- $y^2=54 x^6+50 x^5+70 x^4+13 x^3+46 x^2+67 x+3$
- $y^2=23 x^6+31 x^5+84 x^4+69 x^3+84 x^2+31 x+23$
- $y^2=69 x^6+4 x^5+74 x^4+29 x^3+74 x^2+4 x+69$
- and 189 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-89}) \)$)$ |
| The base change of $A$ to $\F_{89^{2}}$ is 1.7921.gw 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $89$ and $\infty$. |
Base change
This is a primitive isogeny class.