Properties

Label 2.89.a_gw
Base field $\F_{89}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 + 89 x^{2} )^{2}$
  $1 + 178 x^{2} + 7921 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.5$
Angle rank:  $0$ (numerical)
Jacobians:  $209$

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8100$ $65610000$ $496982700900$ $3934601256960000$ $31181719941134302500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $8278$ $704970$ $62710558$ $5584059450$ $496984110838$ $44231334895530$ $3936588554733118$ $350356403707485210$ $31181719952302421398$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 209 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89^{2}}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-89}) \)$)$
Endomorphism algebra over $\overline{\F}_{89}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.gw 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $89$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_adl$3$(not in LMFDB)
2.89.a_agw$4$(not in LMFDB)
2.89.a_a$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_adl$3$(not in LMFDB)
2.89.a_agw$4$(not in LMFDB)
2.89.a_a$8$(not in LMFDB)
2.89.a_dl$12$(not in LMFDB)