L(s) = 1 | − 3-s + 9-s − 2·13-s + 16·19-s + 6·25-s − 27-s − 8·31-s + 12·37-s + 2·39-s + 8·43-s − 14·49-s − 16·57-s + 20·61-s − 8·67-s − 4·73-s − 6·75-s − 16·79-s + 81-s + 8·93-s − 20·97-s − 16·103-s + 20·109-s − 12·111-s − 2·117-s − 18·121-s + 127-s − 8·129-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 0.554·13-s + 3.67·19-s + 6/5·25-s − 0.192·27-s − 1.43·31-s + 1.97·37-s + 0.320·39-s + 1.21·43-s − 2·49-s − 2.11·57-s + 2.56·61-s − 0.977·67-s − 0.468·73-s − 0.692·75-s − 1.80·79-s + 1/9·81-s + 0.829·93-s − 2.03·97-s − 1.57·103-s + 1.91·109-s − 1.13·111-s − 0.184·117-s − 1.63·121-s + 0.0887·127-s − 0.704·129-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 292032 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 292032 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.579904327\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.579904327\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.140403206898220946961227682758, −8.261470901569093424534734056213, −7.69837808741404231925046977179, −7.53138311391475412234846459345, −6.94953164128169925072485600653, −6.63559690348924214052369009469, −5.68484105112531909640928874037, −5.53392832912108757065282436695, −5.11677941303251687475460824152, −4.47584796632881532587650291705, −3.86619415183519071335286697657, −3.02936751855165763048811417152, −2.80021793098482472301348633140, −1.54183448393116236574503713957, −0.837203931274100821703489157823,
0.837203931274100821703489157823, 1.54183448393116236574503713957, 2.80021793098482472301348633140, 3.02936751855165763048811417152, 3.86619415183519071335286697657, 4.47584796632881532587650291705, 5.11677941303251687475460824152, 5.53392832912108757065282436695, 5.68484105112531909640928874037, 6.63559690348924214052369009469, 6.94953164128169925072485600653, 7.53138311391475412234846459345, 7.69837808741404231925046977179, 8.261470901569093424534734056213, 9.140403206898220946961227682758