Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 10 x + 97 x^{2} )^{2}$ |
| $1 + 20 x + 294 x^{2} + 1940 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.669494215923$, $\pm0.669494215923$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $112$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $11664$ | $90326016$ | $829491063696$ | $7839201269661696$ | $73743880290419301264$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $118$ | $9598$ | $908854$ | $88549246$ | $8587511158$ | $832968359422$ | $80798304355894$ | $7837433749213438$ | $760231055178055798$ | $73742412709238782078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=70 x^6+66 x^5+76 x^3+25 x+75$
- $y^2=76 x^6+46 x^5+35 x^4+30 x^3+77 x^2+81 x+88$
- $y^2=64 x^6+73 x^5+76 x^4+88 x^3+48 x^2+56 x+8$
- $y^2=23 x^6+53 x^5+49 x^4+21 x^3+10 x^2+36 x+2$
- $y^2=12 x^6+32 x^5+21 x^4+11 x^3+21 x^2+32 x+12$
- $y^2=93 x^6+32 x^5+9 x^4+24 x^3+9 x^2+32 x+93$
- $y^2=94 x^6+33 x^5+66 x^4+10 x^3+46 x^2+78 x+39$
- $y^2=7 x^6+91 x^5+86 x^4+87 x^3+32 x^2+88 x+35$
- $y^2=68 x^6+67 x^5+39 x^4+80 x^3+54 x^2+53 x+15$
- $y^2=92 x^6+60 x^5+x^4+68 x^3+73 x^2+86 x+51$
- $y^2=66 x^6+96 x^5+29 x^4+x^3+29 x^2+96 x+66$
- $y^2=60 x^6+54 x^5+26 x^4+5 x^2+35 x+68$
- $y^2=22 x^5+35 x^3+43 x^2+93 x+30$
- $y^2=13 x^6+3 x^5+58 x^4+27 x^3+16 x^2+5 x+23$
- $y^2=13 x^6+57 x^5+17 x^4+14 x^3+46 x^2+28 x+37$
- $y^2=23 x^6+24 x^5+96 x^4+76 x^3+65 x^2+35 x+71$
- $y^2=x^6+31 x^3+12$
- $y^2=82 x^6+34 x^5+96 x^4+6 x^3+96 x^2+34 x+82$
- $y^2=9 x^6+58 x^5+54 x^4+55 x^3+82 x^2+94 x+51$
- $y^2=74 x^6+42 x^5+12 x^4+49 x^3+87 x^2+89 x+85$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.