Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 59 x^{2} )( 1 + 14 x + 59 x^{2} )$ |
$1 - 78 x^{2} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.135062563049$, $\pm0.864937436951$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $78$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3404$ | $11587216$ | $42180873644$ | $146851740697600$ | $511116753947273804$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3326$ | $205380$ | $12119118$ | $714924300$ | $42181213646$ | $2488651484820$ | $146830484531998$ | $8662995818654940$ | $511116754593906206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=20 x^6+4 x^5+51 x^4+54 x^3+44 x^2+3 x+6$
- $y^2=51 x^6+42 x^5+8 x^4+27 x^3+45 x^2+18 x+6$
- $y^2=33 x^6+45 x^5+49 x^4+21 x^3+2 x^2+49 x+29$
- $y^2=43 x^6+32 x^5+25 x^4+52 x^3+54 x^2+58 x+3$
- $y^2=27 x^6+5 x^5+50 x^4+45 x^3+49 x^2+57 x+6$
- $y^2=21 x^6+58 x^5+43 x^4+12 x^3+47 x^2+25 x+47$
- $y^2=42 x^6+57 x^5+27 x^4+24 x^3+35 x^2+50 x+35$
- $y^2=17 x^6+39 x^5+55 x^4+24 x^3+21 x^2+20 x+11$
- $y^2=34 x^6+19 x^5+51 x^4+48 x^3+42 x^2+40 x+22$
- $y^2=20 x^6+27 x^5+23 x^4+23 x^3+35 x^2+12 x+54$
- $y^2=14 x^6+40 x^5+5 x^4+22 x^3+58 x^2+49 x+11$
- $y^2=28 x^6+21 x^5+10 x^4+44 x^3+57 x^2+39 x+22$
- $y^2=23 x^6+25 x^5+12 x^4+3 x^3+50 x^2+3 x+41$
- $y^2=38 x^6+x^5+36 x^4+6 x^3+40 x^2+26 x+3$
- $y^2=40 x^6+58 x^5+43 x^4+16 x^3+5 x^2+12 x+45$
- $y^2=21 x^6+57 x^5+27 x^4+32 x^3+10 x^2+24 x+31$
- $y^2=46 x^6+23 x^5+51 x^4+48 x^3+10 x^2+11 x+15$
- $y^2=33 x^6+46 x^5+43 x^4+37 x^3+20 x^2+22 x+30$
- $y^2=43 x^6+56 x^5+14 x^4+11 x^3+9 x^2+40 x+36$
- $y^2=40 x^6+2 x^5+42 x^4+5 x^3+17 x^2+2 x+19$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ao $\times$ 1.59.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.ada 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.