-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 3404, 'abvar_counts': [3404, 11587216, 42180873644, 146851740697600, 511116753947273804, 1779226101371093838736, 6193386212887125717239084, 21559184297488449448165785600, 75047496554032953040815356151884, 261240336165598031702204483744630416], 'abvar_counts_str': '3404 11587216 42180873644 146851740697600 511116753947273804 1779226101371093838736 6193386212887125717239084 21559184297488449448165785600 75047496554032953040815356151884 261240336165598031702204483744630416 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.135062563049179, 0.864937436950821], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 60, 'curve_counts': [60, 3326, 205380, 12119118, 714924300, 42181213646, 2488651484820, 146830484531998, 8662995818654940, 511116754593906206], 'curve_counts_str': '60 3326 205380 12119118 714924300 42181213646 2488651484820 146830484531998 8662995818654940 511116754593906206 ', 'curves': ['y^2=20*x^6+4*x^5+51*x^4+54*x^3+44*x^2+3*x+6', 'y^2=51*x^6+42*x^5+8*x^4+27*x^3+45*x^2+18*x+6', 'y^2=33*x^6+45*x^5+49*x^4+21*x^3+2*x^2+49*x+29', 'y^2=43*x^6+32*x^5+25*x^4+52*x^3+54*x^2+58*x+3', 'y^2=27*x^6+5*x^5+50*x^4+45*x^3+49*x^2+57*x+6', 'y^2=21*x^6+58*x^5+43*x^4+12*x^3+47*x^2+25*x+47', 'y^2=42*x^6+57*x^5+27*x^4+24*x^3+35*x^2+50*x+35', 'y^2=17*x^6+39*x^5+55*x^4+24*x^3+21*x^2+20*x+11', 'y^2=34*x^6+19*x^5+51*x^4+48*x^3+42*x^2+40*x+22', 'y^2=20*x^6+27*x^5+23*x^4+23*x^3+35*x^2+12*x+54', 'y^2=14*x^6+40*x^5+5*x^4+22*x^3+58*x^2+49*x+11', 'y^2=28*x^6+21*x^5+10*x^4+44*x^3+57*x^2+39*x+22', 'y^2=23*x^6+25*x^5+12*x^4+3*x^3+50*x^2+3*x+41', 'y^2=38*x^6+x^5+36*x^4+6*x^3+40*x^2+26*x+3', 'y^2=40*x^6+58*x^5+43*x^4+16*x^3+5*x^2+12*x+45', 'y^2=21*x^6+57*x^5+27*x^4+32*x^3+10*x^2+24*x+31', 'y^2=46*x^6+23*x^5+51*x^4+48*x^3+10*x^2+11*x+15', 'y^2=33*x^6+46*x^5+43*x^4+37*x^3+20*x^2+22*x+30', 'y^2=43*x^6+56*x^5+14*x^4+11*x^3+9*x^2+40*x+36', 'y^2=40*x^6+2*x^5+42*x^4+5*x^3+17*x^2+2*x+19', 'y^2=11*x^6+25*x^5+37*x^4+2*x^3+29*x^2+4*x+26', 'y^2=22*x^6+50*x^5+15*x^4+4*x^3+58*x^2+8*x+52', 'y^2=57*x^6+24*x^5+19*x^4+x^3+20*x^2+26*x+28', 'y^2=55*x^6+48*x^5+38*x^4+2*x^3+40*x^2+52*x+56', 'y^2=11*x^6+52*x^5+54*x^4+41*x^3+35*x^2+54*x+56', 'y^2=22*x^6+45*x^5+49*x^4+23*x^3+11*x^2+49*x+53', 'y^2=39*x^6+31*x^5+32*x^4+10*x^3+51*x^2+13*x+4', 'y^2=44*x^6+11*x^5+2*x^4+16*x^3+16*x^2+55*x+49', 'y^2=51*x^6+12*x^5+4*x^4+21*x^3+2*x^2+3*x+58', 'y^2=49*x^6+2*x^5+4*x^4+11*x^3+6*x^2+9', 'y^2=39*x^6+4*x^5+8*x^4+22*x^3+12*x^2+18', 'y^2=40*x^6+14*x^5+26*x^4+19*x^3+57*x^2+45*x+58', 'y^2=21*x^6+28*x^5+52*x^4+38*x^3+55*x^2+31*x+57', 'y^2=40*x^6+34*x^5+45*x^4+x^3+58*x^2+54*x+5', 'y^2=21*x^6+9*x^5+31*x^4+2*x^3+57*x^2+49*x+10', 'y^2=51*x^6+55*x^5+22*x^4+35*x^3+13*x^2+42*x+55', 'y^2=18*x^6+38*x^5+35*x^4+4*x^3+33*x^2+15*x+48', 'y^2=36*x^6+17*x^5+11*x^4+8*x^3+7*x^2+30*x+37', 'y^2=x^6+9*x^5+10*x^4+24*x^3+54*x^2+33*x+30', 'y^2=2*x^6+18*x^5+20*x^4+48*x^3+49*x^2+7*x+1', 'y^2=3*x^6+12*x^5+45*x^4+46*x^3+31*x^2+48*x+24', 'y^2=23*x^6+33*x^5+41*x^4+54*x^3+8*x^2+24*x+17', 'y^2=46*x^6+9*x^5+52*x^4+56*x^3+47*x^2+56*x+8', 'y^2=33*x^6+18*x^5+45*x^4+53*x^3+35*x^2+53*x+16', 'y^2=x^6+14*x^5+3*x^4+33*x^3+9*x^2+23*x+51', 'y^2=2*x^6+28*x^5+6*x^4+7*x^3+18*x^2+46*x+43', 'y^2=30*x^6+50*x^5+57*x^4+40*x^3+36*x^2+6*x+28', 'y^2=x^6+41*x^5+55*x^4+21*x^3+13*x^2+12*x+56', 'y^2=44*x^6+27*x^5+2*x^4+24*x^3+34*x^2+15*x+55', 'y^2=29*x^6+54*x^5+4*x^4+48*x^3+9*x^2+30*x+51', 'y^2=26*x^6+40*x^5+51*x^4+31*x^3+51*x^2+40*x+26', 'y^2=52*x^6+21*x^5+43*x^4+3*x^3+43*x^2+21*x+52', 'y^2=48*x^6+42*x^5+19*x^4+29*x^3+40*x^2+42*x+11', 'y^2=44*x^6+21*x^5+24*x^4+48*x^3+45*x^2+x+25', 'y^2=12*x^6+21*x^5+5*x^4+40*x^3+13*x^2+57*x+24', 'y^2=30*x^6+24*x^5+6*x^4+34*x^3+57*x^2+46*x+9', 'y^2=x^6+48*x^5+12*x^4+9*x^3+55*x^2+33*x+18', 'y^2=20*x^6+47*x^5+21*x^4+42*x^3+31*x^2+18*x+40', 'y^2=34*x^6+54*x^5+50*x^4+30*x^3+5*x^2+56*x+28', 'y^2=41*x^6+19*x^5+43*x^4+21*x^3+17*x^2+12*x+54', 'y^2=33*x^6+30*x^5+36*x^4+16*x^3+13*x^2+40*x+7', 'y^2=7*x^6+x^5+13*x^4+32*x^3+26*x^2+21*x+14', 'y^2=8*x^6+54*x^5+36*x^4+37*x^3+42*x^2+44*x+28', 'y^2=38*x^6+31*x^5+6*x^3+23*x^2+22*x+51', 'y^2=17*x^6+3*x^5+12*x^3+46*x^2+44*x+43', 'y^2=13*x^6+40*x^5+8*x^4+47*x^3+57*x^2+32*x+21', 'y^2=40*x^6+29*x^4+58*x^2+25', 'y^2=21*x^6+42*x^4+25*x^2+50', 'y^2=41*x^6+41*x^5+30*x^4+27*x^3+45*x^2+43*x+9', 'y^2=23*x^6+23*x^5+x^4+54*x^3+31*x^2+27*x+18', 'y^2=9*x^6+5*x^5+21*x^4+23*x^3+11*x^2+16*x+25', 'y^2=18*x^6+10*x^5+42*x^4+46*x^3+22*x^2+32*x+50', 'y^2=19*x^6+49*x^5+26*x^4+23*x^3+42*x^2+35*x+31', 'y^2=32*x^6+56*x^5+30*x^4+17*x^3+20*x^2+38*x+51', 'y^2=58*x^6+43*x^5+48*x^4+23*x^3+39*x^2+30*x+49', 'y^2=5*x^6+3*x^5+42*x^4+58*x^3+7*x^2+5*x+44', 'y^2=18*x^6+21*x^5+7*x^4+57*x^3+2*x^2+9*x+40', 'y^2=36*x^6+42*x^5+14*x^4+55*x^3+4*x^2+18*x+21'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 20, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.40.1'], 'geometric_splitting_field': '2.0.40.1', 'geometric_splitting_polynomials': [[10, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 78, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 78, 'label': '2.59.a_ada', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.40.1', '2.0.40.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -78, 0, 3481], 'poly_str': '1 0 -78 0 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, 0, -196], 'simple_distinct': ['1.59.ao', '1.59.o'], 'simple_factors': ['1.59.aoA', '1.59.oA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,5*F-3', '7,26*F-11', '7,17*F-6'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.40.1', 'splitting_polynomials': [[10, 0, 1]], 'twist_count': 6, 'twists': [['2.59.abc_mc', '2.3481.aga_thu', 2], ['2.59.bc_mc', '2.3481.aga_thu', 2], ['2.59.a_da', '2.12117361.cpo_ccssoc', 4], ['2.59.ao_fh', '2.42180533641.bmrya_yxhxnrfy', 6], ['2.59.o_fh', '2.42180533641.bmrya_yxhxnrfy', 6]], 'weak_equivalence_count': 20, 'zfv_index': 784, 'zfv_index_factorization': [[2, 4], [7, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 1600, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,5*F-3', '7,26*F-11', '7,17*F-6']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 51875
{'base_label': '2.59.a_ada', 'extension_degree': 1, 'extension_label': '1.59.ao', 'multiplicity': 1}
-
id: 51876
{'base_label': '2.59.a_ada', 'extension_degree': 1, 'extension_label': '1.59.o', 'multiplicity': 1}
-
id: 51877
{'base_label': '2.59.a_ada', 'extension_degree': 2, 'extension_label': '1.3481.ada', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.40.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.ao', 'galois_group': '2T1', 'places': [['52', '1'], ['7', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.40.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.o', 'galois_group': '2T1', 'places': [['7', '1'], ['52', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.40.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.3481.ada', 'galois_group': '2T1', 'places': [['52', '1'], ['7', '1']]}