# Stored data for abelian variety isogeny class 2.59.a_ada, downloaded from the LMFDB on 22 September 2025. {"abvar_count": 3404, "abvar_counts": [3404, 11587216, 42180873644, 146851740697600, 511116753947273804, 1779226101371093838736, 6193386212887125717239084, 21559184297488449448165785600, 75047496554032953040815356151884, 261240336165598031702204483744630416], "abvar_counts_str": "3404 11587216 42180873644 146851740697600 511116753947273804 1779226101371093838736 6193386212887125717239084 21559184297488449448165785600 75047496554032953040815356151884 261240336165598031702204483744630416 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.135062563049179, 0.864937436950821], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 60, "curve_counts": [60, 3326, 205380, 12119118, 714924300, 42181213646, 2488651484820, 146830484531998, 8662995818654940, 511116754593906206], "curve_counts_str": "60 3326 205380 12119118 714924300 42181213646 2488651484820 146830484531998 8662995818654940 511116754593906206 ", "curves": ["y^2=20*x^6+4*x^5+51*x^4+54*x^3+44*x^2+3*x+6", "y^2=51*x^6+42*x^5+8*x^4+27*x^3+45*x^2+18*x+6", "y^2=33*x^6+45*x^5+49*x^4+21*x^3+2*x^2+49*x+29", "y^2=43*x^6+32*x^5+25*x^4+52*x^3+54*x^2+58*x+3", "y^2=27*x^6+5*x^5+50*x^4+45*x^3+49*x^2+57*x+6", "y^2=21*x^6+58*x^5+43*x^4+12*x^3+47*x^2+25*x+47", "y^2=42*x^6+57*x^5+27*x^4+24*x^3+35*x^2+50*x+35", "y^2=17*x^6+39*x^5+55*x^4+24*x^3+21*x^2+20*x+11", "y^2=34*x^6+19*x^5+51*x^4+48*x^3+42*x^2+40*x+22", "y^2=20*x^6+27*x^5+23*x^4+23*x^3+35*x^2+12*x+54", "y^2=14*x^6+40*x^5+5*x^4+22*x^3+58*x^2+49*x+11", "y^2=28*x^6+21*x^5+10*x^4+44*x^3+57*x^2+39*x+22", "y^2=23*x^6+25*x^5+12*x^4+3*x^3+50*x^2+3*x+41", "y^2=38*x^6+x^5+36*x^4+6*x^3+40*x^2+26*x+3", "y^2=40*x^6+58*x^5+43*x^4+16*x^3+5*x^2+12*x+45", "y^2=21*x^6+57*x^5+27*x^4+32*x^3+10*x^2+24*x+31", "y^2=46*x^6+23*x^5+51*x^4+48*x^3+10*x^2+11*x+15", "y^2=33*x^6+46*x^5+43*x^4+37*x^3+20*x^2+22*x+30", "y^2=43*x^6+56*x^5+14*x^4+11*x^3+9*x^2+40*x+36", "y^2=40*x^6+2*x^5+42*x^4+5*x^3+17*x^2+2*x+19", "y^2=11*x^6+25*x^5+37*x^4+2*x^3+29*x^2+4*x+26", "y^2=22*x^6+50*x^5+15*x^4+4*x^3+58*x^2+8*x+52", "y^2=57*x^6+24*x^5+19*x^4+x^3+20*x^2+26*x+28", "y^2=55*x^6+48*x^5+38*x^4+2*x^3+40*x^2+52*x+56", "y^2=11*x^6+52*x^5+54*x^4+41*x^3+35*x^2+54*x+56", "y^2=22*x^6+45*x^5+49*x^4+23*x^3+11*x^2+49*x+53", "y^2=39*x^6+31*x^5+32*x^4+10*x^3+51*x^2+13*x+4", "y^2=44*x^6+11*x^5+2*x^4+16*x^3+16*x^2+55*x+49", "y^2=51*x^6+12*x^5+4*x^4+21*x^3+2*x^2+3*x+58", "y^2=49*x^6+2*x^5+4*x^4+11*x^3+6*x^2+9", "y^2=39*x^6+4*x^5+8*x^4+22*x^3+12*x^2+18", "y^2=40*x^6+14*x^5+26*x^4+19*x^3+57*x^2+45*x+58", "y^2=21*x^6+28*x^5+52*x^4+38*x^3+55*x^2+31*x+57", "y^2=40*x^6+34*x^5+45*x^4+x^3+58*x^2+54*x+5", "y^2=21*x^6+9*x^5+31*x^4+2*x^3+57*x^2+49*x+10", "y^2=51*x^6+55*x^5+22*x^4+35*x^3+13*x^2+42*x+55", "y^2=18*x^6+38*x^5+35*x^4+4*x^3+33*x^2+15*x+48", "y^2=36*x^6+17*x^5+11*x^4+8*x^3+7*x^2+30*x+37", "y^2=x^6+9*x^5+10*x^4+24*x^3+54*x^2+33*x+30", "y^2=2*x^6+18*x^5+20*x^4+48*x^3+49*x^2+7*x+1", "y^2=3*x^6+12*x^5+45*x^4+46*x^3+31*x^2+48*x+24", "y^2=23*x^6+33*x^5+41*x^4+54*x^3+8*x^2+24*x+17", "y^2=46*x^6+9*x^5+52*x^4+56*x^3+47*x^2+56*x+8", "y^2=33*x^6+18*x^5+45*x^4+53*x^3+35*x^2+53*x+16", "y^2=x^6+14*x^5+3*x^4+33*x^3+9*x^2+23*x+51", "y^2=2*x^6+28*x^5+6*x^4+7*x^3+18*x^2+46*x+43", "y^2=30*x^6+50*x^5+57*x^4+40*x^3+36*x^2+6*x+28", "y^2=x^6+41*x^5+55*x^4+21*x^3+13*x^2+12*x+56", "y^2=44*x^6+27*x^5+2*x^4+24*x^3+34*x^2+15*x+55", "y^2=29*x^6+54*x^5+4*x^4+48*x^3+9*x^2+30*x+51", "y^2=26*x^6+40*x^5+51*x^4+31*x^3+51*x^2+40*x+26", "y^2=52*x^6+21*x^5+43*x^4+3*x^3+43*x^2+21*x+52", "y^2=48*x^6+42*x^5+19*x^4+29*x^3+40*x^2+42*x+11", "y^2=44*x^6+21*x^5+24*x^4+48*x^3+45*x^2+x+25", "y^2=12*x^6+21*x^5+5*x^4+40*x^3+13*x^2+57*x+24", "y^2=30*x^6+24*x^5+6*x^4+34*x^3+57*x^2+46*x+9", "y^2=x^6+48*x^5+12*x^4+9*x^3+55*x^2+33*x+18", "y^2=20*x^6+47*x^5+21*x^4+42*x^3+31*x^2+18*x+40", "y^2=34*x^6+54*x^5+50*x^4+30*x^3+5*x^2+56*x+28", "y^2=41*x^6+19*x^5+43*x^4+21*x^3+17*x^2+12*x+54", "y^2=33*x^6+30*x^5+36*x^4+16*x^3+13*x^2+40*x+7", "y^2=7*x^6+x^5+13*x^4+32*x^3+26*x^2+21*x+14", "y^2=8*x^6+54*x^5+36*x^4+37*x^3+42*x^2+44*x+28", "y^2=38*x^6+31*x^5+6*x^3+23*x^2+22*x+51", "y^2=17*x^6+3*x^5+12*x^3+46*x^2+44*x+43", "y^2=13*x^6+40*x^5+8*x^4+47*x^3+57*x^2+32*x+21", "y^2=40*x^6+29*x^4+58*x^2+25", "y^2=21*x^6+42*x^4+25*x^2+50", "y^2=41*x^6+41*x^5+30*x^4+27*x^3+45*x^2+43*x+9", "y^2=23*x^6+23*x^5+x^4+54*x^3+31*x^2+27*x+18", "y^2=9*x^6+5*x^5+21*x^4+23*x^3+11*x^2+16*x+25", "y^2=18*x^6+10*x^5+42*x^4+46*x^3+22*x^2+32*x+50", "y^2=19*x^6+49*x^5+26*x^4+23*x^3+42*x^2+35*x+31", "y^2=32*x^6+56*x^5+30*x^4+17*x^3+20*x^2+38*x+51", "y^2=58*x^6+43*x^5+48*x^4+23*x^3+39*x^2+30*x+49", "y^2=5*x^6+3*x^5+42*x^4+58*x^3+7*x^2+5*x+44", "y^2=18*x^6+21*x^5+7*x^4+57*x^3+2*x^2+9*x+40", "y^2=36*x^6+42*x^5+14*x^4+55*x^3+4*x^2+18*x+21"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 20, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.40.1"], "geometric_splitting_field": "2.0.40.1", "geometric_splitting_polynomials": [[10, 0, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 78, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 78, "label": "2.59.a_ada", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.40.1", "2.0.40.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 0, -78, 0, 3481], "poly_str": "1 0 -78 0 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 0, -196], "simple_distinct": ["1.59.ao", "1.59.o"], "simple_factors": ["1.59.aoA", "1.59.oA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,5*F-3", "7,26*F-11", "7,17*F-6"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.40.1", "splitting_polynomials": [[10, 0, 1]], "twist_count": 6, "twists": [["2.59.abc_mc", "2.3481.aga_thu", 2], ["2.59.bc_mc", "2.3481.aga_thu", 2], ["2.59.a_da", "2.12117361.cpo_ccssoc", 4], ["2.59.ao_fh", "2.42180533641.bmrya_yxhxnrfy", 6], ["2.59.o_fh", "2.42180533641.bmrya_yxhxnrfy", 6]], "weak_equivalence_count": 20, "zfv_index": 784, "zfv_index_factorization": [[2, 4], [7, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 1600, "zfv_singular_count": 6, "zfv_singular_primes": ["2,5*F-3", "7,26*F-11", "7,17*F-6"]}