# Curves in abelian variety isogeny class 2.59.a_ada, downloaded from the LMFDB on 22 September 2025. y^2=20*x^6+4*x^5+51*x^4+54*x^3+44*x^2+3*x+6 y^2=51*x^6+42*x^5+8*x^4+27*x^3+45*x^2+18*x+6 y^2=33*x^6+45*x^5+49*x^4+21*x^3+2*x^2+49*x+29 y^2=43*x^6+32*x^5+25*x^4+52*x^3+54*x^2+58*x+3 y^2=27*x^6+5*x^5+50*x^4+45*x^3+49*x^2+57*x+6 y^2=21*x^6+58*x^5+43*x^4+12*x^3+47*x^2+25*x+47 y^2=42*x^6+57*x^5+27*x^4+24*x^3+35*x^2+50*x+35 y^2=17*x^6+39*x^5+55*x^4+24*x^3+21*x^2+20*x+11 y^2=34*x^6+19*x^5+51*x^4+48*x^3+42*x^2+40*x+22 y^2=20*x^6+27*x^5+23*x^4+23*x^3+35*x^2+12*x+54 y^2=14*x^6+40*x^5+5*x^4+22*x^3+58*x^2+49*x+11 y^2=28*x^6+21*x^5+10*x^4+44*x^3+57*x^2+39*x+22 y^2=23*x^6+25*x^5+12*x^4+3*x^3+50*x^2+3*x+41 y^2=38*x^6+x^5+36*x^4+6*x^3+40*x^2+26*x+3 y^2=40*x^6+58*x^5+43*x^4+16*x^3+5*x^2+12*x+45 y^2=21*x^6+57*x^5+27*x^4+32*x^3+10*x^2+24*x+31 y^2=46*x^6+23*x^5+51*x^4+48*x^3+10*x^2+11*x+15 y^2=33*x^6+46*x^5+43*x^4+37*x^3+20*x^2+22*x+30 y^2=43*x^6+56*x^5+14*x^4+11*x^3+9*x^2+40*x+36 y^2=40*x^6+2*x^5+42*x^4+5*x^3+17*x^2+2*x+19 y^2=11*x^6+25*x^5+37*x^4+2*x^3+29*x^2+4*x+26 y^2=22*x^6+50*x^5+15*x^4+4*x^3+58*x^2+8*x+52 y^2=57*x^6+24*x^5+19*x^4+x^3+20*x^2+26*x+28 y^2=55*x^6+48*x^5+38*x^4+2*x^3+40*x^2+52*x+56 y^2=11*x^6+52*x^5+54*x^4+41*x^3+35*x^2+54*x+56 y^2=22*x^6+45*x^5+49*x^4+23*x^3+11*x^2+49*x+53 y^2=39*x^6+31*x^5+32*x^4+10*x^3+51*x^2+13*x+4 y^2=44*x^6+11*x^5+2*x^4+16*x^3+16*x^2+55*x+49 y^2=51*x^6+12*x^5+4*x^4+21*x^3+2*x^2+3*x+58 y^2=49*x^6+2*x^5+4*x^4+11*x^3+6*x^2+9 y^2=39*x^6+4*x^5+8*x^4+22*x^3+12*x^2+18 y^2=40*x^6+14*x^5+26*x^4+19*x^3+57*x^2+45*x+58 y^2=21*x^6+28*x^5+52*x^4+38*x^3+55*x^2+31*x+57 y^2=40*x^6+34*x^5+45*x^4+x^3+58*x^2+54*x+5 y^2=21*x^6+9*x^5+31*x^4+2*x^3+57*x^2+49*x+10 y^2=51*x^6+55*x^5+22*x^4+35*x^3+13*x^2+42*x+55 y^2=18*x^6+38*x^5+35*x^4+4*x^3+33*x^2+15*x+48 y^2=36*x^6+17*x^5+11*x^4+8*x^3+7*x^2+30*x+37 y^2=x^6+9*x^5+10*x^4+24*x^3+54*x^2+33*x+30 y^2=2*x^6+18*x^5+20*x^4+48*x^3+49*x^2+7*x+1 y^2=3*x^6+12*x^5+45*x^4+46*x^3+31*x^2+48*x+24 y^2=23*x^6+33*x^5+41*x^4+54*x^3+8*x^2+24*x+17 y^2=46*x^6+9*x^5+52*x^4+56*x^3+47*x^2+56*x+8 y^2=33*x^6+18*x^5+45*x^4+53*x^3+35*x^2+53*x+16 y^2=x^6+14*x^5+3*x^4+33*x^3+9*x^2+23*x+51 y^2=2*x^6+28*x^5+6*x^4+7*x^3+18*x^2+46*x+43 y^2=30*x^6+50*x^5+57*x^4+40*x^3+36*x^2+6*x+28 y^2=x^6+41*x^5+55*x^4+21*x^3+13*x^2+12*x+56 y^2=44*x^6+27*x^5+2*x^4+24*x^3+34*x^2+15*x+55 y^2=29*x^6+54*x^5+4*x^4+48*x^3+9*x^2+30*x+51 y^2=26*x^6+40*x^5+51*x^4+31*x^3+51*x^2+40*x+26 y^2=52*x^6+21*x^5+43*x^4+3*x^3+43*x^2+21*x+52 y^2=48*x^6+42*x^5+19*x^4+29*x^3+40*x^2+42*x+11 y^2=44*x^6+21*x^5+24*x^4+48*x^3+45*x^2+x+25 y^2=12*x^6+21*x^5+5*x^4+40*x^3+13*x^2+57*x+24 y^2=30*x^6+24*x^5+6*x^4+34*x^3+57*x^2+46*x+9 y^2=x^6+48*x^5+12*x^4+9*x^3+55*x^2+33*x+18 y^2=20*x^6+47*x^5+21*x^4+42*x^3+31*x^2+18*x+40 y^2=34*x^6+54*x^5+50*x^4+30*x^3+5*x^2+56*x+28 y^2=41*x^6+19*x^5+43*x^4+21*x^3+17*x^2+12*x+54 y^2=33*x^6+30*x^5+36*x^4+16*x^3+13*x^2+40*x+7 y^2=7*x^6+x^5+13*x^4+32*x^3+26*x^2+21*x+14 y^2=8*x^6+54*x^5+36*x^4+37*x^3+42*x^2+44*x+28 y^2=38*x^6+31*x^5+6*x^3+23*x^2+22*x+51 y^2=17*x^6+3*x^5+12*x^3+46*x^2+44*x+43 y^2=13*x^6+40*x^5+8*x^4+47*x^3+57*x^2+32*x+21 y^2=40*x^6+29*x^4+58*x^2+25 y^2=21*x^6+42*x^4+25*x^2+50 y^2=41*x^6+41*x^5+30*x^4+27*x^3+45*x^2+43*x+9 y^2=23*x^6+23*x^5+x^4+54*x^3+31*x^2+27*x+18 y^2=9*x^6+5*x^5+21*x^4+23*x^3+11*x^2+16*x+25 y^2=18*x^6+10*x^5+42*x^4+46*x^3+22*x^2+32*x+50 y^2=19*x^6+49*x^5+26*x^4+23*x^3+42*x^2+35*x+31 y^2=32*x^6+56*x^5+30*x^4+17*x^3+20*x^2+38*x+51 y^2=58*x^6+43*x^5+48*x^4+23*x^3+39*x^2+30*x+49 y^2=5*x^6+3*x^5+42*x^4+58*x^3+7*x^2+5*x+44 y^2=18*x^6+21*x^5+7*x^4+57*x^3+2*x^2+9*x+40 y^2=36*x^6+42*x^5+14*x^4+55*x^3+4*x^2+18*x+21