Properties

Label 2.11.a_s
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 11 x^{2} )( 1 + 2 x + 11 x^{2} )$
  $1 + 18 x^{2} + 121 x^{4}$
Frobenius angles:  $\pm0.402508885479$, $\pm0.597491114521$
Angle rank:  $1$ (numerical)
Jacobians:  $12$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $140$ $19600$ $1770860$ $211993600$ $25937103500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $12$ $158$ $1332$ $14478$ $161052$ $1770158$ $19487172$ $214403998$ $2357947692$ $25936782398$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11^{2}}$.

Endomorphism algebra over $\F_{11}$
The isogeny class factors as 1.11.ac $\times$ 1.11.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{11}$
The base change of $A$ to $\F_{11^{2}}$ is 1.121.s 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ae_ba$2$2.121.bk_vu
2.11.e_ba$2$2.121.bk_vu
2.11.a_as$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.ae_ba$2$2.121.bk_vu
2.11.e_ba$2$2.121.bk_vu
2.11.a_as$4$(not in LMFDB)
2.11.ac_ah$6$(not in LMFDB)
2.11.c_ah$6$(not in LMFDB)