Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 61 x^{2} )^{2}$ |
$1 - 20 x + 222 x^{2} - 1220 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.278857938376$, $\pm0.278857938376$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $49$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2704$ | $14017536$ | $51898307344$ | $191900067840000$ | $713374923911023504$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $3766$ | $228642$ | $13859758$ | $844634202$ | $51519904486$ | $3142735825362$ | $191707271553118$ | $11694146106042762$ | $713342914323062806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=6 x^6+58 x^5+35 x^3+58 x^2+7 x+21$
- $y^2=32 x^6+23 x^5+46 x^4+39 x^3+13 x^2+33 x+35$
- $y^2=16 x^6+20 x^5+45 x^4+24 x^3+39 x^2+34 x+13$
- $y^2=28 x^6+41 x^5+18 x^4+28 x^3+18 x^2+41 x+28$
- $y^2=47 x^6+25 x^4+25 x^2+47$
- $y^2=52 x^6+53 x^4+53 x^2+52$
- $y^2=24 x^6+10 x^4+10 x^2+24$
- $y^2=59 x^6+18 x^4+18 x^2+59$
- $y^2=51 x^6+24 x^5+3 x^4+49 x^3+15 x^2+51 x+31$
- $y^2=17 x^6+45 x^4+45 x^2+17$
- $y^2=43 x^6+22 x^5+5 x^4+18 x^3+31 x^2+18 x+18$
- $y^2=7 x^6+29 x^5+5 x^4+8 x^3+x^2+28 x+43$
- $y^2=14 x^6+33 x^5+42 x^4+3 x^3+51 x^2+34 x+16$
- $y^2=2 x^6+38 x^3+54$
- $y^2=40 x^6+24 x^5+27 x^4+11 x^3+25 x^2+2 x+43$
- $y^2=27 x^6+39 x^5+19 x^4+32 x^3+19 x^2+39 x+27$
- $y^2=32 x^6+32 x^5+55 x^4+8 x^3+50 x^2+28 x+18$
- $y^2=39 x^6+32 x^5+9 x^4+12 x^3+60 x^2+26 x+13$
- $y^2=17 x^6+53 x^5+36 x^4+38 x^3+36 x^2+53 x+17$
- $y^2=2 x^6+2 x^3+43$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ak 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.