Properties

Label 2.37.am_eg
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 37 x^{2} )^{2}$
  $1 - 12 x + 110 x^{2} - 444 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.335828188403$, $\pm0.335828188403$
Angle rank:  $1$ (numerical)
Jacobians:  $20$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1024$ $1982464$ $2611618816$ $3517335207936$ $4807352209245184$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $1446$ $51554$ $1876750$ $69326186$ $2565524022$ $94931320370$ $3512483601694$ $129961785281978$ $4808584491871686$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The isogeny class factors as 1.37.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.a_bm$2$(not in LMFDB)
2.37.m_eg$2$(not in LMFDB)
2.37.g_ab$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.a_bm$2$(not in LMFDB)
2.37.m_eg$2$(not in LMFDB)
2.37.g_ab$3$(not in LMFDB)
2.37.a_abm$4$(not in LMFDB)
2.37.ag_ab$6$(not in LMFDB)