Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 37 x^{2} )^{2}$ |
| $1 - 12 x + 110 x^{2} - 444 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.335828188403$, $\pm0.335828188403$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1024$ | $1982464$ | $2611618816$ | $3517335207936$ | $4807352209245184$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $26$ | $1446$ | $51554$ | $1876750$ | $69326186$ | $2565524022$ | $94931320370$ | $3512483601694$ | $129961785281978$ | $4808584491871686$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=34 x^6+31 x^4+31 x^2+34$
- $y^2=11 x^6+12 x^5+9 x^3+17 x^2+19 x+6$
- $y^2=21 x^6+30 x^5+31 x^4+19 x^3+31 x^2+30 x+21$
- $y^2=5 x^6+20 x^5+17 x^4+24 x^3+2 x^2+17 x+27$
- $y^2=15 x^6+26 x^5+36 x^4+5 x^3+36 x^2+26 x+15$
- $y^2=14 x^6+20 x^5+20 x^4+15 x^3+19 x^2+31 x+6$
- $y^2=16 x^6+10 x^4+10 x^2+16$
- $y^2=5 x^6+21 x^5+7 x^4+10 x^3+7 x^2+21 x+5$
- $y^2=24 x^6+22 x^5+4 x^4+11 x^3+21 x^2+32 x+34$
- $y^2=32 x^6+33 x^4+33 x^2+32$
- $y^2=14 x^6+25 x^5+13 x^4+18 x^3+13 x^2+25 x+14$
- $y^2=16 x^6+23 x^5+26 x^4+11 x^3+x^2+14 x+22$
- $y^2=11 x^6+16 x^5+36 x^4+33 x^3+36 x^2+16 x+11$
- $y^2=24 x^6+15 x^5+26 x^4+13 x^3+x^2+14 x+8$
- $y^2=5 x^6+35 x^5+35 x^4+24 x^3+35 x^2+35 x+5$
- $y^2=22 x^6+8 x^5+27 x^4+17 x^3+27 x^2+8 x+22$
- $y^2=5 x^6+14 x^4+16 x^3+14 x^2+5$
- $y^2=3 x^6+3 x^5+24 x^4+36 x^3+24 x^2+3 x+3$
- $y^2=10 x^6+32 x^4+32 x^2+10$
- $y^2=23 x^6+29 x^5+18 x^4+36 x^3+4 x^2+30 x+30$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.